TMP Programme Munich - spring term 2014

HOMEWORK ASSIGNMENT – WEEK 04

Hand-in deadline: Thu 8 May by 12 p.m. in the "MSP" drop box.

Rules: Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.

Info: www.math.lmu.de/~michel/SS14_MSP.html

Exercise 9. Let \mathcal{A} be a C^* -algebra with unit and let $\{\alpha_t \mid t \in \mathbb{R}\}$ be a weakly continuous one-parameter group of *-automorphisms on \mathcal{A} . Prove that there exists one state ν on \mathcal{A} which is α_t -invariant, namely, $\nu(\alpha_t(\mathcal{A})) = \nu(\mathcal{A}) \ \forall \mathcal{A} \in \mathcal{A}$ and $\forall t \in \mathbb{R}$.

Hint: we know that \mathcal{A} has a state ω over \mathcal{A} ; a priori ω is not invariant but there is a natural operation on ω that yields a candidate invariant state.

Exercise 10. Let $\mathcal{A}_{CAR}(\mathfrak{h})$ be the CAR algebra over a Hilbert space \mathfrak{h} and let \mathcal{I} be a net of closed non-empty subspaces of \mathfrak{h} ordered by inclusion such that

- (1) if $M \in \mathcal{I}$ then $\exists N \in \mathcal{I}$ such that $M \perp N$ (in the sense of the scalar product in \mathfrak{h}),
- (2) if $M \perp N$ and $M \perp K$, then $\exists L \in \mathcal{I}$ such that $M \perp L$ and $N, K \subset L$

(3)
$$\mathfrak{h} = \overline{\bigcup_{M \in \mathcal{I}} M}^{\|\|}.$$

For each $M \in \mathcal{I}$ let $\mathcal{A}_M \subset \mathcal{A}_{CAR}(\mathfrak{h})$ be the sub- C^* -algebra generated by $\{a(f) \mid f \in M\}$. Prove that $(\mathcal{A}_{CAR}(\mathfrak{h}), \{\mathcal{A}_M\}_{M \in \mathcal{I}})$ is a quasi-local algebra with involutive automorphism σ such that $\sigma(a(f)) = -a(f)$ for all $f \in \mathfrak{h}$.

Exercise 11. Let $d \in \mathbb{N}$. Consider the CAR algebra $\mathcal{A} = \mathcal{A}_{CAR}(\mathfrak{h})$ over the Hilbert space $\mathfrak{h} := L^2(\mathbb{R}^d, \mathbb{C})$. For every $v \in \mathbb{R}^d$ and every $f \in \mathfrak{h}$ define $(U_v f)(x) := f(x-v)$ for a.e. $x \in \mathbb{R}^d$.

(i) Let τ_v be the *-homomorphism defined by

$$\tau_v(a(f)) := a(U_v f), \qquad \tau_v(a^*(f)) := a^*(U_v f),$$

and extended by linearity on the polynomials generated by 1, a(f), and $a^*(f), f \in \mathfrak{h}$. Prove that $\{\tau_v\}_{v \in \mathbb{R}^d}$ extends to a strongly continuous \mathbb{R}^d -parameter group of *-automorphisms of \mathcal{A} . (ii) Prove that

$$\lim_{\substack{v \in \mathbb{R}^d \\ |v| \to \infty}} \left\| \left\{ a(f)^*, \tau_v(a(g)) \right\} \right\| = 0$$

for any $f, g \in L^2(\mathbb{R}^d)$, where $\{ , \}$ denotes the anti-commutator in \mathcal{A} .

(iii) Prove that if A is an odd element of \mathcal{A} , then

$$\lim_{\substack{v \in \mathbb{R}^d \\ |v| \to \infty}} \left\| \left\{ A^*, \tau_v(A) \right\} \right\| = 0.$$

(*Hint:* polynomial approximation.)

(iv) Prove that if A or B is an even element of \mathcal{A} , then

$$\lim_{\substack{v \in \mathbb{R}^d \\ |v| \to \infty}} \left\| \left[A, \tau_v(B) \right] \right\| = 0,$$

where [,] denotes the commutator in \mathcal{A} .

Exercise 12. Consider the quasi-local C^* -algebra \mathcal{A} of a one-dimensional infinite chain of spin- $\frac{1}{2}$ systems, where the corresponding net $(\mathcal{A}_{\Lambda})_{\Lambda \subset \mathbb{Z}}$ of local algebras is defined by

$$\mathcal{A}_{\Lambda} := \bigotimes_{n \in \Lambda} \mathcal{A}_n,$$

$$\mathcal{A}_n := \text{ matrix algebra generated by } \{\mathbb{1}_n, \sigma_n^x, \sigma_n^y, \sigma_n^z\} \cong \mathcal{M}(2 \times 2, \mathbb{C})$$

As usual, each $A \in \mathcal{A}_n$ is regarded as $A \in \mathcal{A}$ via the identification $A \equiv \cdots \otimes \mathbb{1}_{n-1} \otimes A \otimes \mathbb{1}_{n+1} \otimes \cdots$. The goal of this exercise is to show that \mathcal{A} admits two *inequivalent* representations (\mathcal{H}^+, π^+) and (\mathcal{H}^-, π^-) , i.e., two representations for which no unitary operator $U : \mathcal{H}^+ \to \mathcal{H}^-$ exists such that $\pi^-(A) = U\pi^+(A)U^* \ \forall A \in \mathcal{A}$. The spaces \mathcal{H}^{\pm} and the *-homomorphisms π^{\pm} are defined as follows.

Target spaces. Given the two countable sets

$$S^{+} := \{ s \equiv (s_{n})_{n \in \mathbb{Z}} \mid s_{n} \in \{-1, 1\} \forall n \in \mathbb{Z}, s_{n} \neq 1 \text{ for at most finitely many } n's \}, \\ S^{-} := \{ s \equiv (s_{n})_{n \in \mathbb{Z}} \mid s_{n} \in \{-1, 1\} \forall n \in \mathbb{Z}, s_{n} \neq -1 \text{ for at most finitely many } n's \},$$

the Hilbert spaces \mathcal{H}^+ and \mathcal{H}^- are defined by

$$\mathcal{H}^{\pm} := \ell^2(S^{\pm}) = \left\{ f: S^{\pm} \to \mathbb{C} \mid \sum_{s \in S^{\pm}} |f(s)|^2 < \infty \right\}.$$

Note that since S^{\pm} is countable, then $\ell^2(S^{\pm})$ is separable: in fact, a canonical orthonormal basis is $(f_s)_{s\in S^{\pm}}$, where $f_s(t) := \begin{cases} 1 & \text{if } t = s \\ 0 & \text{if } t \neq s \end{cases}$.

Representations. Clearly, it is enough to define π^{\pm} on the elements $\{\mathbb{1}_n, \sigma_n^x, \sigma_n^y, \sigma_n^z | n \in \mathbb{Z}\}$ of \mathcal{A} . In terms of the "flip of spin n" maps

$$\Theta_n : S^+ \to S^+, \qquad (\Theta_n(f))_k := \begin{cases} -s_n & \text{if } k = n \\ s_k & \text{if } k \neq n \end{cases}$$

defined for each $n \in \mathbb{Z}$, set

$$\begin{aligned} &(\pi^+(\mathbb{1}_n)f)(s) := f(s) \\ &(\pi^+(\sigma_n^x)f)(s) := f(\Theta_n(s)) \\ &(\pi^+(\sigma_n^y)f)(s) := i s_n f(\Theta_n(s)) \\ &(\pi^+(\sigma_n^z)f)(s) := s_n f(s) \qquad \forall f \in \mathcal{H}^+, \ \forall s \in S^+. \end{aligned}$$

 π^- is defined on \mathcal{H}^- by precisely the same formulas as above.

- (i) Prove that (\mathcal{H}^+, π^+) and (\mathcal{H}^-, π^-) are two representations of \mathcal{A} .
- (ii) Prove that both π^+ and π^- are irreducible.

(*Hint:* apply to a generic non-zero $f \in \mathcal{H}^+$ a suitable number of projections $P_n^{\pm} := \frac{1}{2}\pi^+(\mathbb{1}_n \pm \sigma_n^z)$ and of flip operators $\pi^+(\sigma_n^x)$, for a finite number of sites n, to get arbitrarily close to any element of the canonical orthonormal basis of \mathcal{H}^+ . The same on \mathcal{H}^- .)

(iii) For each $N \in \mathbb{N}$ consider the local magnetisation operator $M_N^z := \frac{1}{2N+1} \sum_{n=-N}^N \sigma_n^z$. Prove that

 $\pi^{\pm}(M_N^z) \xrightarrow{N \to \infty} \pm \mathbb{1}$ weakly in the operator sense

and thus deduce that π^+ and π^- are not unitarily equivalent.

(*Hint*: for every $\psi, \phi \in \mathcal{H}^{\pm}$ compute the limit $\lim_{N \to \infty} \langle \psi, \pi^{\pm}(M_N^z) \phi \rangle_{\mathcal{H}^{\pm}}$.)

(iv) Argue that actually \mathcal{A} admits *infinitely* many non-equivalent representations.