HOMEWORK ASSIGNMENT - WEEK 02

Hand-in deadline: Thursday 24 April 2014 by 12 p.m. in the "MSP" drop box.
Rules: Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.
Info: www.math.lmu.de/~michel/SS14_MSP.html

"I think you should be more explicit here in step two."

Exercise 1. In each of the following cases decide whether the set \mathcal{A} equipped with the structure declared below is a C^{*}-algebra (justify your answer).
(i) $\mathcal{A}=\mathbb{C}^{n}$ (for some $n \in \mathbb{N}$), with component-wise sum, product, and complex conjugation, equipped with the p-norm

$$
\|\mathbf{x}\|:=\left\{\begin{array}{cl}
\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} & \text { if } 1 \leqslant p<\infty \\
\max _{i}\left|x_{i}\right| & \text { if } p=\infty
\end{array}\right.
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.
(ii) $\mathcal{A}=\mathcal{M}(n \times n, \mathbb{C})$, the $*$-algebra of $n \times n$ complex matrices $(n \in \mathbb{N})$, equipped with the norm

$$
\|A\|_{\bullet}^{2}:=\operatorname{Tr}\left(A^{*} A\right)=\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}
$$

where $A=\left(a_{i j}\right)$.
(iii) $\mathcal{A}=C^{k}([0,1])$, the $*$-algebra of k-times differentiable functions on $[0,1]$ with continuous k-th derivative (for some $k \in\{0,1,2,3, \ldots\}$), equipped with the supremum norm $\left\|\|_{\text {sup }}\right.$.
(iv) $\mathcal{A}=\mathcal{J}_{1}(\mathcal{H})$, the $*$-subalgebra of bounded operators A on a Hilbert space \mathcal{H} such that $\operatorname{Tr}|A|<\infty$, equipped with the inherited operator norm.

Exercise 2. Let $\lambda \in \mathbb{R}$. Consider the matrix

$$
A=\left(\begin{array}{ccc}
1-3 \cos 2 \lambda & 3 \mathrm{i} \sin 2 \lambda & 2 \mathrm{i} \sin \lambda \\
-3 \mathrm{i} \sin 2 \lambda & 1+3 \cos 2 \lambda & 2 \cos \lambda \\
0 & 0 & 4
\end{array}\right)
$$

as an element in the C^{*}-algebra $\mathcal{A}=\mathcal{M}(3 \times 3, \mathbb{C})$ of 3×3 complex matrices.
(i) Find the C^{*}-subalgebra of \mathcal{A} generated by A, A^{*}, and the unit matrix.
(Hint: exploit a convenient basis.)
(ii) Is the C^{*}-algebra found in (ii) commutative?

Exercise 3. Consider the C^{*}-algebra $\mathcal{A}=C([-1,1])$ of the complex-valued continuous functions over $[-1,1]$, with the usual point-wise sum, product, and complex conjugation, and with the supremum norm. Let E be a closed subset of $[-1,1]$. Set

$$
\begin{aligned}
\mathcal{I} & :=\{f \in \mathcal{A} \mid f(x)=0 \forall x \in E\} \\
\mathcal{J} & :=\{f \in \mathcal{A} \mid f=x g \text { for some } g \in \mathcal{A}\} .
\end{aligned}
$$

(i) Prove that \mathcal{I} is a two-sided closed $*$-ideal of \mathcal{A}.
(ii) Prove that the quotient algebra $\mathcal{A} / \mathcal{I}$ is identifiable as $C(E)$.
(iii) Prove that \mathcal{J} is a two-sided $*$-ideal of \mathcal{A}.
(iv) Is \mathcal{J} closed? Give a proof of its closedness or find its closure $\overline{\mathcal{J}}$ in \mathcal{A}.

Exercise 4. Let \mathcal{A} be a C^{*}-algebra with unit and denote by $G(\mathcal{A})$ the group of all invertible elements in \mathcal{A}.
(i) Prove that the group $G(\mathcal{A})$ is an open subset of \mathcal{A}. More precisely, prove that if $\left\|A-A_{0}\right\|<$ $1 /\left\|A_{0}^{-1}\right\|$ for an $A_{0} \in G(A)$ then A is invertible and

$$
A^{-1}=\left(\sum_{n=0}^{\infty}\left(A_{0}^{-1}\left(A_{0}-A\right)\right)^{n}\right) A_{0}^{-1}
$$

(ii) Prove that the map $A \mapsto A^{-1}$ is a continuous map on $G(\mathcal{A})$.
(iii) How do the answers to (i) and (ii) change if \mathcal{A} is only assumed to be a Banach algebra?

