TMP Programme Munich – spring term 2014

HOMEWORK ASSIGNMENT - WEEK 03
Hand-in deadline: Fri 2 May by 12 p.m. in the "MSP" drop box.
Rules: Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.
Info: www.math.lmu.de/~michel/SS14_MSP.html

Exercise 5. Let \mathcal{A} be a unital Banach algebra. Assume that every element $A \in \mathcal{A}$ satisfies the identity $||A^2|| = ||A||^2$.

- (i) Let $A \in \mathcal{A}$ be such that $||A^2|| = ||A||^2$. Prove that the spectral radius $r(A) := \sup_{\lambda \in \sigma(A)} |\lambda|$ is such that r(A) = ||A||.
- (ii) Let $z \in \mathbb{C}$ and $A, B \in \mathcal{A}$, arbitrary. Prove that $\sigma(e^{-zA}Be^{zA}) = \sigma(B)$. (The element $e^{zA} \in \mathcal{A}$ is defined by its norm-convergent series.)
- (iii) Let $A, B \in \mathcal{A}$, arbitrary. Prove that $||e^{-zA}Be^{zA}||$ is constant for every $z \in \mathbb{C}$.
- (iv) Deduce from (i)-(iii) above that the algebra \mathcal{A} is necessarily commutative. (*Hint*: $\mathbb{C} \ni z \mapsto e^{-zA}Be^{zA}$ is holomorphic.)

The purpose of the next two exercises is to compute the GNS representation of a C^* -algebra in two explicit cases. In one case \mathcal{A} is commutative, in the other one \mathcal{A} is not.

Exercise 6. Consider the C^* -algebra C([0,1]) (with the $|| ||_{sup}$ norm). For each $f \in C([0,1])$ define $\omega(f) := \int_0^1 f(t) dt$.

- (i) Prove that ω is a state on C([0, 1]). Is ω a pure state?
- (ii) Find the GNS representation $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ associated with the state ω , i.e., describe explicitly the Hilbert space \mathcal{H}_{ω} , the *-homomorphism $\pi_{\omega} : C([0, 1]) \to \mathcal{L}(\mathcal{H}_{\omega})$, and the cyclic vector $\Omega_{\omega} \in \mathcal{H}_{\omega}$.
- (iii) Prove that π_{ω} is a faithful representation, i.e., $\|\pi_{\omega}(f)\| = \|f\|_{\sup} \quad \forall f \in C([0,1]).$

Exercise 7. Consider the C^* -algebra $\mathcal{A} = \mathcal{B}(\mathcal{H})$ of bounded linear operators on a given Hilbert space \mathcal{H} , and the (normal) state ω on \mathcal{A} realised by the density matrix ρ , i.e., $\rho(A) = \operatorname{Tr}_{\mathcal{H}}(\rho A)$ $\forall A \in \mathcal{A}$, where $\rho : \mathcal{H} \to \mathcal{H}$ is bounded, self-adjoint, positive, and with $\operatorname{Tr}_{\mathcal{H}}\rho = 1$. Moreover, consider the triple $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ defined as follows:

- $\mathcal{H}_{\omega} := \mathcal{L}^2(\mathcal{K}, \mathcal{H}) \equiv \{\text{the Hilbert-Schmidt operators } \mathcal{K} \to \mathcal{H}\} \text{ where } \mathcal{K} := \overline{\operatorname{Ran} \rho} \text{ (thus, } \mathcal{K} \text{ is a Hilbert sub-space of } \mathcal{H}). Recall that <math>T \in \mathcal{L}^2(\mathcal{K}, \mathcal{H}) \text{ means that } T : \mathcal{K} \to \mathcal{H} \text{ is linear, bounded, and } \operatorname{Tr}_{\mathcal{K}}(T^*T) < \infty$. Equip \mathcal{H}_{ω} with the scalar product $\langle T, S \rangle_{\mathcal{H}_{\omega}} := \operatorname{Tr}_{\mathcal{K}}(T^*S)$ $\forall T, S \in \mathcal{H}_{\omega} \text{ which makes it, as well known, a Hilbert space.}$
- $\Omega_{\omega} := \rho^{1/2} \circ i$ where $i : \mathcal{K} \to \mathcal{H}$ is the canonical injection $i(x) = x \ \forall x \in \mathcal{K}$.
- for each $A \in \mathcal{A}$ $\pi_{\omega}(A) : \mathcal{H}_{\omega} \to \mathcal{H}_{\omega}, \ \pi_{\omega}(A)T := AT \ \forall T \in \mathcal{H}_{\omega}.$
- (i) Prove that Ω_{ω} is a unit vector in \mathcal{H}_{ω} .
- (ii) Prove that π_{ω} is a faithful representation of the C^* -algebra \mathcal{A} into $\mathcal{B}(\mathcal{H}_{\omega})$.
- (iii) Prove that Ω_{ω} is a cyclic vector for the representation π_{ω} .
- (iv) Prove that $\omega(A) = \langle \Omega_{\omega}, \pi_{\omega}(A) \Omega_{\omega} \rangle_{\mathcal{H}_{\omega}} \quad \forall A \in \mathcal{A}.$

Exercise 8. Let \mathcal{A} be a C^* -algebra with unit, ω be a state on \mathcal{A} , $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ be the corresponding GNS representation of \mathcal{A} .

(i) Assume that $(\mathcal{H}, \pi, \Omega)$ is another cyclic representation of \mathcal{A} such that

$$\omega(A) = \langle \Omega, \pi(A)\Omega \rangle_{\mathcal{H}} \qquad \forall A \in \mathcal{A}$$

Produce a unitary operator $U: \mathcal{H} \xrightarrow{\cong} \mathcal{H}_{\omega}$ (i.e., unitary from \mathcal{H} onto \mathcal{H}_{ω}) such that

$$\pi_{\omega}(A) = U\pi(A)U^{-1} \qquad \forall A \in \mathcal{A},$$

$$\Omega_{\omega} = U\Omega.$$

- (ii) Assume that a one-parameter weakly continuous group $\{\alpha_t \mid t \in \mathbb{R}\}$ of *-automorphisms of \mathcal{A} is given. Recall that this means that
 - for each $t \in \mathbb{R} \alpha_t$ is a *-automorphism on \mathcal{A} ,
 - $\forall t, s \in \mathbb{R}: \alpha_0 = i$ (the identity map over \mathcal{A}), $\alpha_t \alpha_s = \alpha_{t+s}, \alpha_t^{-1} = \alpha_{-t}$,
 - for every state ρ on \mathcal{A} and every $A \in \mathcal{A}, \ \rho(\alpha_t(A)) \xrightarrow{t \to 0} \rho(A)$.

Assume now that there is a state ω on \mathcal{A} which is invariant with respect to α_t , namely such that

$$\omega(\alpha_t(A)) = \omega(A) \qquad \forall A \in \mathcal{A} \,, \ \forall t \in \mathbb{R} \,,$$

and denote by $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ the corresponding GNS representation. Prove that there exists a densely defined self-adjoint operator H on the Hilbert space \mathcal{H}_{ω} such that

$$\pi_{\omega}(\alpha_t(A)) = e^{itH} \pi_{\omega}(A) e^{-itH} \quad \forall A \in \mathcal{A} \quad \forall t \in \mathbb{R}.$$

$$\Omega_{\omega} \in \text{domain of } H \text{ and } H\Omega_{\omega} = 0.$$