TMP Programme Munich - spring term 2014

HOMEWORK ASSIGNMENT – WEEK 02

Hand-in deadline: Thursday 24 April 2014 by 12 p.m. in the "MSP" drop box.

Rules: Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.

Info: www.math.lmu.de/~michel/SS14_MSP.html

"I think you should be more explicit here in step two."

Exercise 1. In each of the following cases decide whether the set \mathcal{A} equipped with the structure declared below is a C^* -algebra (justify your answer).

(i) $\mathcal{A} = \mathbb{C}^n$ (for some $n \in \mathbb{N}$), with component-wise sum, product, and complex conjugation, equipped with the *p*-norm

$$\|\mathbf{x}\| := \begin{cases} \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} & \text{if } 1 \leq p < \infty \\ \max_i |x_i| & \text{if } p = \infty \end{cases}$$

where $\mathbf{x} = (x_1, \ldots, x_n)$.

(ii) $\mathcal{A} = \mathcal{M}(n \times n, \mathbb{C})$, the *-algebra of $n \times n$ complex matrices $(n \in \mathbb{N})$, equipped with the norm

$$||A||_{\bullet}^{2} := \operatorname{Tr}(A^{*}A) = \sum_{i,j=1}^{n} |a_{ij}|^{2}$$

where $A = (a_{ij})$.

- (iii) $\mathcal{A} = C^k([0, 1])$, the *-algebra of k-times differentiable functions on [0, 1] with continuous k-th derivative (for some $k \in \{0, 1, 2, 3, ...\}$), equipped with the supremum norm $\|\|_{sup}$.
- (iv) $\mathcal{A} = \mathcal{J}_1(\mathcal{H})$, the *-subalgebra of bounded operators A on a Hilbert space \mathcal{H} such that $\operatorname{Tr}|A| < \infty$, equipped with the inherited operator norm.

Exercise 2. Let $\lambda \in \mathbb{R}$. Consider the matrix

$$A = \begin{pmatrix} 1 - 3\cos 2\lambda & 3\sin 2\lambda & 2\sin \lambda \\ -3\sin 2\lambda & 1 + 3\cos 2\lambda & 2\cos \lambda \\ 0 & 0 & 4 \end{pmatrix}$$

as an element in the C^{*}-algebra $\mathcal{A} = \mathcal{M}(3 \times 3, \mathbb{C})$ of 3×3 complex matrices.

- (i) Find the C^* -subalgebra of \mathcal{A} generated by A, A^* , and the unit matrix. (*Hint:* exploit a convenient basis.)
- (ii) Is the C^* -algebra found in (ii) commutative?

Exercise 3. Consider the C^* -algebra $\mathcal{A} = C([-1, 1])$ of the complex-valued continuous functions over [-1, 1], with the usual point-wise sum, product, and complex conjugation, and with the supremum norm. Let E be a closed subset of [-1, 1]. Set

$$\mathcal{I} := \{ f \in \mathcal{A} \mid f(x) = 0 \ \forall x \in E \} \\ \mathcal{J} := \{ f \in \mathcal{A} \mid f = xg \text{ for some } g \in \mathcal{A} \}.$$

- (i) Prove that \mathcal{I} is a two-sided closed *-ideal of \mathcal{A} .
- (ii) Prove that the quotient algebra \mathcal{A}/\mathcal{I} is identifiable as C(E).
- (iii) Prove that \mathcal{J} is a two-sided *-ideal of \mathcal{A} .
- (iv) Is \mathcal{J} closed? Give a proof of its closedness or find its closure $\overline{\mathcal{J}}$ in \mathcal{A} .

Exercise 4. Let \mathcal{A} be a C^* -algebra with unit and denote by $G(\mathcal{A})$ the group of all invertible elements in \mathcal{A} .

(i) Prove that the group $G(\mathcal{A})$ is an open subset of \mathcal{A} . More precisely, prove that if $||A-A_0|| < 1/||A_0^{-1}||$ for an $A_0 \in G(A)$ then A is invertible and

$$A^{-1} = \Big(\sum_{n=0}^{\infty} \big(A_0^{-1}(A_0 - A)\big)^n\Big)A_0^{-1}$$

- (ii) Prove that the map $A \mapsto A^{-1}$ is a continuous map on $G(\mathcal{A})$.
- (iii) How do the answers to (i) and (ii) change if \mathcal{A} is only assumed to be a Banach algebra?