

Spring term 2013 / Sommersemester 2013

Mathematical Statistical Physics - Final exam, 19.7.2013
 Mathematische Statistische Physik - Endklausur, 19.7.2013

Name:/Name: \qquad Pseudonym:/Pseudonym: \qquad
Matriculation number:/Matrikelnr. \qquad Semester:/Fachsemester: \qquad
Degree course:/Studiengang:Bachelor, PO \qquad Lehramt Gymnasium (modularisiert) - Master, PO \qquad Lehramt Gymnasium (nicht modul.) \square

Credits needed for:/Anrechnung der Credit Points für das: Hauptfach Nebenfach
Extra solution sheets submitted:/Zusätzlich abgegebene Lösungsblätter: \square Yes \square No

problem	1	2	3	4	5	6	\sum
total marks	10	10	10	10	10	10	60
scored marks							

homework
bonus

final test
performance

total
performance

FINAL
MARK \square

INSTRUCTIONS:

- This booklet is made of sixteen pages, including the cover, numbered from 1 to 16 . The test consists of six problems. Each problem is worth 10 marks. 50 marks are counted as 100% performance in this test. You are free to work on any problem and to collect partial credits.
- The only material that you are allowed to use is black or blue pens/pencils and one hand-written, two-sided, A4-size "cheat sheet" (Spickzettel).
- Raise up your hand to request extra sheets or scratch paper. You are not allowed to use your own paper.
- Prove all your statements or refer to the standard material discussed in class.
- Work individually. Write with legible handwriting. You may hand in your solution in German or in English. Put your name on every sheet you hand in.
- You have 180 minutes.

GOOD LUCK!

Fill in the form here below only if you need the certificate (Schein).

UNIVERSITÄT MÜNCHEN

Dieser Leistungsnachweis entspricht	auch den Anforderungen			
nach \S	Abs.	Nr.	Buchstabe	LPO I
nach \S	Abs.	Nr.	Buchstabe	LPO I

ZEUGNIS

Der / Die Studierende der \qquad
Herr / Frau \qquad aus
geboren am in hat im $\mathbf{S o S e}$ -Halbjahr 2013
meine Übungen zur Mathematischen Statistischen Physik
mit
Er / Sie hat
schriftliche Arbeiten geliefert, die mit ihm / ihr besprochen wurden.

PROBLEM 1. (10 marks)

Let \mathcal{A} be a unital C^{*}-algebra and let $A \in \mathcal{A}$ be a normal element, i.e., $\left[A, A^{*}\right]=\mathbb{O}$. Let $B \in \mathcal{A}$ be such that $[B, A]=\mathbb{O}$.
(i) For each $z \in \mathbb{C}$ define $U(z):=e^{z A^{*}-\bar{z} A}$. Prove that $U(z)$ is a unitary element of \mathcal{A}.
(ii) Let ω be an arbitrary state on \mathcal{A}. Prove that the function $z \mapsto F(z):=\omega(U(-z) B U(z))$ is constant over \mathbb{C}.
(Hint: Liouville's theorem.)
(iii) Prove that $\left[B, A^{*}\right]=\mathbb{O}$.

SOLUTION:

SOLUTION TO PROBLEM 1 (CONTINUATION):

Name

PROBLEM 2. (10 marks)

(i) Let \mathcal{A} be a unital C^{*}-algebra and let $A, B \in \mathcal{A}$ be such that $[A, B]=\mathbb{O}$. Prove that

$$
\mathbb{O} \leqslant A \leqslant B \quad \Rightarrow \quad \mathbb{O} \leqslant A^{2} \leqslant B^{2} .
$$

(Hint: consider the C^{*}-algebra generated by A and B. It is commutative (why?).)
(ii) Consider the case $\mathcal{A}=\mathcal{M}_{2 \times 2}(\mathbb{C})$ and matrices of the form $A=\left(\begin{array}{ll}a & b \\ b & 1\end{array}\right), a \in \mathbb{R}, b \in \mathbb{C}$. Find a condition on a, b which is equivalent to $A \geqslant \mathbb{O}$.
(iii) In the case $\mathcal{A}=\mathcal{M}_{2 \times 2}(\mathbb{C})$ give an example of

$$
\left.\begin{array}{rl}
A, B & \in \mathcal{A} \\
A \geqslant \mathbb{O} \\
B \geqslant \mathbb{O}
\end{array}\right\} \quad \text { but } \quad A B \ngtr \mathbb{O} .
$$

SOLUTION:

SOLUTION TO PROBLEM 2 (CONTINUATION):

PROBLEM 3. (10 marks)

Let $d \in \mathbb{N}$. Consider the CCR algebra $\mathcal{A}=\mathcal{A}_{\mathrm{CCR}}(\mathfrak{h})$ over the Hilbert space $\mathfrak{h}:=L^{2}\left(\mathbb{R}^{d}, \mathbb{C}\right)$. Denote as usual by $W(f), f \in \mathfrak{h}$, the Weyl operators generating \mathcal{A}. (Recall the definition: $W(f):=\frac{1}{\sqrt{2}} e^{\mathrm{i}\left(a^{*}(f)+a(f)\right)}$.)
(i) For every $v \in \mathbb{R}^{d}$ and every $f \in L^{2}\left(\mathbb{R}^{d}, \mathbb{C}\right)$ define $\left(U_{v} f\right)(x):=f(x-v)$ for a.e. $x \in \mathbb{R}^{d}$ and, correspondingly, define the Bogoliubov transformation

$$
\tau_{v}(W(f)):=W\left(U_{v} f\right)
$$

extended as usual by linearity on the whole $\operatorname{Span}\{W(f) \mid f \in \mathfrak{h}\}$. Prove that $\left\{\tau_{v}\right\}_{v \in \mathbb{R}^{d}}$ extends to a \mathbb{R}^{d}-parameter group of $*$-automorphisms of \mathcal{A}.
(ii) Prove that

$$
\lim _{\substack{v \in \mathbb{R}^{d} \\|v| \rightarrow \infty}}\left\|\left[\tau_{v}(W(f)), W(g)\right]\right\|=0
$$

for any $f, g \in L^{2}\left(\mathbb{R}^{d}\right)$.
(Hint: compute/estimate $\left\|\left[\tau_{v}(W(f)), W(g)\right]\right\|$ using the properties of the Weyl operator W; then prove and use the limit

$$
\lim _{\substack{v \in \mathbb{R}^{d} \\|v| \rightarrow \infty}} \int_{\mathbb{R}^{d}} \phi(x-v) \psi(x) \mathrm{d} x=0
$$

valid for any $\phi, \psi \in L^{2}\left(\mathbb{R}^{d}, \mathbb{C}\right)$.)
(iii) Prove that $\left\{\tau_{v}\right\}_{v \in \mathbb{R}^{d}}$ is asymptotically abelian in the norm sense, namely

$$
\lim _{\substack{v \in \mathbb{R}^{d} \\|v| \rightarrow \infty}}\left\|\left[\tau_{v}(A), B\right]\right\|=0
$$

for any $A, B \in \mathcal{A}$.

SOLUTION:

SOLUTION TO PROBLEM 3 (CONTINUATION):

PROBLEM 4. (10 marks)

Consider the CAR algebra $\mathcal{A}=\mathcal{A}_{\mathrm{CAR}}(\mathfrak{h})$ over a given Hilbert space \mathfrak{h}. Denote as usual by $a^{*}(f)$ and $a(f), f \in \mathfrak{h}$, respectively the creation and the annihilation operators on \mathcal{A}. Let H be a positive Hamiltonian on \mathfrak{h}. Consider the group $\left\{\tau_{t}\right\}_{t \in \mathbb{R}}$ of Bogoliubov transformations on \mathcal{A} defined by

$$
\tau_{t}\left(a^{*}(f)\right):=a^{*}\left(e^{\mathrm{i} t H} f\right), \quad \tau_{t}(a(f)):=a\left(e^{\mathrm{i} t H} f\right), \quad f \in \mathfrak{h},
$$

extended as usual by linearity and density on the whole \mathcal{A}. Correspondingly, and for some $\beta>0$, let ω be a $\left(\tau_{t}, \beta\right)$-KMS state over \mathcal{A}.

Compute the two-point functions on \mathcal{A} associated with ω, namely compute the quantity

$$
\omega\left(a^{*}(f) a(g)\right)
$$

for any $f, g \in \mathfrak{h}$.
(Hint: in class $\omega\left(a^{*}(f) a(g)\right)$ was computed under the assumption that ω is a Gibbs state and that $e^{-\beta H}$ is of trace class. Note that here you are asked to re-do the computation for a case where a priori ω is not a Gibbs state and $e^{-\beta H}$ is not of trace class. Instead, you are supposed to use

- the KMS condition satisfied by ω,
- the CARs,
- and the properties (\bullet).)

Note: although the KMS condition involves a suitable dense and τ-invariant $*$-subalgebra of \mathcal{A}, proceed in the solution to this problem considering only the $f, g \in \mathfrak{h}$ for which the KMS condition can be applied (the extension to any f, g is a density argument that you are not asked to perform in this solution).

SOLUTION:

SOLUTION TO PROBLEM 4 (CONTINUATION):

PROBLEM 5. (10 marks)

Given a Hilbert space \mathfrak{h}, with norm $\left\|\|\right.$, consider the bosonic Fock space $\mathfrak{F}_{+}(\mathfrak{h})$ with the usual notation for the annihilation, creation, and number operator, respectively $a(f), a^{*}(f)$, and \mathcal{N}, where $f \in \mathfrak{h}$. Consider the (modified) Weyl operators $W(f):=e^{\overline{a^{*}(f)-a(f)}}, f \in \mathfrak{h}$. Denote by Ω the vacuum in the Fock space.
(i) Prove that

$$
W(f) \Omega=e^{-\|f\|^{2} / 2} \sum_{n=0}^{\infty} \frac{1}{\sqrt{n!}} f^{\otimes n}
$$

where $f^{\otimes n}$ indicates the Fock-vector $\left\{0, \ldots, f^{\otimes n}, 0, \ldots\right\}$.
(ii) Prove that the expectation of the number of particles in the state $W(f) \Omega$ is $\|f\|^{2}$, namely prove that

$$
\langle W(f) \Omega, \mathcal{N} W(f) \Omega\rangle_{\mathfrak{F}(\mathfrak{h})}=\|f\|^{2}=\sum_{n=1}^{\infty}\left\langle W(f) \Omega, a^{*}\left(f_{n}\right) a\left(f_{n}\right) W(f) \Omega\right\rangle_{\mathfrak{F}(\mathfrak{h})}
$$

where the second identity is understood under the additional assumption that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is an orthonormal basis of \mathfrak{h}.

SOLUTION:

SOLUTION TO PROBLEM 5 (CONTINUATION):

PROBLEM 6. (10 marks) - SHORT QUESTIONS

Answer to each question with a YES or a NO. Marking scheme: 1 mark for each correct answer, 0 marks for each unanswered question, -1 mark for each wrong answer.
6.1 Is there a unique KMS state for an infinite block of iron at room temperature?
6.2 Consider the C^{*}-algebra \mathcal{A} of 17×17 complex-valued matrices. Is $\omega(A)=\frac{1}{17} \sum_{i, j=1}^{17} A_{i j}$, $A=\left(A_{i j}\right) \in \mathcal{A}$, a state over \mathcal{A} ?

- YES
$\square \mathrm{NO}$
6.3 Equip the C^{*}-algebra \mathcal{A} considered in Question 6.2 with a new norm $\|A\|_{\sim}:=\left(\operatorname{Tr}\left(A^{*} A\right)\right)^{1 / 2}$. Does this new norm turn \mathcal{A} into a C^{*}-algebra?
\square YES \square NO
6.4 Consider the C^{*}-algebra $\mathcal{A}=\mathcal{L}\left(L^{2}(\mathbb{R})\right)$ and the time evolution $\tau_{t}(A)=e^{\mathrm{i} t H} A e^{-\mathrm{i} t H}, t \in \mathbb{R}$, where H is the Hamiltonian of the 1D harmonic oscillator, namely $(H f)(x):=-f^{\prime \prime}(x)+x^{2} f(x)$ on the domain $\mathcal{D}=\left\{f \in L^{2}(\mathbb{R}) \mid-f^{\prime \prime}+x^{2} f \in L^{2}(\mathbb{R})\right\}$. Is τ_{t} asymptotically abelian?
\square YES \square NO
6.5 With the usual meaning of the symbols as from class and homework, is it correct that the group of Bogoliubov transformations $\tau_{t}(W(f))=W\left(e^{i t H} f\right)$ is strongly continuous for the free Fermi gas and not strongly continuous for the free Bose gas?
\square YES \square NO
6.6 Consider the C^{*}-algebra of 2×2 matrices over \mathbb{C} and the state $\omega(A)=\operatorname{Tr}(\rho A)$ where $\rho=\frac{1}{3}|+\rangle\langle+|+\frac{2}{3}|-\rangle\langle-|$, with the notation $|+\rangle=\binom{1}{0}$ and $|-\rangle=\binom{0}{1}$. Is ω a primary state? \square YES \square NO
6.7 Given a C^{*}-algebra \mathcal{A}, a dynamics $\left\{\tau_{t}\right\}_{t \in \mathbb{R}}$ on \mathcal{A}, and an inverse temperature $\beta \in \mathbb{R}$, is it necessarily true that a $\left(\tau_{t}, \beta\right)$-KMS state is stationary in time?

```
\squareYES - NO
```

6.8 With the usual meaning of the symbols as from class and homework, consider the 1D Ising model at non-zero temperature T and with magnetic field B. Is it true that at the Renormalisation Group limit point one has $\left\langle S_{1} S_{2}\right\rangle=\left\langle S_{1}\right\rangle\left\langle S_{2}\right\rangle$?
\square YES \square NO
6.9 With the usual meaning of the symbols as from class and homework, consider the 2D Ising model at non-zero temperature T and with magnetic field B. Is it true that $\left\langle S_{1} S_{2}\right\rangle=\left\langle S_{1}\right\rangle\left\langle S_{2}\right\rangle$?
\square YES \square NO
6.10 With the usual meaning of the symbols as from class and homework, consider the 3D Ising model. If you plot the logarithm of the spontaneous magnetization as a function of $\log \frac{\left(T-T_{c}\right)}{T_{c}}$ for T approaching T_{c} from below, do you get a straight line?
$\square \mathrm{YES} \square \mathrm{NO}$

