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Chapter 1

Introduction and Motivation

In mathematical statistical physics one studies certain classes of physical systems from a sta-
tistical point of view. In particular, one is concerned with

• Equilibrium properties of a macroscopic molecular system,

• Laws of thermodynamics,

• Thermodynamic functions.

“ Statistical mechanics, however, does not describe how a system approaches equilibrium, nor
does it determine whether a system can ever be found to be in equilibrium. It merely states what
the equilibrium situation is for a given system” [7]

We will start with an example how a statistical consideration can lead to the description of
a equilibrium in case of a classical system.

Consider a dilute gas with N >> 1 molecules each of mass m and contained in a box Λ ⊂ R3

of volume V . Each molecule is considered as a classical particle having a well-defined position
and momentum. We assume that the molecules are distinguishable from each other and they
reflected elastically at the walls of Λ.

A (microscopic) state of the gas is given by 3N canonical coordinates q = (q1, · · · ,qn) ∈ ΛN

and 3N canonical momenta p = (p1, · · · ,pN) ∈ R3N of the N molecules. We put

Γ := R3N × Λ3N := space of all possible states.

A macroscopic state of the system (e.g. temperature, pressure, · · · ) can be represented by many
microscopic states in Γ. So we can interpret a macroscopic state as a system in Γ (so called
ensemble) of corresponding microscopic states.

1.1 Method of the most probable distribution

With (p, q, t) ∈ R3×Λ×R+ let f(p, q, t) be the distribution function of the gas. More precisely,
if Ω ⊂ R3 × Λ and t > 0, then∫

Ω

f(p, q, t) dpdq = number of molecules with coordinates in Ω at time t. (1.1.1)
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6 CHAPTER 1. INTRODUCTION AND MOTIVATION

If a (microscopic) state of the gas is given, then the integrals on the left hand side are
uniquely determined for all Ω. However, different states in Γ can have the same distribution,
e.g. one may exchange two particles. Since we can distinguish the molecules one obtains
different states with the same distribution function. Hence we can identify a distribution
function f(p, q, t) with the subset

Γf ⊂ Γ

of all states (in a given ensemble) that are distributed according to f , i.e. all states (in the
ensemble) that fulfill (1.1.1) for all Ω ⊂ R3×Λ. The equilibrium distribution is the distribution
that “maximizes” Γf .

Let the ensemble be defined by fixing the energy E of the system 1. The possible values
of (p, q) ∈ R3 × Λ are restricted through the energy condition and we replace the phase space
R3×Λ by a sufficiently large box Bps = B×Λ where B ⊂ R3. Then we divide Bps into K >> 1
small cells ci each of volume ω = δpδq and number the cells by c1, · · · , cK . For a given state in
Γ and i = 1, · · · , K we put

ni = number of molecules of the state in cell ci,

εi : =
p2
i

2m
= energy of a molecule in the ith cell,

which by assumption must fulfill the conditions(a) :
∑K

i=1 ni = N

(b) :
∑K

i=1 εini = E.

A distribution function f(p, q) is given by the “step function”:

f(p, q) :=
ni
δpδq

, if (p, q) ∈ ci.

For given integers {ni}i=1,··· ,K with (a) and (b) we will write Ω̃(n1, · · · , nK) for the number of
possibilities to distribute the N (distinguishable) particles to K cells c1, · · · , cK such that the
cell ci contains ni molecules

Ω̃(n1, · · · , nK) =
N !

n1! · · ·nK !
.

We assume that ni is large that we can replace log ni! by ni log ni due to Stirling’s formula 2

log Ω̃(n1, · · · , nK) ∼ F (n1, · · · , nK) := N logN −
K∑
i=1

ni log ni.

Now we need to maximize F (n1, · · · , nK) under the conditions (a) and (b). We consider
n1, · · · , nK as real variables and use the method of Lagrange multipliers. Let us define

Fλ(n1, · · · , nK) := F (n1, · · · , nK) + λ1

K∑
i=1

ni + λ2

K∑
i=1

εini

1this ensemble is called microcanonical ensemble
2Stirling’s formula: log(n!) = n log n− n+O(log n) as n→∞
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with λ1, λ2 ∈ R. A necessary condition of an extreme point of F under the conditions (a) and
(b) is given by

0 =
∂F

∂ni
= −(log ni + 1) + λ1 + εiλ2, i = 1, · · · , K.

This gives ni = Ceεiλ2 for some C ∈ R and therefore fi = Ceεiλ2/δpδq. One can check that in
fact this choice of ni maximizes F . In the limit K →∞ we find the distribution function

f(p, q) = Ce
p2

2m
λ2 ,

which actually only depends on p. The requirement of being a density distribution gives

N =

∫
R3×Λ

f(p, q) dpdq = CV

∫
R3

e
p2λ2
2m dp = CV

(
−2πm

λ2

) 3
2

.

If we write n := N/vol (Λ) for the particle density, then it follows

C = n

(
−λ2

2πm

) 3
2

. (1.1.2)

In the next step we calculate λ2. Note that for the mean energy of a molecule we have:

E

N
=

∫
R3

p2

2m
e
p2λ2
2m dp∫

R3 e
p2λ2
2m dp

. (1.1.3)

By using the standard integral formula∫
R3

p2e−ap
2

dp = 4π

∫ ∞
0

x4e−ax
2

dx =
3π

3
2

2a
5
2

in (1.1.3) we obtain
E

N
= − 3

2λ2

=⇒ λ2 = −3N

2E
= − 1

kT
,

where k = 8, 6173 · 10−5eV/K denotes the Boltzma constant, T is the temperature and we have
used that E/N = 3

2
kT . Inserting the value of λ2 into (1.1.2) allows us to calculate C:

C = n

(
1

2πmkT

) 3
2

.

Conclusion: In the case of a dilute gas and under our simplifying assumptions the “most
probable distribution” is the Maxwell-Boltzmann distribution:

f(p) = n

(
1

2πmkT

) 3
2

e−
p2

2mkT .

Note that we have receive this result by a purely statistical consideration not taking into account
the kinematics of the microscopic states.
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Chapter 2

C∗-algebras in quantum statistical
mechanics

In a classical mechanical system the observables are polynomials or more generally elements
of the space C(Γ) of all real valued continuous functions defined on the phase space Γ. Note
that C(Γ) has the structure of a commutative algebra under the pointwise multiplication. In
the case where Γ is compact or we only admit bounded continuous functions 1, then C(Γ) or
Cb(Γ) are complete normed algebras. The algebra of complex valued continuous functions on
the compact space Γ has the structure of a C∗-algebra (see the definition below).

More abstractly, we may consider a physical system as being defined by its C∗-algebra A of
observables. 2 The states of the system correspond to the measurements of the observables. In
the abstract mathematical framework states are normalized positive linear functionals on A.
We explain these notions now more in detail:

Let us write R and C for the field of real and complex numbers, respectively. If λ ∈ C, then
we denote by λ its complex conjugate. Recall the following notions:

I. Let A be a complex vector space equipped with an associative and distributive product,
i.e. if AB denotes the product of A,B ∈ A, then it holds:

(i) A(BC) = (AB)C,

(ii) A(B + C) = AB + AC and (B + C)A = BA+ CA,

(iii) λγ(AB) = (λA)(γB), where λ, γ ∈ C.

We call A an associative algebra over C.

II. An involution A 3 A 7→ A∗ ∈ A of A is a map such that:

(iv) A∗∗ = A,

(v) (AB)∗ = B∗A∗,

(vi) (λA+ γB)∗ = λA∗ + γB∗, where λ, γ ∈ C.

III. The algebra A is called normed with norm ‖ · ‖ : A → [0,∞) if for all A,B ∈ A:

1we write Cb(Γ) for the space of bounded continuous functions on Γ
2cf. the Gelfand-Naimark theorem (GN-theorem) below.

9
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(vii) ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = 0,

(viii) ‖λA‖ = |λ|‖A‖ where λ ∈ C,

(ix) ‖A+B‖ ≤ ‖A‖+ ‖B‖, (triangle inequality),

(x) ‖AB‖ ≤ ‖A‖‖B‖, (product inequality).

Definition 2.0.1. (Banach-, B∗- and C∗-algebra)

(a) Let A be a normed associative algebra which is complete in the norm topology, then A
is called Banach algebra.

(b) A Banach algebra with an involution and such that ‖A‖ = ‖A∗‖ holds for all A ∈ A is
called a B∗-algebra.

(c) A C∗-algebra is a B∗-algebra which for all A ∈ A fulfills the norm equality

‖AA∗‖ = ‖A‖2.

The algebra A is called abelian or commutative if the product is commutative.

We do not assume that the algebras have a unit. However, if this is the case we call it unital
algebra and we add the assumption ‖e‖ = 1 where e denotes the unit of the algebra.

Example 2.0.2. (C∗-algebras)

(a) Let H be a complex Hilbert space and L(H) the algebra of bounded operators on H with
the operator norm. The adjoint operation

L(H) 3 A 7→ A∗ ∈ L(H)

is an involution. Then L(H) is a C∗-algebra. More general: each closed sub-algebra of
L(H) which is invariant under the involution “∗” is a C∗-algebra.

(b) According to (a) the space C(n) of complex n × n-matrices can be interpreted as a C∗-
algebra via the identification C(n) ∼= L(Cn).

(c) Let X be a compact space, then the space C(X) of continuous complex valued functions
on X with the pointwise product, the norm

‖f‖ := sup
{
|f(x)| : x ∈ X

}
and the involution f ∗(x) := f(x) defines a commutative unital C∗-algebra.

(d) Let X be a locally compact space and f : X → C continuous. We say that f vanishes at
infinity if for each ε > 0 there is a compact set K ⊂ X such that

|f(x)| ≤ ε for all x ∈ X \K.

The space C0(X) of all continuous functions on X vanishing at infinity with the norm
and the involution in (c) is a commutative C∗-algebra which is unital if and only if X is
compact.
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Exercise 2.0.3. (a) Show that the spaces in Example 2.0.2 in fact define C∗-algebras.

(b) The C∗-condition ‖AA∗‖ = ‖A‖2 implies that ‖A∗‖ = ‖A‖.

(c) Let A be a unital Banach algebra. If ‖A2‖ = ‖A‖2 holds for all A ∈ A, then A is
commutative.
Hint: Let B ∈ A and consider the function f(z) := e−zABezA where z ∈ C.

2.1 Abelian C∗-algebras and GN-theorem

In describing a physical system one usually starts with the “geometry” by choosing an ap-
propriate manifold (phase space) and then considering the algebra of observables (continuous
functions on the phase space). As a consequence of the GN-theorem one could reverse the
procedure: one may start with an abstract characterization of observables by fixing a unital
commutative C∗-algebra A which encodes the relations between physical quantities. The GN-
theorem (which will be explained in this section) allows to construct a compact Hausdorff space
Γ such that A can be identified with the C∗-algebra of continuous functions on Γ.

For the moment we do not assume the existence of an involution. Let A be a unital
commutative Banach algebra over C.

Definition 2.1.1. A multiplicative functional m : A → C of A is a linear map that “preserves
the multiplication”:

m(AB) = m(A)m(B),

for all A,B ∈ A. In particular, if m 6= 0, then we have m(I) = 1 where I denotes the unit of
A.

We will show that there is a close relation between multiplicative functionals and maximal
ideals on A which allows us to identify these objects.

Definition 2.1.2. An ideal I of A is a sub-algebra with AI := {AJ : J ∈ I} ⊂ I for all

A ∈ A. The ideal is called maximal if there is no proper ideal Ĩ ⊂ A with I ( Ĩ ( A.

Exercise 2.1.3. Show the following:

(a) The closure I of an ideal I ⊂ A is an ideal as well. In particular, maximal ideals are
closed.

(b) A proper ideal I ( A contains no invertible elements of A. In particular, it does not
contain the unit of A and the closure of a proper ideal is a proper ideal.

In the following we write A−1 for the group of invertible elements of A. Recall that the
spectrum σ(A) of an element A ∈ A is defined by

σ(A) =
{
λ ∈ C : A− λI /∈ A−1

}
.

As is known the spectrum σ(A) is compact and non-empty for all A ∈ A (as for a proof see
[8]). We call ρ(A) := C \ σ(A) the resolvent set of A.
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Exercise 2.1.4. Let X be a compact space and let C(X) be the Banach algebra of continuous
functions on X (cf. Example 2.0.2, (c)).

(i) Then σ(f) = f(X) for all f ∈ A.

(ii) Let B be a unital Banach algebra and B ∈ B, then σ(B) ⊂ {λ ∈ C : |λ| ≤ ‖B‖}.

Theorem 2.1.5 (Gel’fand-Mazur). Assume that all elements of A \ {0} are invertible in A,
i.e A−1 = A \ {0}. Then A = {λI : λ ∈ C} ∼= C.

Proof. Let A ∈ A and assume that λ ∈ σ(A) 6= ∅. Then A − λI /∈ A−1 and by assumption it
follows that A− λI = 0. Therefore A = λI.

Lemma 2.1.6. Let A be a unital commutative Banach algebra. Then (i) and (ii) are equivalent:

(i) I ⊂ A is a maximal ideal

(ii) There is a unique multiplicative functional 0 6= m : A → C with

I = ker m :=
{
A ∈ A : m(A) = 0

}
.

Proof. (i) ⇒ (ii): If I ⊂ A is a maximal ideal, then I is closed (see Exercise 2.1.3, (a)) and we
can consider the quotient space

A/I =
{
a+ I : a ∈ A

}
with norm ‖A+ J ‖A/I := inf

J∈I
‖A+ J‖.

If we define a product on A/I in a natural way via

(A+ I)(B + I) := AB + I,

then A/I becomes a commutative algebra with unit I + I where I is the unit in A. Note that
for all J1, J2 ∈ I:

‖(A+ I)(B + I)‖A/I = ‖AB + I‖A/I ≤ ‖(A+ J1)(B + J2)‖ ≤ ‖A+ J1‖ ‖B + J2‖.

By taking the infimum over J1, J2 ∈ I we see that

‖(A+ I)(B + I)‖A/I ≤ ‖A+ I‖A/I‖B + I‖A/I

and therefore A/I has the structure of a commutative Banach algebra. The natural projection

π : A −→ A/I : π(A) := A+ I

becomes a surjective algebra homomorphism, i.e. π is linear continuous and

π(AB) = π(A)π(B), for all A,B ∈ A.

We show that all non-trivial elements 0 6= π(A) ∈ A/I are invertible in A/I. This follows from
the following two observations:
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(1): The quotient algebra A/I contains no proper non-trivial ideal: If {0} 6= Q ( A/I was
such an ideal then the pre-image

I ( π−1(Q) :=
{
A ∈ A : π(A) ∈ Q

}
( A

would be an ideal in A which properly contains I. This contradicts the assumption that I was
chosen maximal.

(2): If 0 6= π(A) is not invertible in A/I, then

{0} 6= Q := π(A)
(
A/I

)
:=
{
AB + I : B ∈ A

}
( A/I

is a proper non-trivial ideal in A/I. This would contradict the first observation (1).

From the Gelfand-Mazur-theorem (Theorem 2.1.5) one concludes that

A/I =
{
λe+ I : λ ∈ C

} ∼= C

and m : A π→ A/I
∼=→ C defines a multiplicative functional on A with I = ker m.

(ii) ⇒ (i): Let 0 6= m : A → C be a multiplicative functional with I := ker m, then I is an
ideal of A, in fact, if A ∈ A and B ∈ I, then

m(AB) = m(A)m(B) = 0 =⇒ AB ∈ I = ker m.

Moreover, since A/I = A/ker m ∼= im m = C is complex one-dimensional it follows that J
is maximal. Finally assume that ker m = I = ker m̃ where m̃ is a multiplicative functional.
Then m̃ defines a multiplicative functional on A/ker m = C and therefore m = αm̃ with α ∈ C.
Since

1 = m(e) = αm̃(e) = α

one concludes that m = m̃ and the statement about uniqueness follows.

Example 2.1.7. Let X be a compact space. For each x ∈ X a maximal ideal Ix ⊂ C(X) is
given by

Ix :=
{
f ∈ C(X) : f(x) = 0

}
= ker δx,

where δx : C(X) −→ C is the multiplicative functional which acts by evaluation in x ∈ X, i.e.
δx(f) = f(x) for f ∈ C(X).

Definition 2.1.8. We denote by M(A) the space of all non-trivial multiplicative functionals
on A and according to Lemma 2.1.6 we call M(A) the maximal ideal space or the Gelfand
spectrum of A. 3

Consider the topological dual A′ of A:

A′ =
{
ϕ : A → C : ϕ is linear and continuous

}
.

Then A′ is a complete normed space with norm

‖ϕ‖A′ := sup
{
|ϕ(A)| : A ∈ A, ‖A‖ ≤ 1

}
.

3A connection between the spectrum of elements in A and M(A) will be given in Theorem 2.1.13 below.
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Multiplicative functionals on a unital commutative Banach algebra A are automatically con-
tinuous and therefore

M(A) ⊂ A′. (2.1.1)

More precisely, M(A) is contained in the unit sphere of A′

M(A) ⊂ SA′ :=
{
ϕ ∈ A′ : ‖ϕ‖A′ = 1

}
⊂ A′.

This a consequence of the following lemma:

Lemma 2.1.9. Each multiplicative functional m ∈M(A) is continuous with ‖m‖A′ = 1.

Proof. Let m ∈M(A) and recall ker m is a maximal ideal and in particular ker m is closed in
A (see Exercise 2.1.3, (a)). Therefore m factorizes through the quotient A/ker m:

m : A π−−−→ A/ker m
m̃−−−→ C, where m̃

(
A+ ker m

)
:= m(A).

Since A/ker m is one-dimensional it is clear that m̃ is continuous. The continuity of the natural
projection π shows the continuity of m = π ◦ m̃.

It remains to show that ‖m‖A′ = 1: Let A ∈ A and assume that m(A) > ‖A‖. Then
‖m(A)−1A‖ < 1 and we have

e−m(A)−1A ∈ A−1

(geometric series!). If we define B := (I −m(A)−1A)−1 ∈ A, then we obtain the contradiction:

1 = m(e) = m
(
B(e−m(A)−1A)

)
= m

(
B −m(A)−1BA

)
= m(B)−m(B) = 0.

Therefore, it holds m(A) ≤ ‖A‖ for all A ∈ A. From m(e) = 1 and the definition of ‖ · ‖A ′ we
have ‖m‖A′ = 1.

On the dual A′ of A we can consider a second topology which in a sense is “weaker” than
the norm topology 4 and is called weak-∗-topology or topology of pointwise convergence. We
explain the construction: On A′ a family of maps EA parametrized by A ∈ A is defined by

EA : A′ −→ C : EA(ϕ) := ϕ(A).

The weak ∗-topology on A′ is the “roughest topology” such that all the maps EA with A ∈ A
are continuous. According to the inclusion M(A) ⊂ A′ in (2.1.1) the weak-∗-topology descends
from A′ to the maximal ideal space M(A).

Exercise 2.1.10. Show that M(A) is weak-∗-closed in B◦ = {ϕ ∈ A′ : ‖ϕ‖A′ ≤ 1}.

Theorem 2.1.11. The maximal ideal space M(A) equipped with the weak-∗-topology is compact.

Proof. This follows from an abstract result in functional analysis (Banach-Alaoglu theorem)
which implies that the ball B◦ := {ϕ ∈ A′ : ‖ϕ‖A′ ≤ 1} is weak-∗-compact. Note that M(A) is
weak-∗-closed in B◦ (see Exercise 2.1.10) and according to Lemma 2.1.1 we have the inclusion
M(A) ⊂ B◦. Since closed subsets of compacts sets are compact the statement follows.

4roughly speaking, it contains fewer open sets
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Consider the space C(M(A)) of all continuous functions on M(A) with respect to the weak-
∗-topology. Note that due to the compactness of M(A) the space C(M(A)) has the structure
of a C∗-algebra in the sense of Example 2.0.2, (c).

Definition 2.1.12 (Gelfand-transform). For each A ∈ A and m ∈ M(A) put Γ(A)(m) :=
m(A). 5 The map

Γ : A −→ C
(
M(A)

)
: A 7→ Γ(A) (2.1.2)

is well-defined and called Gelfand transform.

Let B be a Banach algebra. We call a linear map π : A → B

(i) (algebra) homomorphism, if π is multiplicative π(AB) = π(A)π(B)

(ii) ∗-homomorphism, if A and B are C∗-algebras and π is a homomorphism with π(A∗) =
π(A)∗ for all A ∈ A

(iii) ∗-isomorphism, if π is bijective ∗-homomorphism and isometric, i.e. ‖π(A)‖ = ‖A‖. 6

Theorem 2.1.13 (Gelfand). The Gelfand transform is a continuous homomorphism of algebras
with norm 1, i.e.

‖Γ‖ = sup
{
‖Γ(A)‖ : ‖A‖ ≤ 1

}
= 1.

Moreover, for all A ∈ A the spectrum of A fulfills

σ(A) =
{
m(A) : m ∈M(A)

}
(2.1.3)

and in particular

‖Γ(A)‖ = sup
{
|m(A)| : m ∈M(A)

}
= r(A) := lim

n→∞
‖An‖

1
n = “spectral radius of A′′.

Proof. From the definition of the weak-∗-topology it is clear that Γ(A) is a continuous function
on M(A) and therefore the Gelfand transform is well-defined. It is clear that Γ is linear and
Γ(AB) = Γ(A)Γ(B) follows with m ∈M(A) from

Γ(AB)(m) = m(AB) = m(A)m(B) = Γ(A)(m) · Γ(B)(m).

We show that ‖Γ‖ = 1: According to Lemma 2.1.9 we have |Γ(A)(m)| = |m(A)| ≤ ‖A‖ for all
A ∈ A and therefore

‖Γ(A)‖ = sup
{
|Γ(A)(m)| : m ∈M(A)

}
≤ ‖A‖.

Since Γ(e) = e ∈ C(M(A)) we see that ‖Γ‖ = sup{‖Γ(A)‖ : ‖A‖ ≤ 1} = 1.

It remains to show the equality (2.1.3). From this the last assertion clearly follows.

“⊇”: Let m ∈M(A), then A−m(A)e ∈ ker m and therefore

A−m(A)e /∈ A−1.

5In the literature also the notation Â is used instead of Γ(A)
6If π is an injective ∗-homomorphism with π(I) = I, then π already is isometric.
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This implies that m(A) ∈ σ(A).

“⊆”: Assume that λ ∈ σ(A) with A ∈ A. Then A− λe /∈ A−1 and

Jλ,A :=
{

(A− λe)B : B ∈ A
}
( A

is a proper ideal of A. There is a maximal ideal J with Jλ,A ⊂ J ( A. Let m ∈ M(A) with
J = ker m. Then

0 = m(A− λe) = m(A)− λ
and as a consequence λ = m(A) ∈ {m(A) : m ∈M(A)}.

Exercise 2.1.14. Let A be a commutative unital Banach algebra which contains nilpotent
elements, i.e. there is A ∈ A such that An = 0 for some n ∈ N.

(i) Show that the Gelfand transform Γ : A −→ C(M(A)) is not injective.

(ii) Give an explicit example of a commutative unital Banach algebra that contains nilpotent
elements.

Exercise 2.1.15. Prove the formula for the spectral radius r(A) := limn→∞ ‖An‖
1
n of an oper-

ator A ∈ A in Theorem 2.1.13.

Lemma 2.1.16. Let A be a unital commutative C∗-algebra and m ∈ M(A), then m is a
∗-homomorphism, i.e. m(A∗) = m(A).

Proof. First we show that if A = A∗, then m(A) is real. If we write m(A) = a+ib with a, b ∈ R,
then we have for all c ∈ R:

b2 + c2 + 2bc = |b+ c|2 ≤ |a+ i(b+ c)|2

= |m(A+ ice)|2 (m(e) = 1)

≤ ‖A+ ice‖2

= ‖(A+ ice)(A∗ − ice)‖ (‖BB∗‖ = ‖B‖2, for all B ∈ A)

= ‖A2 + c2e‖ (A∗ = A)

≤ ‖A‖2 + c2.

Here we have used ‖m‖A′ = 1 and the C∗-property of the norm. Hence we have shown that

b2 + 2bc ≤ ‖A‖2.

Since c is arbitrary we have b = 0 and therefore m(A) = a ∈ R.

Let now A ∈ A be arbitrary, then we decompose A in the form A = Ar + iAi where

Ar =
1

2
(A+ A∗) and Ai =

1

2i
(A− A∗) .

Since Ar = A∗r and Ai = A∗i we obtain from the first part of the proof

m(A∗) = m (Ar − iAi) = m (Ar)− im (Ai) = m(A),

and the assertion is proven.
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The proof of the GN-theorem requires the Stone Weierstrass theorem which we recall next:

Theorem 2.1.17 (Stone-Weierstrass). Let X be a compact space and let C(X) be the algebra
of complex valued continuous functions on X. Assume that A ⊂ C(X) is a sub-algebra with
the following properties:

(i) A contains all constant functions and if f ∈ A, then f ∈ A.

(ii) A separates the points of X, i.e. for x 6= y ∈ X there is f ∈ A such that f(x) 6= f(y).

Then the inclusion A ⊂ C(X) is dense.

Now we can state and prove the Gelfand-Naimark theorem (GN-theorem). Roughly speaking
it says that all unital commutative C∗-algebras can be identified with an algebra of continuous
functions as in Example 2.0.2, (c).

Theorem 2.1.18 (Gelfand-Naimark). Let A be a unital commutative C∗-algebra. Then the
Gelfand transform Γ : A → C(M(A)) is a ∗-isomorphism.

Proof. 1. Step: Show that Γ(A∗) = Γ(A)∗ for A ∈ A:

Let m ∈ M(A). According to the definition of the Gelfand transform and Lemma 2.1.16 we
have

Γ(A∗)(m) = m(A∗) = m(A) = Γ(A)(m) = Γ(A)∗(m).

2. Step: Show that ‖Γ(A)‖ = ‖A‖ for all A ∈ A, i.e. Γ is an isometry:

Let B = B∗ ∈ A be self-adjoint, then it follows from the C∗-property of the norm that

‖B2‖ = ‖BB∗‖ = ‖B‖2.

Inductively, we have ‖B2n‖ = ‖B‖2n for all n ∈ N and we obtain for the spectral radius of B:

r(B) = lim
n→∞

‖Bn‖
1
n = lim

n→∞
‖B2n‖

1
2n = ‖B‖. (2.1.4)

In particular, we put B = A∗A with A ∈ A. Then we conclude from Theorem 2.1.13, the first
step and (2.1.4) that

‖Γ(A)‖2 = ‖Γ(A)Γ(A)∗‖ = ‖Γ(AA∗)‖ = r(AA∗) = ‖AA∗‖ = ‖A‖2.

Since the Gelfand transform Γ is an isometry it is clearly injective and it also follows that the
range

Γ(A) ⊂ C(M(A)) (2.1.5)

is closed. In order to prove the equality Γ(A) = C(M(A)) it therefore is sufficient to show that
the inclusion (2.1.5) is dense. Note that Γ(A) fulfills the following properties:

(i) Since Γ(λe) = λe for all λ ∈ C we conclude that the range Γ(A) is a subalgebra of
C(M(A)) which contains the constant functions. Also M(A) is weak-∗- compact.

(ii) Γ(A) is invariant under complex conjugation since Γ(A) = Γ(A)∗ = Γ(A∗).
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(iii) Γ(A) separates points of M(A), i.e. for any pair m1 6= m2 ∈M(A) there is A ∈ A with

Γ(A)(m1) = m1(A) 6= m2(A) = Γ(A)(m2).

Therefore the density of the inclusion (2.1.5) is a consequence of the Stone-Weierstrass theorem,
(Theorem 2.1.17).

Exercise 2.1.19. Let A be a commutative unital Banach algebra. The space

Rad (A) :=
⋂{
I ⊂ A : I is a maximal ideal

}
is an ideal of A itself and is called the radical of A.

(i) If A ∈ A is nilpotent, then A ∈ Rad (A).

(ii) Calculate the radical of a commutative unital C∗-algebra A. Show that a commutative
unital C∗-algbera contains no nilpotent elements.

Exercise 2.1.20. Let X be a compact space, then the maximal ideal space M(C(X)) can be
identified with X via the map 7

∆ : X −→M(C(X)) : x 7→ δx,

where δx(f) := f(x) for all f ∈ C(X) (cf. Example 2.1.7). Show that the map ∆ is surjective.

Hint: Assume that there is m ∈ M(C(X)) \∆(X). By using the compactness of X construct
f ∈ C(X) with f > 0 and m(f) = 0.

More precisely, for each x ∈ X there is fx ∈ C(X) such that fx(x) 6= 0 and m(fx) = 0. Put

Ux :=
{
y ∈ X : fx(y) 6= 0

}
.

Then {Ux}x∈X defines an open covering of X and since X is compact we may pass to a sub-cover
{Uxj}Nj=1. Consider the function

h =
N∑
j=1

fxjf
∗
xj

=
N∑
j=1

|fxj |2.

Then h ∈ C(X) and h > 0 on X and m(h) =
∑N

j=1 |m(fxj)|2 = 0. Hence h ∈ ker m is
invertible in C(X), which gives a contradiction.

2.2 Fock-space, CCR and CAR- algebras

(Robert Helling)

7More precisely, ∆ is a homeomorphism, i.e. a continuous bijective map with continuous inverse.
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2.2.1 CAR-Algebra

Let h be a pre-Hilbert space with completion h.

Definition 2.2.1 (CAR-algebra). The (unique up to ∗-isomorphisms) algebra A(h) generated
by element a(f) where f ∈ h with the properties (i)-(iii) below is called CAR-algebra.

(i) h 3 f 7→ a(f) is anti-linear

(ii) {a(f), a(g)} = 0, with f, g ∈ h

(iii) {a(f), a(g)∗} = 〈f, g〉id, with f, g ∈ h

2.2.2 CCR-Algbera

Let H be a real Hilbert space with a non-degenerate symplectic bilinear form σ : H ×H → R,
i.e. σ is anti-symmetric.

σ(f, g) = −σ(g, f), for all f, g ∈ H.

Definition 2.2.2 (CCR-algebra). The (unique up to ∗-isomorphisms) algebra A(H) generated
by Weyl-operators W (f) where f ∈ H with the properties (i)-(ii) is called CCR-algebra.

(i) W (−f) = W (f)∗ for all f ∈ H,

(ii) W (f)W (g) = e−
i
2
σ(f,g)W (f + g) for all f, g ∈ H.

2.3 Quasi-local Algebras

We introduce the notion of quasi-local algebras. These are classes of C∗-algebras that are used
to describe infinite systems of statistical mechanics. We start with the definition.

A directed set I = (I,≺) 8 is said to possess an orthogonality relation ⊥ if the following
properties hold:

(a) if α ∈ I, then there is β ∈ I with α ⊥ β.

(b) if α ≺ β and β ⊥ γ, then α ⊥ γ.

(c) if α ⊥ β and α ⊥ γ, then there is δ ∈ I such that α ⊥ δ and γ, β ≺ δ.

Example 2.3.1. The following are intrinsic examples for a directed set with an orthogonality
relation:

1. Let I :=bounded open subsets of Rn or I :=finite subsets of Zn directed by inclusion:

A ≺ B :⇐⇒ A ⊂ B and A ⊥ B :⇐⇒ A ∩B = ∅.

In (c) choose δ = β ∪ γ
8“directed” means that the binary relation “≺” is reflexive and transitive. In addition to each pair α, β ∈ I

there is an “upper bound” γ ∈ I, i.e. α, β ≺ γ.
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2. Let H be a vector space over R with a non-degenerated symplectic bilinear form 9 b and
I :=set of linear subspaces of H directed by inclusion as in 1. Put

L ⊥ G :⇐⇒ b(`, g) = 0 for all ` ∈ L and g ∈ G.

In (c) choose δ = span{β, γ}.

We also assume an abstract versions of the “union” or “span” in 1. and 2. of the above example.
Let α, β ∈ I, then we assume existence of a least upper bound denoted by α ∨ β ∈ I with

(d) α ≺ α ∨ β and β ≺ α ∨ β.

(e) if α ≺ γ and β ≺ γ then α ∨ β ≺ γ.

Let A be a C∗-algebra equipped with an involutive automorphism σ, i.e. σ2 = id. Given A ∈ A
we can define its even part Ae and odd part Ao with respect to σ:

Ae =
1

2
{A+ σ(A)} and Ao =

1

2
{A− σ(A)} .

such that A = Ae + Ao. Clearly it holds σ(Ae) = Ae and σ(Ao) = −Ao. Moreover,

Ae : =
{
Ae : A ∈ A

}
= C∗-subalgebra of A.

Ao : =
{
Ao : A ∈ A

}
= Banach space.

Definition 2.3.2 (quasi-local algebra). Let I be a directed index set with an orthogonality
relation. A quasi-local algebra is a C∗-algebra A with an involutive automorphism σ : A → A
and a net {A}α∈I of C∗-sub-algebras such that the following properties hold:

(a) if β ≺ α, then Aβ ⊂ Aα.

(b) all algebras Aα have the common identity e ∈ A.

(c)
⋃
α∈I Aα is dense in A (with respect to the norm topology).

(d) Each Aα for α ∈ I is invariant under σ, i.e. σ(Aα) = Aα.

(e) With the commutator [·, ·] and the anti-commutator {·, ·} on A and with α, β ∈ I such
that α ⊥ β it holds:

• [Aeα,Aeβ] = {0},
• [Aeα,Aoβ] = {0},
• {Aoα,Aoβ} = {0}.

Remark 2.3.3. We may choose σ = id, then property (d) simply reduces to

9symplectic form means:

(i) skew-symmetric: b(u, v) = −b(v, u) for all u, v ∈ H
(ii) totally isotropic: b(v, v) = 0 for all v ∈ H
(iii) non-degenerate: b(u, ·) ≡ 0 implies that u = 0
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[Aα,Aβ] = 0 for all α, β ∈ I with α ⊥ β.

If I is the set of bounded open subsets of Rn as in Example 2.3.1 1., then Aα can be interpreted
as the observables for a sub-system localized in α ⊂ Rn.

The corresponding quasi-local algebra describes the observables of the infinite system. The
condition

[Aα,Aβ] = 0, α ⊥ β

states that observations become independent if α ∩ β = ∅.

We now give some explicit examples for quasi-local algebras that play a role in statistical
mechanics:

Example 2.3.4. (quasi-local algebras)

1. Let the index set I := {Λ ⊂ Zn : Λ is finite } be directed by inclusion and define the
orthogonality relation Λ1 ⊥ Λ2 :⇐⇒ Λ1 ∩ Λ2 = ∅ for all Λ1,Λ2 ∈ I.

Let Λ ∈ I and assign to each x ∈ Λ a finite dimensional Hilbert space Hx. Consider the
tensor product Hilbert spaces HΛ and a corresponding C∗-algebra AΛ:

HΛ :=
⊗
x∈Λ

Hx and AΛ := L(HΛ) = bounded operators on HΛ.

The family of algebras {AΛ}Λ∈I is increasing: if Λ1 ∩ Λ2 = ∅ then HΛ1∪Λ2 = HΛ1 ⊗HΛ2

and it holds

AΛ1
∼= AΛ1 ⊗ idΛ2 = L(HΛ1)⊗ idΛ2 ⊂ L(HΛ1 ⊗HΛ2) = AΛ1∪Λ2 .

A quasi local algebra A with σ = id is defined by the minimal norm completion of the
normed algebra ⋃

Λ∈I

AΛ.

If Λ1 ∩ Λ2 = ∅ and Aj ∈ AΛj where j = 1, 2, then property (e) follows from

[A1, A2] = A1A2 − A2A1

=
(
A1 ⊗ id

)(
id⊗ A2

)
−
(
id⊗ A2

)(
A1 ⊗ id

)
= A1 ⊗ A2 − A1 ⊗ A2 = 0.

Algebras of the above type where the index set I is countable frequently are called UHF-
algebras 10. They play a role in the study of quantum spin systems.

2. Let (H, 〈·, ·〉) be a Hilbert space and consider an index set

I ⊂
{
M ⊂ H : M is a closed non-empty subspace

}
which should be directed by inclusion and such that⋃

M∈I

M ⊂ H

10UHF means “uniformly hyper-finite”
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is norm dense. Assume that usual orthogonality ⊥ with respect to the inner product
defines an orthogonality relation on I in the previous sense.

LetACAR(H) be the CAR-algebra over H generated by {a(f) : f ∈ H} with the conditions
in Definition 2.2.1. For each M ∈ I put

ACAR(M) := C∗-algebra generated by a(f)with f ∈M.

Define an involutive automorphism σ on ACAR(H) via the requirement σ(a(f)) = −a(f),
for all f ∈ H. Then (

ACAR(H), {ACAR(M)}M∈I
)

defines a quasi-local algebra (proof see [2] vol II, Proposition 5.2.6).

Exercise 2.3.5. With the notation in 2. and M ∈ I let us write

P o(M) : = odd polynomials in elements a(f) and a(g) where f, g ∈M
P e(M) : = even polynomials in elements a(f) and a(g) where f, g ∈M.

Show that

(a) P e(M) ⊂ AeCAR(M) and P o(M) ⊂ AoCAR(M).

(b) the conditions (e) in Definition 2.3.2 are fulfilled if we replace there AeCAR(M) by
polynomial P e(M) and AoCAR(M) by polynomial P o(M).

3. Let H be a vector space over R equipped with a non-degenerated symplectic bilinear form
b : H ×H → R. Define the index set

I :=
{
M ⊂ H : M is a subspace

}
ordered by inclusion and with the orthogonality relation ⊥ in Example 2.3.1, 2.:

M ⊥ N :⇐⇒ b(`, g) = 0 for all ` ∈M and g ∈ N.
In particular, it holds

H =
⋃
M∈I

M.

Let ACCR(H) be the CCR-algbera over H generated by Weyl-operators {W (f) : f ∈ H}
with the conditions in Definition 2.2.2. For M ∈ I put

ACCR(M) := C∗-algbera generated by W (f) with f ∈M.

With the involutive automorphism σ = id(
ACCR(H), {ACCR(M)}M∈I

)
defines a quasi-local algebra (proof, see [2] vol. II, Proposition 5.2.10), e,g if σ(f, g) = 0,
then

W (f)W (g) = W (f + g) = W (g)W (f).

Remark 2.3.6. The Examples 2.3.4 2. and 3. have different features. Whereas one always has
equality ACAR(h) = ACAR(H) for any dense subset h of the Hilbert space H it can be shown
that

ACCR(H1) ∼= ACCR(H2)

for H1 ⊂ H2 exactly holds in the case where H1 = H2.
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2.4 States, representations and Gelfand-Segal

construction

Let A be a C∗-algebra. To simplify the proofs we assume that A is unital with unit e ∈ A.
However, most of the results here are also true in general and in the proofs one may use so
called approximate units which always exist (or an extension to a unital algebra).

We start with some remarks on self-adjoint functional calculus. Let A = A∗ ∈ A be
selfadjoint. Consider the commutative C∗-algebra AA which is generated by A and the unit
e ∈ A. According to Exercise 8 there is an isometric ∗-isomorphism

π : AA −→ C
(
σ(A)

)
,

where C
(
σ(A)

)
denotes the C∗-algebra of continuous functions on the spectrum σ(A) of A and

such that π ◦ p(A) = p for all polynomials. Given f ∈ C(σ(A)) we define

f(A) := π−1(f) ∈ AA ⊂ A. (2.4.1)

Hence we have for f, g ∈ C(σ(A)):

(fg)(A) = f(A)g(A) and f(A)∗ = f(A) (2.4.2)

by using the fact that π−1 is a ∗-isomorphism.

Exercise 2.4.1. Let A ∈ A be selfadjoint, i.e. A = A∗. Show that σ(A) ⊂ R.

Definition 2.4.2. An element A ∈ A is called positive if it is self-adjoint and σ(A) ⊂ [0,∞).

If A ∈ A is positive then we write A ≥ 0 and by A ≥ B we mean that A−B ≥ 0.

Exercise 2.4.3. Let A ∈ A be self-adjoint, i.e. A = A∗ with ‖A‖ ≤ 2. Then A ≥ 0 if and only
if ‖e− A‖ ≤ 1.

Exercise 2.4.4. A subset C ⊂ A is called a “cone” if C is invariant under multiplications with
λ ∈ (0,∞). Show

(1) What are the positive elements of A = C(X) where X is a compact Hausdorff space?

(2) The positive elements of a C∗-algebra form a closed convex cone.

Hint: Use the characterization of positivity in Exercise 2.4.3.

(3) If A,B ∈ A are positive, then A+B is positive.

(4) Elements of the form AA∗ are positive.

Exercise 2.4.5. Let A ∈ A be positive. Show that there exist a positive element B ∈ A such
that A = B2. We write B = A

1
2 .

Hint: Use the above self-adjoint functional calculus.
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2.4.1 Positive functional and states

We write A∗ 11 for the topological dual of A consisting of all continuous linear functionals
ϕ : A → C and with norm

‖ϕ‖A∗ := sup
{
|ϕ(A)| : A ∈ A and ‖A‖ = 1

}
.

Example 2.4.6. Let X be a compact Hausdorff-space and let A = C(X). Then A∗ can be
identified with the space of all complex Borel measures on X.

A linear functional ϕ is called positive if ϕ(A∗A) ≥ 0 holds for all A ∈ A. (Here we do not
assume continuity of ϕ explicitely, it will be a consequence of positivity)

Definition 2.4.7 (state). A positive functional ϕ ∈ A∗ with norm ‖ϕ‖ = 1 is called state. We
denote the set of all states in A∗ by EA.

Exercise 2.4.8. Each element A ∈ A with ‖A‖ ≤ 1 can be decomposed in the form

A = B0 −B1 + i(B2 −B3), (2.4.3)

where Bj ∈ A with Bj ≥ 0 and ‖Bj‖ ≤ 1 for j = 0, · · · , 3.

Proof. First, decompose A in real and imaginary part:

Ar =
1

2
(A+ A∗) and Ai :=

1

2i
(A− A∗)

both are selfadjoint, i.e. Ar = A∗r and Ai = A∗i . We further decompose Ar = Ar,+ − Ar,− and
Ai = Ai,+ − Ai,− into their “positive” and “negative parts”

Ar,± =
1

2
(|Ar| ± Ar) := f±(Ar) and Ai,± =

1

2
(|Ai| ± Ai) = f±(Ai).

where f± = (|x| ± x)/2 maps σ(Ar) and σ(Ai) to [0,∞). Using the relation (2.4.2) and taking
square root of f± the first assertion follows.

We show some simple properties of positive functionals. Note that the proof makes neither
use of the closedness of A nor of the C∗-property of the norm.

Lemma 2.4.9. Let ϕ : A −→ C be positive and linear, then we have for all A,B ∈ A:

(1) ϕ(A∗B) = ϕ(B∗A). In particular, with B = e one has ϕ(A∗) = ϕ(A).

(2) |ϕ(A∗B)|2 ≤ ϕ(A∗A)ϕ(B∗B), (Cauchy-Schwarz inequality),

Proof. For all λ ∈ C it follows from the positivity of ϕ:

0 ≤ ϕ
(

(λA+B)∗(λA+B)
)

= |λ|2ϕ(A∗A) + λϕ(A∗B) + λϕ(B∗A) + ϕ(B∗B)

(1): Taking the imaginary part of both sides gives:

0 = λ
[
ϕ(A∗B)− ϕ(B∗A)

]
− λ
[
ϕ(A∗B)− ϕ(B∗A)

]
= 2iIm

[
λ
[
ϕ(A∗B)− ϕ(B∗A)

]]
.

11we change the notation to A∗ since A′ usually means the commutant of A



2.4. STATES, REPRESENTATIONS AND GELFAND-SEGAL CONSTRUCTION 25

Since this is true for all λ ∈ C, we conclude (1).

(2): Using (1) in the above inequality gives

0 ≤ |λ|2ϕ(A∗A) + λϕ(A∗B) + λϕ(A∗B) + ϕ(B∗B).

If ϕ(A∗A) = 0 then we conclude that ϕ(A∗B) = 0 and (2) follows trivially. Otherwise we choose

λ := −ϕ(A∗B)/ϕ(A∗A),

which implies (2) again.

Proposition 2.4.10. Let ϕ be a positive linear functional on a unital C∗-algebra A, then ϕ is
continuous with ϕ(e) = ‖ϕ‖ (e is the unit in A).

Proof. Assume that ϕ is unbounded and consider

M := sup
{
ϕ(A) : A ≥ 0, ‖A‖ ≤ 1

}
∈ R+ ∪ {∞}. (2.4.4)

Assume that M < ∞ and let A ∈ A with ‖A‖ ≤ 1. According to Exercise 2.4.8 we can
decompose A in the form

A = (B0 −B1) + i(B2 −B3)

where Bj ≥ 0 and ‖Bj‖ ≤ 1. Hence, by the triangle inequality

|ϕ(A)| ≤
3∑
j=0

∣∣ϕ(Bj)
∣∣ ≤ 4M <∞

which contradicts the assumption that ϕ is unbounded. Hence M = ∞ and we can choose a
sequence {Aj}j∈N ⊂ A with ‖Aj‖ ≤ 1 and

ϕ(Aj) > 2j, j ∈ N.

Consider the partial sums Sm :=
∑m

j=0 2−jAj ∈ A where m ∈ N. Then

S := lim
m→∞

Sm ∈ A

exists and is positive (according to Exercise 2.4.3, (2)) and Sm ≤ S for all m. 12 We have for
all m ∈ N:

∞ > ϕ(S) ≥ ϕ(Sm) =
m∑
j=0

2−jϕ(Aj)︸ ︷︷ ︸
>1

> m+ 1,

which is a contradiction. Hence ϕ must be bounded.

It remains to show that ‖ϕ‖ = ϕ(e). Since ‖e‖ = 1 we have ϕ(e) ≤ ‖ϕ‖ and the Cauchy-
Schwarz inequality (Lemma 2.4.9) shows:

|ϕ(A)|2 = |ϕ(Ae)|2 ≤ ϕ(AA∗)ϕ(e) ≤ ‖ϕ‖‖AA∗‖ϕ(e) = ‖ϕ‖‖A‖2ϕ(e).

Dividing both sides by ‖A‖2 and taking the supremum over 0 6= A ∈ A on the right hand side
gives

‖ϕ‖2 ≤ ‖ϕ‖ϕ(e).

Hence ‖ϕ‖ ≤ ϕ(e) and we have proven equality ‖ϕ‖ = ϕ(e).

12The positive elements of a C∗-algebra form a closed convex cone.
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Corollary 2.4.11. Let A be a unital C∗-algebra and let ϕ1, ϕ2 ∈ A∗ be positive functionals.
Then

(i) the sum ϕ1 + ϕ2 ∈ A∗ is positive with norm ‖ϕ1 + ϕ2‖A∗ = ‖ϕ1‖A∗ + ‖ϕ2‖A∗,

(ii) the states over A form a convex subset of A∗.

Proof. (i): It is clear that ϕ1 +ϕ2 is positive. Moreover, it follows from Proposition 2.4.10 that

‖ϕ1 + ϕ2‖A∗ = (ϕ1 + ϕ2)(e) = ϕ1(e) + ϕ2(e) = ‖ϕ1‖A∗ + ‖ϕ2‖A∗ .

(ii): let λ ∈ [0, 1] and assume that ϕ1, ϕ2 ∈ A∗ are states, i.e. ‖ϕ1‖A∗ = ‖ϕ2‖A∗ = 1, then

‖λϕ1 + (1− λ)ϕ2‖A∗ = λ‖ϕ1‖A∗ + (1− λ)‖ϕ2‖A∗ = 1,

where we have used the property (i). The convexity follows.

We can define a partial ordering on A∗ using the notion of “positivity”.

Definition 2.4.12. Let ϕ1, ϕ2 ∈ A∗ be positive, then we write ϕ1 ≥ ϕ2 if ϕ1 − ϕ2 is positive.
In this case one says “ϕ1 majorizes ϕ2.

Assume that ϕ1, ϕ2 ∈ A∗ are states and fix λ ∈ [0, 1]. According to Corollary 2.4.11 we
know that ϕ := λϕ1 + (1− λ)ϕ2 is a stated with

ϕ ≥ λϕ1 and ϕ ≥ (1− λ)ϕ2.

States that cannot be expressed as a non-trivial convex combination of two other states will
play a special role.

Definition 2.4.13. A state ϕ ∈ A∗ is called pure if the only positive linear functionals that
are majorized by ϕ have the form λϕ with λ ∈ [0, 1]. We write PA ⊂ EA for the set of pure
states.

The pure states are the so called extreme points of EA. If K is a subset of a vector space
X, then ρ ∈ K is called extreme point of K if it cannot be expressed in the form

ρ = αρ1 + (1− α)ρ2, with α ∈ (0, 1) and ρ1, ρ2 ∈ K.

In this framework the following is an important result:

Theorem 2.4.14 (Krein-Milman 13). Let X be a topological vector space on which the dual X∗

separates points. If K is a non-empty compact convex set in X, then K is the closed convex
hull of its extreme points. In particular, the set of extreme points is non-empty.

Exercise 2.4.15. Let A be a unital C∗-algebra. Then the set of states is a weak-*-compact
convex subset of A∗.

13Mark Krein (1907-1989) russian mathematician, David Milman (1912-1982) russian/israeli mathematician
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2.4.2 Star-homomorphisms

Before introducing the important concept of representations we start with some general obser-
vations on ∗-homomorphism between C∗-algebras.

Let A, B be C∗-algebras with units eA and eB, respectively. Consider a ∗-homomorphism

π : A −→ B (2.4.5)

We assume that If π(eA) = eB. Otherwise we replace B by the C∗-subalgebra B̃ ⊂ B defined
by

B̃ := π(eA)Bπ(eA) =
{
π(eA)Bπ(eA) : B ∈ B

}
with the same norm as B and the unit

eB̃ := π(eA)eBπ(eA) = π(eA).

Assume that A ∈ A and λ ∈ ρA(A)=“resolvent set of A”, i.e. A− λeA ∈ A−1. Then

π(A)− λeB = π
(
A− λeA

)
∈ B−1.

The inverse is given by π
(
(A− λeA)−1

)
and therefore λ ∈ ρB(π(A)). In particular, we have for

all A ∈ A:
σB
(
π(A)

)
⊂ σA(A). (2.4.6)

Here σA(·) and σB(·) denote the spectrum in A and B, respectively.

Proposition 2.4.16. The ∗-homomorphism π is (automatically) continuous and contractive,
i.e. ‖π(A)‖ ≤ ‖A‖ for all A ∈ A.

Proof. Let A ∈ A and note that π(AA∗) ∈ B is self-adjoint. It follows from the inclusion (2.4.6)
and the property

‖C‖ = r(C) = spectral radius of C

for all self-adjoint elements C of a C∗-algebra that

‖π(A)‖2 = ‖π(A)π(A)∗‖ = ‖π(AA∗)‖ = sup
{
λ ∈ σB

(
π(AA∗)

)}
≤ sup

{
λ ∈ σA

(
AA∗

)}
= ‖AA∗‖ = ‖A‖2.

By taking the square root on both sides the assertion follows.

Let A and B be commutative unital C∗-algebras with maximal ideal spaces M(A) and
M(B), respectively (interpreted as multiplicative functionals). Let π : A → B be an injective
∗-homomorphism which maps the unit eA in A to the unit eB in B. Then π induces a map

πt : M(B)→M(A) : m 7→ πt(m) := m ◦ π, (2.4.7)

which is continuous with respect to the weak-∗-topology. Since M(B) is weak-∗-compact, it
follows that the range πt(M(A)) is compact in M(B) and, in particular, closed.

Lemma 2.4.17. Under the above assumption it follows that the map πt in (2.4.7) is surjective,
i.e. πt(M(B)) = M(A).
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Proof. Assume that X := M(A) \ πt(M(B)) 6= ∅ and let m0 ∈ X. Since X is open we can
choose two non-trivial functions f, g ∈ C(M(A)) with f · g ≡ 0 and

f(m) ≡ 1 for all m ∈ πt(M(B)). (2.4.8)

Consider the Gelfand transform

Γ : A −→ C(M(A)) 3 f, g,

which is a ∗-isomorphism. Define A := Γ−1(f) ∈ A and 0 6= B = Γ−1(g) ∈ A. Then we have

AB = Γ−1(f)Γ−1(g) = Γ−1(f · g) = 0 (2.4.9)

and for all m ∈M(B) it follows from (2.4.7)

m
(
π(A)

)
= πt(m)(A) = Γ(A)(πt(m)) = f

(
πt(m)

)
= 1.

Therefore π(A) does not belong to any maximal ideal of B and as a consequence must be
invertible. Applying the inverse to both sides of

π(A)π(B) = π(AB) = π(0) = 0

gives π(B) = 0 and by injectivity B = 0 which is a contradiction.

Corollary 2.4.18. Let A and B be unital C∗-algebras (not necessarily commutative) and as-
sume that π : A → B an injective ∗-homomorphism. Then π is isometric, i.e.

‖π(A)‖ = ‖A‖, for all A ∈ A.

Proof. First assume that A = A∗ ∈ A is self-adjoint. Without restriction we can assume that
π(eA) = eB. Denote by AA and Bπ(A) the commutative C∗-subalgebras of A and B generated
by A and π(A), respectively. According to Lemma 2.4.17 we have

‖π(A)‖ = r(π(A)) = sup
{
m(π(A)) : m ∈M(B)

}
= sup

{
πt(m)(A) : m ∈M(B)

}
= sup

{
m̃(A) : m̃ ∈ πt(M(B))

}
= sup

{
m̃(A) : m̃ ∈M(A)

}
= r(A) = ‖A‖.

For general A ∈ A this observation implies

‖A‖2 = ‖A∗A‖ = ‖π(AA∗)‖ = ‖π(A)π(A)∗‖ = ‖π(A)‖2

and the assertion follows by taking the square root.

Corollary 2.4.19. Let π : A → B be a ∗-homomorphism, then the range π(A) is a C∗-algebra
and in particular closed.

Proof. According to Corollary 2.4.18 the induced map

π̃ : A/ker π −→ B

is an injective isometric ∗-homomorphism. Since the quotient A/ker has the structure of a
unital C∗-algebra the assertion follows.

Exercise 2.4.20. Assume that π(A) > 0 for all A ∈ A with A > 0. Show that π is isometric.
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2.4.3 Representations

In order to show the connection between the abstract C∗-algebras and Hilbert space operators
we introduce the concept of representation. A link between representations and states is then
given by the Gelfand-Naimark-Segal construction which we explain in this section.

Consider a complex Hilbert space H and choose B := L(H). Let

π : A −→ L(H)

be a ∗-homomorphism.

Definition 2.4.21. The pair (H, π) is called a representation of the C∗-algebra A.

(i) A representation is called faithful if π is even a ∗-isomorphism (then it is isometric!).

(ii) Two representations π and ρ of A on H1 and H2, respectively, are called (unitarily)
equivalent, if there is a unitary operator U : H1 → H2 with

Uπ(x)U∗ = ρ(x), for all x ∈ A.

We will often identify unitarily equivalent representations.

Let M⊂ L(H) be a set of bounded operator on H. A vector Ω ∈ H is called cyclic for M
if the inclusion

{
AΩ : A ∈M

}
⊂ H is dense. We define

Definition 2.4.22. A “cyclic representation’’ of a C∗-algebraA by definition is a triple (H, π,Ω),
where (H, π) is a representation of A and Ω ∈ H is cyclic for π(A).

Exercise 2.4.23. Let (H, π,Ω) be a cyclic representation. Then (H, π) is non-degenerate in
the sense that {

f ∈ H : π(A)f = 0 for all A ∈ A
}

= 0

Definition 2.4.24 (Commutant). The commutant M′ of M is defined by

M′ :=
{
C ∈ L(H) : [C,M ] = CM −MC = 0 for all M ∈M

}
.

A subspace G ⊂ H is said to be invariant under M if

T (G) ⊂ G, for all T ∈M.

We call M irreducible if the only closed invariant subspaces G ⊂ H of M are G = {0} and
G = H. There are some relation between these notions. Without a proof we mention:

Proposition 2.4.25. Let M ⊂ L(H) be a “self-adjoint” subset, i.e. M ∈ M implies that
M∗ ∈M. Then (i) and (ii) are equivalent

(i) M is irreducible

(ii) M′ = {λ · id : λ ∈ C},
Proof. See [8].

Exercise 2.4.26. Proof (ii) =⇒ (i) of Proposition 2.4.25.

Definition 2.4.27. A representation (H, π) of a C∗-algebra A is called irreducible if the set
π(A) ⊂ L(H) is irreducible.

Exercise 2.4.28. If (H, π) is an irreducible representation of the C∗-algebra A, then each
vector ξ ∈ H is cyclic or π(A) = {0} and H = C.
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2.4.4 The GNS-construction

The GNS construction was discovered independently by Gelfand/Naimark and by I. Segal. It
provides a method to construct representations of C∗-algebras with the help of positive linear
functionals.

Let A be a C∗-algebra with positive linear functional ϕ : A → C, i.e. ϕ ∈ A∗. We put a
pre-inner product on A by 〈

A,B
〉
ϕ

:= ϕ(A∗B)

(see Lemma 2.4.9). We define

Nϕ :=
{
N ∈ A : ϕ(N∗N) = 0

}
.

Lemma 2.4.29. Nϕ is a closed left ideal of A, i.e. AN ∈ Nϕ for all A ∈ A and N ∈ Nϕ.

Proof. As a preparation for the proof we show that for all A,B ∈ A we have

ϕ(A∗B∗BA) ≤ ‖B‖2ϕ(A∗A). (2.4.10)

In fact, since σ(B∗B) ⊂ [0, ‖B‖2] it follows that B∗B − ‖B‖2e ≤ 0 and therefore

‖B‖2A∗A− A∗B∗BA = A∗
(
‖B‖2e−B∗B

)︸ ︷︷ ︸
is of form C∗C≥0

A = (CA)∗CA ≥ 0. (2.4.11)

Since ϕ is positive we find that (2.4.10) holds. Let N ∈ Nϕ and A ∈ A then AN ∈ Nϕ follows
by applying (2.4.10) from:

0 ≤ ϕ
(
(AN)∗(AN)

)
= ϕ(N∗A∗AN) ≤ ϕ(N∗N)︸ ︷︷ ︸

=0

‖A∗A‖ = 0.

By using the Cauchy-Schwarz inequality again one easily shows that Nϕ is a linear space and
closedness follows from the continuity of ϕ.

According to Lemma 2.4.29 we can consider the quotient algebra

A/Nϕ =
{
Â := A+Nϕ : A ∈ A

}
with the inner product (for simplicity we use the same notation as before):〈

Â, B̂
〉
ϕ

:= ϕ(A∗B). (2.4.12)

Exercise 2.4.30. Check that the inner-product (2.4.12) is well-defined on the quotient A/Nϕ.

Definition 2.4.31. We write Hϕ for the Hilbert space completion of (A/Nϕ, 〈·, ·〉ϕ) which then
is a Hilbert space.

Our next aim is to define a representation of A on Hϕ. The quotient A/Nϕ can be identified
with a closed subspace of Hϕ. For any given A ∈ A we define πϕ(A) : A/Nϕ → A/Nϕ by

πϕ(A)(B +Nϕ) := AB +Nϕ. (2.4.13)



2.4. STATES, REPRESENTATIONS AND GELFAND-SEGAL CONSTRUCTION 31

Since Nϕ is a left ideal in A it is clear that πϕ(A) is well-defined. We show that πϕ(A) is
continuous on A/Nϕ with respect to the norm ‖ · ‖ϕ induced by the inner-product 〈·, ·〉ϕ.

‖πϕ(A)(B̂)‖2
ϕ = ‖AB +Nϕ‖2

ϕ

= ϕ
(
(AB)∗AB

)
= ϕ(B∗A∗AB)

≤ ‖A∗A‖ϕ(B∗B) = ‖A‖2‖B̂‖2
ϕ.

The inequality follows from (2.4.10). Hence πϕ(A) extends to a bounded operator on the
completion Hϕ with

‖πϕ(A)‖ϕ ≤ ‖A‖

and clearly the assignment
πϕ : A −→ L(Hϕ) : A 7→ πϕ(A)

gives a representation of A on Hϕ (in particular we have πϕ(A1)πϕ(A2) = πϕ(A1A2).)

Definition 2.4.32 (GNS-representation). (Hϕ, πϕ) is called GNS-representation associated
with ϕ.

We show that the GNS-representation is cyclic. Put ξϕ := πϕ(eA) = eA +Nϕ = êA ∈ Hϕ.
Then we have for all A ∈ A〈

ξϕ, πϕ(A)ξϕ
〉
ϕ

=
〈
êA, Â

〉
ϕ

= ϕ(e∗AA) = ϕ(A) (2.4.14)

and due to Proposition 2.4.10 we find

‖ξϕ‖2
ϕ = ϕ(eA) = ‖ϕ‖A∗ .

Definition 2.4.33. States of the form π(A) = 〈Ω, π(A)Ω〉 where (H, π) is a representation of
a C∗-algebra A and Ω ∈ H are called vector states.

Proposition 2.4.34. The triple (Hϕ, πϕ, ξϕ) defines a cyclic representation of A.

Proof. By definition we need to show that{
πϕ(A)ξϕ : A ∈ A

}
=
{
A+Nϕ : A ∈ A

}
= A/Nϕ

is dense in Hϕ. But this is clear since Hϕ is the completion of A/Nϕ.

Exercise 2.4.35. Let A := Cn×n =”C∗-algebra of n × n complex matrices”. On A consider
the trace functional ϕtr : A → C defined by the usual matrix trace

ϕtr(A) = trace(A), A ∈ A.

(a) Show that ϕtr is a positive linear functional on A.

(b) Give an explicit description of the GNS-representation (Hϕtr , πϕtr , ξϕtr).

The GNS-construction gives is a relation between the notions “pure state” and “irreducible
representation”.
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Theorem 2.4.36. Let A be a unital C∗-algebra with a state ϕ and corresponding GNS-represen-
tation (Hϕ, πϕ, ξϕ). Then (a) and (b) are equivalent:

(a) the representation (Hϕ, πϕ) is irreducible

(b) ϕ is a pure state (extreme point of EA).

Proof. (a) =⇒ (b): Assume that (a) holds and ϕ is not a pure state. Then we find a state ω
not of the form ω = λϕ where λ ∈ [0, 1] with ω ≤ ϕ. The Cauchy-Schwarz inequality implies
for all A,B ∈ A:

|ω(B∗A)|2 ≤ ω(B∗B)ω(A∗A)

≤ ϕ(B∗B)ϕ(A∗A)

= ‖B̂‖2
ϕ‖Â‖2

ϕ

= ‖πϕ(B)ξϕ‖2
ϕ‖πϕ(A)ξϕ‖2

ϕ.

Therefore the assignment

A/Nϕ ×A/Nϕ −→ C :
(
πϕ(B)ξϕ, πϕ(A)ξϕ

)
7→ ω(B∗A)

is continuous w.r. to ‖ · ‖ϕ and extends to a bounded bilinear form S : Hϕ ×Hϕ −→ C. Hence
we can choose a bounded operator T ∈ L(Hϕ) such that〈

πϕ(B)ξϕ, Tπϕ(A)ξϕ
〉
ϕ

= S
(
πϕ(B)ξϕ, πϕ(A)ξϕ

)
= ω(B∗A).

If there was λ ∈ R such that T = λ · id then we had

λϕ(A∗A) =
〈
πϕ(A)ξϕ, λπϕ(A)ξϕ

〉
ϕ

= ω(A∗A),

with λ ∈ [0, 1] which contradicts our above assumption. Fix A,B,C ∈ A, then we have

〈
πϕ(B)ξϕ, T

=πϕ(CA)︷ ︸︸ ︷
πϕ(C)πϕ(A) ξϕ

〉
ϕ

= ω(B∗CA)

= ω
(
(C∗B)∗A

)
=
〈
πϕ(C∗B)ξϕ, Tπϕ(A)ξϕ

〉
ϕ

=
〈
πϕ(B)ξϕ, πϕ(C)Tπϕ(A)ξϕ

〉
ϕ
.

Since A and B were chosen arbitrarily we conclude that T commutes with all elements in
πϕ(A) ⊂ L(Hϕ). In other words λ · id 6= T is in the commutant πϕ(A)′ ⊂ L(Hϕ) and according
to Proposition 2.4.25, (i) =⇒ (ii) the representation πϕ cannot be irreducible. Contradiction.

(b) =⇒ (a): No proof here (requires the notation of spectral projections).

As for the uniqueness of the GNS-construction up one can say the following

Exercise 2.4.37. With the above notation let (H̃, π̃, ξ̃) be another cyclic representation of the

unital C∗-algebra A such that ϕ(A) = 〈ξ̃, π̃(A)ξ̃〉H̃ for all A ∈ A, cf. (2.4.14).
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(a) Show that there is a unitary operator U : H̃ → H which sets up a unitary equivalence
between πϕ and π̃.

The following result (which we state without a proof) sometimes also is called the Gelfand-
Naimark theorem (cf. Theorem 2.1.18).

Theorem 2.4.38 (Gelfand-Naimark). If A is a C∗-algebra, then A has a faithful representa-
tion, i.e. A is isometrically isomorphic to a concrete C∗-algbera of operators on a Hilbert space
H. If A is separable, then H may be chosen separable.

2.4.5 The GNS-construction for a matrix algebra

(see Robert’s lecture)
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Chapter 3

Equilibrium States and KMS condition

(see Robert’s lecture)
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Chapter 4

Ising model in 2d

Consider a square lattice Λ ⊂ R2 with n rows and n columns, i.e we have N = n2 lattice points.

(i) The spin variable is a function Λ 3 p 7→ sp ∈ {±1}.

(ii) A configuration of the system is given by

S =
{
sp : p ∈ Λ

}
.

(iii) The energy in the configuration state S has the form

EI(S) = −
∑
〈pq〉

εpqspsq −B
N∑
p=1

sp. (4.0.1)

Here

〈pq〉 = 〈qp〉 := direct neighbors in Λ,

B = exterior magnetic field,

εpq = interaction energy between p and q.

The partition function is given by

QI(B, T ) =
∑
S

e−βEI(S), with β =
1

kT
. (4.0.2)

The sum is taken over all 2N = |{S = (s1, · · · , sN) : sp = ±1}| configurations S. The Helmholtz
free energy has the form

AI(B, T ) = −kT logQI(B, T ) = −β−1 logQI(B, T ). (4.0.3)

Goal of this section: Calculate the thermodynamical limit for the two dimensional Ising
model (“Onsager solution” for the Ising model)

lim
N→∞

1

N
logQI(B, T ), N = n2. (4.0.4)

and observe a phase transition. 1

1This is the only non-trivial example of a model, in which the phase transition can be calculated mathemat-
ically exact.

37
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Simplifications:

(1) Assume that εpq = ε > 0 (ferromagnetism) is independent of the pair 〈pq〉.

(2) Pose boundary conditions: add one column and one row to the right and to the bottom
which has the same configuration as the first column and the first row, respectively.

Some notation: With α ∈ {1, · · · , n + 1} we write Rα = (sα,1, · · · , sα,n) for the spin coordi-
nates of the α-th row of Λ. It follows from (2) that

R1 = Rn+1 and sα,1 = sα,n+1, for α = 1, · · ·n.

• Interaction energies:

EI(Rα, Rα+1) = −ε
n∑
k=1

sα,ksα+1,k (between neighboring rows)

EI(Rα) = −ε
n∑
k=1

sα,ksα,k+1 −B
n∑
k=1

sα,k (within the α-th row).

If the configuration S of the system is determined by the rows R1, · · · , Rn, then we can write
the energy EI(S) in (4.0.1) as

EI(S) =
n∑

α=1

[
EI
(
Rα, Rα+1

)
+ EI(Rα)

]
.

The partition functions takes the form

QI(B, T ) =
∑
R1

· · ·
∑
Rn

exp

{
−β

n∑
α=1

[
EI
(
Rα, Rα+1

)
+ EI(Rα)

]}
.

Strategy: Express this complicated sum in form of a “matrix trace” using the periodic bound-
ary conditions with respect to the rows (i.e. R1 = Rn+1).

Consider the set

R =
{

(s1, · · · , sn) : sp = ±1
}

= “possible configurations of the row R”, |R| = 2n.

Fix an order of R and define a matrix P ∈M2n(R) having the entries〈
R|P |R′

〉
:= e−β[EI(R,R′)+E(R)], R,R′ ∈ R.

We can rewrite QI(B, T ) in the form:

QI(B, T ) =
∑
R1

· · ·
∑
Rn

〈
R1|P |R2

〉〈
R2|P |R3

〉
· · ·
〈
Rn|P |R1

〉
=
∑
R1

〈
R1|P n|R1

〉
= Trace P n.
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Assume that P can be diagonalized with eigenvalues {λ1(n), · · · , λ2n(n)} (counted with multi-
plicities). Then P n has the eigenvalues {λ1(n)n, · · · , λ2n(n)n}. Therefore

QI(B, T ) = Trace P n =
2n∑
i=1

λi(n)n. (4.0.5)

Observation: Assume that λi(n) for all i grow of the order en as n → ∞ and let λmax(n)
denote the largest eigenvalue for fixed n. Then

lim
n→∞

1

n
log λmax(n) = c ∈ R.

Then we obtain from (4.0.5) that

1

n
log λmax(n) =

1

n2
log λmax(n)n

≤ 1

n2
log

2n∑
i=1

λi(n)n =
1

N
logQI(B, T )

≤ 1

n2
log
(
2nλmax(n)n

)
=

1

n
log λmax(n) +

1

n
log 2.

This shows

lim
N→∞

1

N
logQI(B, T ) = lim

n→∞

1

n
log λmax(n).

Therefore, in order to calculate the limit (4.0.4) we will study the eigenvalues (in particular the
largest one) of the matrices P as a function of n.

4.1 A decomposition of the transfer matrix

Let R = (s1, · · · , sn) ∈ R and R′ = (s′1, · · · , s′n) ∈ R be two configuration of rows. The entries
of P are: 〈

R|P |R′
〉

= e−β[EI(R,R′)+EI(R)]

= exp

{
βε

n∑
k=1

sks
′
k + βε

n∑
k=1

sksk+1 + βB

n∑
k=1

sk

}

=
n∏
k=1

eβBsk ·
n∏
k=1

eβεsksk+1 ·
n∏
k=1

eβεsks
′
k . (4.1.1)

define the matrix Q1 = (〈R|Q1|R′〉)R,R′∈R ∈M2n(R) = 2n × 2n-real matrices by

〈
R|Q1|R′

〉
=

n∏
k=1

eβεsks
′
k
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Let Q2 and Q3 be the diagonal matrices

〈
R|Q2|R′

〉
=

{
0, if R 6= R′∏n

k=1 e
βεsksk+1 , if R = R′

(4.1.2)

〈
R|Q3|R′

〉
=

{
0, if R 6= R′∏n

k=1 e
βBsk , if R = R′.

(4.1.3)

Note that Q3 = Id in the case where B = 0 (we will assume this later on in order to further
simplify things).

Lemma 4.1.1. The matrix P decomposes into a product P = Q3Q2Q1.

Proof. This follows from (4.1.1), the well-known formula for the matrix multiplication〈
R|Q3Q2Q1|R′

〉
=
∑
R̃, ˜̃R

〈
R|Q3|R̃

〉〈
R̃|Q2| ˜̃R

〉〈 ˜̃R|Q1|R′
〉

together with the definition of the diagonal matrices Q2 and Q3.

Next: Find an expression of Q1 which we can handle more easily. We need some prepara-
tions:

Definition 4.1.2. Let A1, · · · , Ak ∈ Mm(C) with k ∈ N with entries 〈i|Al|j〉 for l = 1, · · · , k.
Define the tensor product A1 ⊗ A2 ⊗ · · · ⊗ Ak ∈Mmk(C) by 2

〈
(i1, · · · , ik)|A1 ⊗ · · · ⊗ Ak|(j1, · · · , jk)

〉
:=

k∏
l=1

〈
il|Al|jl

〉
,

where (i1, · · · , ik), (j1, · · · , jk) ∈ {1, · · · ,m}k.

Lemma 4.1.3. Tensor products of matrices Al, Bl ∈Mm(C) multiply as follows:(
A1 ⊗ · · · ⊗ Ak

)
·
(
B1 ⊗ · · · ⊗Bk

)
= (A1 ·B1)⊗ (A2 ·B2)⊗ · · · ⊗ (Ak ·Bk),

where ′′·′′ denotes the usual matrix multiplication.

Proof. Exercise 24, homework 06.

Let now m = 2 and consider in particular the matrix

A :=

(
eβε e−βε

e−βε eβε

)
∈M2(C).

Lemma 4.1.4. Q1 can be expressed as n-fold tensor product of A, i.e. Q1 = A⊗ · · · ⊗ A.

2We can put the tuples (i1, · · · ik) in lexicographical order
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Proof. With R = (s1, · · · , sn), R′ = (s′1, · · · , s′n) ∈ R we have from Lemma 4.1.3

〈
R|A⊗ · · · ⊗ A︸ ︷︷ ︸

n times

|R′
〉

=
n∏
k=1

〈
sk|A|s′k

〉
=

n∏
k=1

eβεsks
′
k =

〈
R|Q1|R′

〉
.

The assertion follows from the definition of Q1.

Recall that the Pauli matrices X, Y, Z are defined by

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
.

Let I ∈M2(C) denote the identity matrix.

Lemma 4.1.5. With θ ∈ R we have eθX = cosh(θ)I + X sinh(θ). Moreover, A and X are
related via √

2 sinh(2εβ) eθX = A, where tanh θ = e−2βε.

Proof. Straightforward calculation, (see Exercise 24, (iii) of the homework assignment 6).

For α = 1, · · · , n we now put:

Xα = I ⊗ · · · ⊗X ⊗ · · · ⊗ I ∈M2n(C),

Yα = I ⊗ · · · ⊗ Y ⊗ · · · ⊗ I ∈M2n(C),

Zα = I ⊗ · · · ⊗ Z ⊗ · · · ⊗ I ∈M2n(C),

(each tensor product has n factors and X, Y, Z are located at the α-th position).

Lemma 4.1.6. With θ > 0 such that tanh θ = e−2βε it holds

Q1 = A⊗ · · · ⊗ A =
[
2 sinh(2εβ)

]n
2
eθ(X1+X2+···+Xn). (4.1.4)

Proof. From Lemma 4.1.4 and Lemma 4.1.5 it follows that

Q1 = A⊗ · · · ⊗ A =
[
2 sinh(2εβ)

]n
2
eθX ⊗ · · · ⊗ eθX .

It remains to show that eθX ⊗ · · · ⊗ eθX = eθ(X1+X2+···+Xn). It is clear that eθXα = I ⊗ · · · ⊗
eθX ⊗ · · ·⊗ where the eθX is at the α’s position. Hence it follows from Lemma 4.1.3 that

eθX ⊗ · · · ⊗ eθX = eθX1eθX2 · · · eθXn .

Since the matrices Xα and Xα′ commute for α 6= α′ we see that the right hand side of the last
equality coincides with eθ(X1+X2+···+Xn).

Instead of Q1 we further examine the matrix that appears on the right hand side of (4.1.4)
and we set

Q̃1 := eθ(X1+···+Xn) ∈M2n(C). (4.1.5)

The diagonal matrices Q2 and Q3 in (4.1.2) and (4.1.3) can be expressed in terms of Zα as well.
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Lemma 4.1.7. Let Zn+1 := Z1, then

(a) : Q2 =
n∏

α=1

eβεZαZα+1 ,

(b) : Q3 =
n∏

α=1

eβBZα .

Proof. (a): Since Z2 = 1 we find for fixed α ∈ {1, · · · , n} that

eβεZαZα+1 = cosh(βε)I + sinh(βε)ZαZα+1.

Therefore eβεZαZα+1 is diagonal with〈
(s1, · · · , sn)|eβεZαZα+1|(s′1, · · · , s′n)

〉
=

=δs1,s′1 · · · δsn,s′n

{
cosh(βε) + sinh(βε) = eβε, if sgn(sα) = sgn(sα+1)

cosh(βε)− sinh(βε) = e−βε, if sgn(sα) 6= sgn(sα+1)

=δs1,s′1 · · · δsn,s′ne
βεsαsα+1 .

Now, (a) follows from the definition (4.1.2).

(b): Follows by a similar argument from eβBZα = cosh(βB)I + sinh(βB)Zα and (4.1.3).

Summarizing these calculation we have

Proposition 4.1.8. Let θ > 0 with tanh θ = e−2βε. Then the matrix P ∈M2n(R) decomposes
in the form

P = Q3Q2Q1 =
[
2 sinh(2εβ)

]n
2

n∏
α=1

eβBZα
n∏

α=1

eβεZαZα+1eθ(X1+···+Xn).

4.2 On spin representations of rotations

Consider the following 2n matrices in M2n(C):

Γ2α = X1X2 · · ·Xα−1Yα and Γ2α−1 = X1X2 · · ·Xα−1Zα. (4.2.1)

where α = 1, · · · , n. From Lemma 4.1.3 check that Xα, Yα, Zα fulfill the relations

I. α 6= β: then
[
Xα, Xβ

]
=
[
Yα, Yβ

]
=
[
Zα, Zβ

]
= 0 and [Xα, Yβ] = [Xα, Zβ] = [Yα, Zβ] = 0.

II. For fixed α ∈ {1, · · · , n} the matrices Zα, Yα, Zα are involutive and anti-commute, i.e. it
holds Z2

α = Y 2
α = Z2

α = I and{
Xα, Yα

}
= XαYα + YαXα =

{
Yα, Zα

}
=
{
Xα, Zα

}
= 0

Proposition 4.2.1. The matrices Γν ∈M2n(C) with ν = 1, · · · , 2n fullfil

ΓµΓν + ΓνΓµ = 2δµ,νI, µ, ν = 1, · · · , 2n. (4.2.2)
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Proof. We only check one case. Let µ < ν, then

Γ2νΓ2µ = X1 · · ·Xν−1YνX1 · · ·Xµ−1Yµ = XµXµ+1 · · ·Xν−1YνYµ

Γ2µΓ2ν = X1 · · ·Xµ−1YµX1 · · ·Xν−1Yν = YνYµXµ · · ·Xν−1 = −Γ2νΓ2µ.

In the case where ν = µ the right hand sides of both of the above equations give the identity
since Y 2

ν = 1.

Consider any system {Γ̃ν : ν = 1, · · · , 2n} ⊂ M2n(C) of matrices that fullfil

Γ̃νΓ̃µ + Γ̃µΓ̃ν = 2δν,µI, ν, µ = 1, · · · , 2n. (4.2.3)

In the following we write

• O(m) := group of orthogonal elements in Mm(R), i.e ω ∈ O(m) :⇐⇒ ωωt = I.

• GL(C,m) := group of invertible matrices in Mm(C).

Lemma 4.2.2. Let S ∈ GL(C, 2n), then it holds

(i) The system {ΓSν := S Γ̃νS
−1 : ν = 1, · · · , 2n} fulfills the anti-commutator relations

(4.2.3).

(ii) There is T ∈ GL(C, 2n) such that TΓνT
−1 = Γ̃ν for ν = 1, · · · , 2n.

(iii) Let ω = (ωµν) ∈ O(2n) and define

Γ′µ :=
2n∑
`=1

ωµ`Γ̃`, (µ = 1, · · · , 2n).

Then the system {Γ′µ : µ = 1, · · · , 2n} fulfills the anti-commutator relations (4.2.3).

Proof. (Homework 7) (i) is an easy calculations and we omit the proof of (ii). The statement
(iii) is obtained as follows:

Γ′µΓ′ν + Γ′νΓ
′
µ =

2n∑
i,`=1

ωµ`ωνi

{
Γ̃`Γ̃i + Γ̃iΓ̃`

}
= 2

2n∑
i,`=1

ωµ`ωνiδi,`I

= 2
2n∑
`=1

ωµ`ων`I = 2δµ,νI,

where in the last equality we have used the orthogonality of ω = (ωµν) ∈ O(2n).

Let ω = (ωµν) ∈ O(2n) and Γα be the matrices defined in (4.2.1). By combining Lemma 4.2.2
(ii) and (iii) we conclude that there is S(ω) ∈ GL(C, 2n) with

2n∑
`=1

ωµ`Γ` = S(ω)ΓµS(ω)−1. (4.2.4)
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Definition 4.2.3. If ω = (ωµ,ν) ∈ O(2n) and S(ω) ∈ O(2n) are related via (4.2.4), then we
call S(ω) a spin representation of the “rotation” ω. In this case we write ω ↔ S(ω).

Remark 4.2.4. Let ω1, ω2 ∈ O(2n) with spin representations S(ω1) and S(ω2). Then

S(ω1ω2) = S(ω1)S(ω2)

is a spin representation of ω1ω2. In particular, if ω1 and ω2 are commuting rotations, then the
spin representations S(ω1) and S(ω2) commute, as well.

Now we specialize the previous observation to rotations in the α-β-plane

ω(αβ|θ) ∈ O(2n), α 6= β ∈ {1, · · · , 2n}.

with angular θ ∈ [0, 2π) where ω(αβ|θ) acts on the standard basis [ei := (δi,`)
n
`=1 : i = 1, · · · , 2n]

of R2n as 
ω(αβ|θ)ei = ei, if i /∈ {α, β}
ω(αβ|θ)eα = eα cos θ + eβ sin θ

ω(αβ|θ)eβ = −eα sin θ + eβ cos θ.

We can also admit “complex angles” θ in the definition of ω(µν|θ). Let θ1, θ2 ∈ C, then

(i) ω(µν|θ1)ω(µν|θ2) = ω(µν|θ1 + θ2). In particular: ω(µν|θ)−1 = ω(µν| − θ),

(ii) ω(µν|θ1) = ω(νµ| − θ1).

We calculate a spin representation of ω(αβ|θ):

Lemma 4.2.5. With α 6= β ∈ {1, · · · , 2n} it holds

ω(αβ|θ)←→ e−
θ
2

ΓαΓβ .

Proof. (Homework 7) Since α 6= β we have from the anti-commutator relation(
ΓαΓβ

)2
= ΓαΓβΓαΓβ = −Γ2

αΓ2
β = −I

and therefore

e−
θ
2

ΓαΓβ = cos
θ

2
− ΓαΓβ sin

θ

2
. (4.2.5)

Clearly, e−
θ
2

ΓαΓβ has the inverse e
θ
2

ΓαΓβ . If λ /∈ {α, β} then [Γλ, e
θ
2

ΓαΓβ ] = 0 and therefore

e−
θ
2

ΓαΓβΓλe
θ
2

ΓαΓβ = Γλ.

Moreover, assume that λ = α, then it follows from (4.2.5) that

e−
θ
2

ΓαΓβΓαe
θ
2

ΓαΓβ =

(
cos

θ

2
− ΓαΓβ sin

θ

2

)
Γα

(
cos

θ

2
+ ΓαΓβ sin

θ

2

)
=

(
cos

θ

2
− ΓαΓβ sin

θ

2

)(
Γα cos

θ

2
+ Γβ sin

θ

2

)
= Γα

(
cos2 θ

2
− sin2 θ

2

)
+ 2Γβ cos

θ

2
sin

θ

2

= Γα cos θ + Γβ sin θ.
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Here we have used Γβ = −ΓαΓβΓα. If λ = β, then the relation

e−
θ
2

ΓαΓβΓβe
θ
2

ΓαΓβ = −Γα sin θ + Γβ cos θ

is obtained by a similar calculation.

The importance of the previous lemma lies in the fact the eigenvalues of ω(αβ|θ) and its

spin representation e−
θ
2

ΓαΓβ are related. Clearly the set of eigenvalues of ω(αβ|θ) are given by
{1, e−iθ, eiθ} where the eigenvalue 1 has the multiplicity 2n− 2.

Lemma 4.2.6. The spin representation e−
θ
2

ΓαΓβ of ω(αβ|θ) has the eigenvalues {ei θ2 , e−i θ2}.
Each eigenvalue has the multiplicity 2n−1.

Proof. If we replace Γ` in the definition (4.2.4) of S(ω) by another family Γ̃` = L−1Γ`L of matri-
ces that fulfill the anti-commutator relation (cf. Lemma 4.2.2, (ii)), then a spin representation

S(ω) transforms to a spin representation S̃(ω) = L−1S(ω)L with respect to Γ̃`. In particular,

the eigenvalues of S(ω) and S̃(ω) are the same.

We pass to a new system Γ̃` of matrices obeying the anti-commutator relations by exchanging
the role of X, Y and Z in the definition (4.2.1) of Γ`.

Y −→ X −→ Z −→ Y

Without restriction we choose Γ̃α = Z1X2 and Γ̃β = Z1Y2. Then it follows

Γ̃αΓ̃β = Z1X2Z1Y2 = X2Y2 = iZ2 = I ⊗
(
i 0
0 −i

)
⊗ I ⊗ · · · ⊗ I.

Therefore it holds

e−
θ
2

Γ̃αΓ̃β = cos
θ

2
− Γ̃αΓ̃β sin

θ

2
(4.2.6)

= I ⊗

(
e−i

θ
2 0

0 ei
θ
2

)
⊗ I ⊗ · · · ⊗ I.

It follows that e−
θ
2

Γ̃αΓ̃β has the matrix elements

〈
(s1, · · · , sn)|e−

θ
2

Γ̃αΓ̃β |(s′1, · · · , s′n)
〉

= e−i
θ
2
s2

n∏
k=1

δsk,s′k .

This means that e−
θ
2

Γ̃αΓ̃β is a diagonal matrix with eigenvalues e−i
θ
2 (if s2 = 1) and eigenvalues

ei
θ
2 (if s2 = −1), respectively, and each of multiplicity 2n−1.

Assume that a, b, c, d ∈ {1, · · · , 2n} are pairwise distinct. Then the matrices ΓaΓb and ΓcΓd
commute Hence the matrices

e
θ1
2

ΓaΓb and e
θ1
2

ΓcΓd , θ1, θ2 ∈ C

commute and can be diagonalized simultaneously. It follows from Lemma 4.2.6 that:
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Corollary 4.2.7. Let π be a permutation of {1, · · · , 2n} and fix θ1, · · · , θn ∈ C, then the 2n

eigenvalues of
n∏
j=1

e−
θj
2

Γπ2j−1Γπ2j = exp

{
−θj

2

n∑
j=1

Γπ2j−1
Γπ2j

}
∈M2n(C) (4.2.7)

are given by e
i
2

(±θ1±θ2±···±θn) where the sings + and − are chosen independently. Note that
(4.2.7) is the spin representation of a product of commuting rotations.

Remark 4.2.8. The set of eigenvalues must be invariant under all possible reflections θj → −θj
(which can be seen as a change of the set {Γα}α to another one with the same anti-commutation

relation). Therefore, all possible combinations of signs must appear in the set e
i
2

(±θ1±θ2±···±θn)

of eigenvalues.

4.3 The Onsager solution for B = 0

We calculate the Onsager solution for the Ising model when B = 0, (i.e. no exterior magnetic
field). Recall that

QI(B, T ) = Trace P n

and according to Proposition 4.1.8 we in the case where B = 0 that Q3 = I and therefore

P = Q2Q1 =
[
2 sinh(2εβ)

]n
2

n∏
α=1

eβεZαZα+1

︸ ︷︷ ︸
=Q̃2

=Q1︷ ︸︸ ︷
eθ(X1+···+Xn) ∈ R(2n),

with Zn+1 := Z1 and θ > 0 such that tanh θ = e−2βε. We have argued that

lim
N→∞

1

N
logQI(B, T ) = lim

n→∞

1

n
log λmax(n), (N = n2), (4.3.1)

where λmax(n) denotes the largest eigenvalue of P . Let V := Q̃2Q1 and assume that V has only
positive eigenvalues. Let Λ = Λ(n) be the largest eigenvalue of V . Then we have

λmax(n) =
[
2 sinh(2εβ)

]n
2
Λ(n)

and it follows from (4.3.1) that

lim
N→∞

1

N
logQI(0, T ) =

1

2
log
[
2 sinh(2εβ)

]
+ lim

n→∞

1

n
log Λ(n). (4.3.2)

Next aim: Justify the above assumptions and to calculate the limits on both sides of (4.3.2).

First, we rewrite V and Qj for j = 1, 2: for α = 1, · · · , n one has

Γ2αΓ2α−1 = X1X2 · · ·Xα−1YαX1X2 · · ·Xα−1Zα = YαZα = iXα.

Therefore

Q1 = eθ(X1+···+Xn) =
n∏

α=1

eθXα =
n∏

α=1

e−iθΓ2αΓ2α−1 (4.3.3)
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and similarly

Γ2α+1Γ2α = X1 · · ·XαZα+1X1 · · ·Xα−1Yα = XαYαZα+1 = iZαZα+1

Γ1Γ2n = Z1X1 · · ·Xn−1Yn = Z1 YnXn︸ ︷︷ ︸
=−iZn

X1 · · ·Xn−1Xn = −iZ1Zn(X1 · · ·Xn).

If we define
U := X1X2 · · ·Xn ∈M2n(C),

with U2 = I then we have iΓ1Γ2nU = ZnZ1 and find the following representation of Q2 from
these relations 3

Q̃2 = eβεZnZ1

[
n−1∏
α=1

eβεZαZα+1

]
= eiβεΓ1Γ2nU

n−1∏
α=1

e−iβεΓ2α+1Γ2α . (4.3.4)

Lemma 4.3.1. The matrix V = Q̃2Q1 can be expressed in the form

V = eiβεΓ1Γ2nU

[
n−1∏
α=1

e−iβεΓ2α+1Γ2α

][
n∏

α=1

e−iθΓ2αΓ2α−1

]
, (4.3.5)

where Γα were defined in (4.2.1). Here θ > 0 is the solution of the equation tanh θ = e−2εβ.

We want to get rid of the matrix U which appears in the exponent of the first factor of V
and just work with products of spin representation. In the next step we further decompose V .
First we collect some properties of the matrix U :

Lemma 4.3.2. The matrix U = X1 · · ·Xn ∈M2n(C) satisfies:

(i) U = X ⊗X ⊗ · · · ⊗X = inΓ1Γ2 · · ·Γ2n,

(ii) U has the eigenvalues ±1 each of multiplicity 2n−1,

(iii) U2 = I, (I − U)U = −(I − U) and (I + U)U = I + U ,

(iv) If a 6= b ∈ {1, · · · 2n}, then ΓaΓb commutes with U .

(v) Let ω be an orthogonal transformation with spin representation S(ω), then we have

S(ω)US(ω)−1 = det(ω) U.

Proof. The first equation in (i) follows from the definition of Xα and Lemma 4.1.3, the second
equation is a consequence of

U = X1 · · ·Xn = (iZ1Y1)(iZ2Y2) · · · (iZnYn) = inΓ1 · · ·Γ2n. (4.3.6)

Note that by (i) the matrix Z ⊗ · · · ⊗ Z is a diagonal form of U and Z ∈ M2(C) has the
eigenvalues ±1. The equations in (iii) immediately follow from the definition of U and (iv) is
obtained as follows from (i):

ΓaΓbU = inΓaΓbΓ1 · · ·Γ2n

= in(−1)2n−1ΓaΓ1 · · ·Γ2nΓb

= in(−1)4n−2Γ1 · · ·Γ2nΓaΓb = UΓaΓb.

3Recall that all matrices eβεZαZα+1 are diagonal and hence commute
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Consider the factor eiβεΓ1Γ2nU which appears in the representation (4.3.5) of V . Lemma
4.3.2, (iv) implies (iΓ1Γ2nU)2 = −U2(Γ1Γ2n)2 = I which means that

eiβεΓ1Γ2nU = cosh(βε) + iUΓ1Γ2n sinh(βε).

From the relations in Lemma 4.3.2, (iii) we see that

eiβεΓ1Γ2nU =

[
1

2
(I + U) +

1

2
(I − U)

] [
cosh(βε) + iΓ1Γ2n sinh(βε)

]
=

1

2
(I + U)

[
cosh(βε) + iΓ1Γ2n sinh(βε)

]
+

+
1

2
(I − U)

[
cosh(βε)− iΓ1Γ2n sinh(βε)

]
=

1

2
(I + U)eiεβΓ1Γ2n +

1

2
(I − U)e−iεβΓ1Γ2n .

If we plug this result into the representation of V in Lemma 4.3.1 then we obtain

V =
1

2
(I + U)V + +

1

2
(I − U)V −, (4.3.7)

where V ± ∈M2n(C) are defined by

V ± := e±iβεΓ1Γ2n

[
n−1∏
α=1

e−iβεΓ2α+1Γ2α

][
n∏

α=1

e−iθΓ2αΓ2α−1

]
(4.3.8)

and tanh θ = e−2εβ. Note that the matrices V ± have the form of a product of spin representation
from the last section and therefore they are easier to handle than V .

Lemma 4.3.3. The matrices U, V + and V − pairwise commute. In particular, they can be
diagonalized simultaneously.

Proof. First we show that U commutes with V + and V −. Let a 6= b ∈ {1, · · · , 2n} then we see
from Lemma 4.3.2, (iv) that ΓaΓb and U commute. Now [U, V +] = [U, V −] = 0 follows from
the form of V ±. Note that by a similar reason U also commutes with V . Since (I + U)/2 and
(I − U)/2 are projection onto complementary spaces we find:

V +V − =
1

4
(I + U)V (I − U)V =

1

4
V (I + U)(I − U)V = 0,

V −V + =
1

4
(I − U)V (I + U)V =

1

4
V (I − U)(I + U)V = 0.

In particular, it follows that V + and V − commute.

Consider the orthogonal matrix g ∈M2n(C) defined by

g = 2−
n
2

(
1 1
1 −1

)
⊗ · · · ⊗

(
1 1
1 −1

)
= g−1.
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Then gUg is diagonal, more precisely:

gUg−1 = g
(
X ⊗X ⊗ · · · ⊗X

)
g−1 = Z ⊗ Z ⊗ · · · ⊗ Z = Z1Z2 · · ·Zn (4.3.9)

=

(
1 0
0 −1

)
⊗ · · · ⊗

(
1 0
0 −1

)
.

Now we can choose an orthogonal matrix o ∈ M2n(R) that permutes all eigenvalues “+1” of
gUg−1 to the upper left corner and all eigenvalues “−1” to the lower right corner. If we define

R := og and Ũ := RUR−1,

then R ∈M2n(C) is orthogonal and

(og)U(og)−1 = RUR−1 = Ũ =

(
I2n−1 0

0 −I2n−1

)
. (4.3.10)

We put Ṽ ± = RV ±R−1 and conjugate the decomposition (4.3.7) by R:

RV R−1 =: Ṽ =
1

2
(I + Ũ)Ṽ + +

1

2
(I − Ũ)Ṽ −.

It follows from Lemma 4.3.3 that Ũ , Ṽ + and Ṽ − are pairwise commuting:

Ṽ +Ũ =

(
Ṽ +

11 −Ṽ +
12

Ṽ +
21 −Ṽ +

22

)
= Ũ Ṽ + =

(
Ṽ +

11 Ṽ +
12

−Ṽ +
21 −Ṽ +

22

)
.

We find that Ṽ +
12 = Ṽ +

21 = 0 and (by the analogous calculation for Ṽ −) we have

Ṽ ± =

(
Ṽ ±11 0

0 Ṽ ±22

)
, with Ṽ ±11 , Ṽ

±
22 ∈M2n−1(C).

Therefore we find that

1

2
(I + Ũ)Ṽ + =

(
I 0
0 0

)(
Ṽ +

11 0

0 Ṽ +
22

)
=

(
Ṽ +

11 0
0 0

)
, (4.3.11)

1

2
(I − Ũ)Ṽ − =

(
0 0
0 I

)(
Ṽ −11 0

0 Ṽ −22

)
=

(
0 0

0 Ṽ −22

)
, (4.3.12)

which shows that Ṽ has the following matrix representation:

Ṽ =
1

2
(I + Ũ)Ṽ + +

1

2
(I − Ũ)Ṽ − =

(
Ṽ +

11 0

0 Ṽ −22

)
.

We are aiming to find the eigenvalues of V . We have{
eigenvalues of V

}
=
{

eigenvalues of Ṽ
}

=
{

eigenvalues of Ṽ +
11

}
∪
{

eigenvalues of Ṽ −22

}
.

Moreover, we know{
eigenvalues of Ṽ +

11

}
⊂
{

eigenvalues of Ṽ +
}

=
{

eigenvalues of V +
}{

eigenvalues of Ṽ −22

}
⊂
{

eigenvalues of Ṽ −
}

=
{

eigenvalues of V −
}
.

In other words:
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Lemma 4.3.4. The union of the eigenvalues of V + and V − contains all eigenvalues of V .

In the next step we calculate the eigenvalues of V + and V −. Consider the matrices

Ω± := ω(1, 2n| ± 2iβε)

[
n−1∏
α=1

ω
(
2α + 1, 2α| − 2iβε

)] [ n∏
α=1

ω
(
2α, 2α− 1| − 2iθ

)]
∈M2n(C).

(4.3.13)
Then V ± = S(Ω±) is a “spin representation” of Ω±. 4 Define

∆ :=
n∏

α=1

ω(2α, 2α− 1| − iθ) ∈M2n(C). (4.3.14)

Note that ω(µν|θ1)ω(µν|θ2) = ω(µν|θ1 + θ2) and ω(µν|θ)−1 = ω(µ, ν| − θ). Therefore:[
n∏

α=1

ω
(
2α, 2α− 1| − 2iθ

)]
∆−1 = ∆. (4.3.15)

The eigenvalues of Ω± coincide with the eigenvalues of

ω± : = ∆Ω±∆−1

= ∆ω
(
1, 2n| ± 2iβε

) [n−1∏
α=1

ω
(
2α, 2α + 1|2iβε

)]
︸ ︷︷ ︸

=:χ±

∆,

where in the second equation we have used ω(µν|θ) = ω(νµ| − θ). We express ∆ and χ± in
matrix form. Consider J,K ∈M2(C) defined by:

J :=

(
cosh θ i sinh θ
−i sinh θ cosh θ

)
, and K :=

(
cosh(2βε) i sinh(2βε)
−i sinh(2βε) cosh(2βε)

)
.

If n = 1 we have ω(2, 1|iθ) = J and for general n ∈ N the above definition show:

∆ =


J 0 . . .
0 J
...

. . .
... J

 ∈M2n(C), where 0 ∈M2(C),

χ± =


cosh(2βε) 0 . . . 0 ±i sinh(2βε)

0 0
... K

...
0

∓i sinh(2βε) 0 . . . 0 cosh(2βε)

 ∈M2n(C), where

K : =


K 0 . . .
0 K
...

. . .
... K

 ∈M2n−2(C)

4Recall that ω(µν|θ) is the rotation in the µ− ν-plane around the angle θ.



4.3. THE ONSAGER SOLUTION FOR B = 0 51

Lemma 4.3.5. The matrix ω± = ∆χ±∆ has the form

ω± =



A B 0 0 . . . 0 ∓B∗
B∗ A B 0 0 0

0 B∗ A B
...

...
...

0 0 A B
∓B 0 B∗ A


∈M2n(C), (4.3.16)

where the matrices A,B ∈M2(C) are given by

A : = cosh(2βε)

 cosh(2θ) −i sinh(2θ)

i sinh(2θ) cosh(2θ)



B : = sinh(2βε)

 −1
2

sinh(2θ) −i sinh2 θ

i cosh2 θ −1
2

sinh(2θ)

 .

Moreover, write B∗ = B
T

for the Hermitian adjoint matrix to B.

Proof. (Homework 8) From the above matrix representation one easily sees that χ± has the
form

χ± =



Ã B̃ 0 0 . . . 0 ∓B̃∗
B̃∗ Ã B̃ 0 0 0

0 B̃∗ Ã B̃
...

...
...

0 0 Ã B̃

∓B̃ 0 B̃∗ Ã


∈M2n(C),

where Ã, B̃ ∈M2(C) are defined by

Ã :=

 cosh(2βε) 0

0 cosh(2βε)

 , and B̃ :=

 0 0

i sinh(2βε) 0


Now the assertion follows from JÃJ = A and JB̃J = B together with J∗ = J .

We use the matrix representation of ω± to determine the eigenvalues and make the following
Ansatz for an eigenvector ψ of ω±:

ψ =


zu
z2u

...
znu

 ∈ C2n, where u =

(
u1

u2

)
∈ C2, z ∈ C.
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It follows from Lemma 4.3.5 that the equation ω±ψ = λψ is equivalent to the system of
equations:

(E) :


E1 :

(
zA+ z2B ∓ znB∗

)
u = zλu

Ej :
(
zjA+ zj+1B + zj−1B∗

)
u = zjλu, (j = 2, · · · , n− 1)

En :
(
znA∓ zB + zn−1B∗

)
u = znλu.

Note that the equations Ej for j = 2, · · · , n− 1 and z 6= 0 all are equivalent to

(A+ zB + z−1B∗)u = λu.

Hence the system (E) of equations is equivalent to the three equations:

(Ẽ) :


(
A+ zB ∓ zn−1B∗

)
u = λu(

A+ zB + z−1B∗
)
u = λu(

A∓ z1−nB + z−1B∗
)
u = λu.

We look for solutions among all z ∈ C with zn = ±1 where we choose the −-sign for ω+ and
the +-sign for ω−. Then (Ẽ) reduces to a single equation, namely(

A+ zB + z−1B∗
)
u = λu.

Note that the matrix A + zB + z−1B∗ is self-adjoint if |z| = 1 and therefore has only real
eigenvalues.

The case of ω+: The n solutions to the equation zn = −1 are given by

S− :=
{
zk := e

iπk
n : k = 1, 3, · · · , 2n− 1

}
.

A set {λ2l−1,1, λ2l−1,2 : l = 1, · · · , n} of 2n eigenvalues for ω+ can be determined by the solutions
of the n equations (

A+ zkB +
1

zk
B∗
)
u = λk,ju, (4.3.17)

where k = 1, 3, · · · , 2n− 1 and j = 1, 2.

Lemma 4.3.6. With the previous notation we have for k = 1, 3, · · · , 2n− 1:

(i) det
(
A+ zkB + z−1

k B∗
)

= 1,

(ii) C(β, ε) ≥ Trace
(
A+ zkB + z−1

k B∗
)
≥ 0, where C(β, ε) is independent of k and n.

In particular, the eigenvalues of λk,1 and λk,2 of A+ zkB + z−1
k B∗ are positive and λk,1 = λ−1

k,2.

Proof. (Homework 08)
(i): From the explicit form of A and B in Lemma 4.3.5 one checks that for all k:

det
(
A+ zkB + z−1

k B∗
)

=

[
cosh(2βε) cosh(2θ)− zk + z−1

k

2
sinh(2βε) sinh(2θ)

]2

−
(

cosh(2βε) sinh(2θ)− zk sinh(2βε) sinh2 θ − z−1
k sinh(2βε) cosh2 θ

)
×

×
(

cosh(2βε) sinh(2θ)− zk sinh(2βε) cosh2 θ − z−1
k sinh(2βε) sinh2(θ)

)
= 1.
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Moreover,

Trace
(
A+ zkB + z−1

k B∗
)

= 2 cosh(2βε) cosh(2θ)− 2 cos

(
πk

n

)
sinh(2βε) sinh(2θ)

≥ 2 cosh(2βε− 2θ) ≥ 0.

This shows the second inequality in (ii). The first one follows from the uniform estimate
| cos(πk

n
)| ≤ 1.

Using the last lemma we define for k = 1, 3, · · · , 2n− 1:

λk,1 := eγk and λk,2 := e−γk , (γk ≥ 0).

One obtains

cosh(γk) = =
1

2

{
eγk + e−γk

}
(4.3.18)

=
1

2
Trace

(
A+ zkB + z−1

k B∗
)

= cosh(2βε) cosh(2θ)− cos

(
πk

n

)
sinh(2βε) sinh(2θ).

Lemma 4.3.7. The eigenvalues Eω+ of ω+ are given by:

Eω+ =
{
e±γk : k = 1, 3, · · · , 2n− 1 and γk > 0 is solution of (4.3.18)

}
. (4.3.19)

In particular, ω+ can be expressed as a product of n commuting rotations.

The case ω−: The n solutions to the equation zn = 1 are given by

S+ :=
{
zk := e

iπk
n : k = 0, 2, · · · , 2n− 2

}
.

Now we determine eigenvalues {λ2`,1, λ2`,2 : ` = 0, · · · , n − 1} of ω− as the solutions of the n
equations (

A+ zkB + z−1
k B∗

)
u = λk,ju

where k = 0, 2, · · · , 2n − 2 and j = 1, 2. In the same way as before we find λk,1 = eγk and
λk,2 = e−γk with γk > 0 which is a solution of (4.3.18).

Lemma 4.3.8. The eigenvalues Eω− of ω− are given by:

Eω− =
{
e±γk : k = 0, 2, · · · , 2n− 2 and γk > 0 is solution of (4.3.18)

}
. (4.3.20)

In particular, ω− can be expressed as a product of n commuting rotations.

Now we observe some relations between these eigenvalues:

Lemma 4.3.9. For k = 0, · · · , 2n let γk ≥ 0 be the solution of (4.3.18), then it holds

(i) γk = γ2n−k,
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(ii) 0 < γ0 < γ1 < · · · < γn.

Proof. Property (i) follows from cos(πk/n) = cos(π(2n− k)/n). In order to see (ii) we take the
derivative on both sides of (4.3.18) with respect to k:

∂γk
∂k

= sin

(
πk

n

)
π sinh(2βε) sinh(2θ)

n sinh γk
.

Since we assume that γk > 0 it follows that the right hand side is positive if 0 ≤ k ≤ n.

Since V ± = S(Ω±) and the matrix Ω± has the same eigenvalues as ω± = ∆Ω±∆−1 it follows
from Corollary 4.2.7 together with (4.3.19) and (4.3.20)

Proposition 4.3.10. The eigenvalues of V ± are given by

eigenvalues of V + : =
{
e

1
2

(±γ1±γ3±···±γ2n−1) : γk solution of (4.3.18)
}
, (4.3.21)

eigenvalues of V − : =
{
e

1
2

(±γ0±γ2±···±γ2n−2) : γk solution of (4.3.18)
}
. (4.3.22)

All eigenvalues grow at most of order en as n→∞. 5

Proof. The second statement follows from the trace estimate from above in Lemma 4.3.6, (ii)
since

|±γ1 ± γ3 ± · · · ± γ2n−1| ≤ γ1 + γ3 + · · ·+ γ2n−1

≤
n∑
l=1

log λ2l−1,1

≤
n∑
l=1

λ2l−1,1

≤
n∑
l=1

Trace
(
A+ zlB + z−1

l B∗
)
≤ n · C(ε, β).

The right hand side growth linearly in n ∈ N.

We return to the task of studying the eigenvalues of V . Recall that{
eigenvalues of V

}
⊂
{

eigenvalues of V +
}
∪
{

eigenvalues of V −
}
.

Moreover, with the notation in (4.3.11) and (4.3.12) we had

1

2
(I + Ũ)Ṽ + =

(
Ṽ +

11 0
0 0

)
, and

1

2
(I − Ũ)Ṽ − =

(
0 0

0 Ṽ −22

)
.

5This last statement was necessary to justify the previous relation

lim
N→∞

logQI(B, T ) = lim
n→∞

1

n
log λmax(n), N = n2.
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Let R = og ∈ M2n(C) be the orthogonal matrix defined in (4.3.10) and consider the following
system of anti-commuting matrices

Γ :=
{

Γ̃ν := RΓνR
−1 : ν = 1, · · · , 2n

}
.

Let ω ∈M2n(R) be orthogonal, then we write S̃(ω) for the spin representation of ω with respect
to the system Γ. If ω = ω(αβ|θ), then we have:

S̃(ω(αβ|θ)) = e−
θ
2

Γ̃αΓ̃β .

Note that for j = 1, · · · , n:

Γ̃2j−1Γ̃2j = ogΓ2j−1Γ2j(og)−1 = (og)ZjYj(og)−1 (4.3.23)

= iog

[
I ⊗ · · · ⊗

(
0 −1
−1 0

)
⊗ · · · ⊗ I

]
go−1 (4.3.24)

= −ioZjo−1. (4.3.25)

Lemma 4.3.11. There are orthogonal matrices T± ∈M2n(R) such that

T+Ω+T−1
+ = ω(1, 2|iγ1)ω(3, 4|iγ3) · · ·ω(2n− 1, 2n|iγ2n−1), (4.3.26)

T−Ω−T−1
− = ω(1, 2|iγ0)ω(3, 4|iγ2) · · ·ω(2n− 1, 2n|iγ2n−2). (4.3.27)

Proof. Follows from Lemma 4.3.7 and Lemma 4.3.8.

We now shown that spin representations S̃(T±) bring (I − Ũ)Ṽ ± into diagonal form. Since
V + and V − are treated in the same way, we only give the arguments in the case of V +. We
know from Lemma 4.3.2, (v) that

S̃(T+)Ũ S̃(T+)−1 = det(T+)Ũ = ±Ũ .

With Ṽ + = RV +R−1 = RS(Ω+)R−1 = S̃(Ω+) it follows that

S̃(T+)

{
1

2
(I + Ũ)Ṽ +

}
S̃(T+)−1 =

1

2
(I ± Ũ)S̃(T+)Ṽ +S̃(T+)−1 (4.3.28)

=
1

2
(I ± Ũ)S̃

(
T+Ω+T−1

+

)
= (∗),

Since by Lemma 4.3.11 conjugation by T+ transforms Ω+ to a product of commuting rotations
we obtain from Lemma 4.2.5 that

(∗) =
1

2
(I ± Ũ)

n∏
j=1

e−i
γ2j−1

2
Γ̃2j−1Γ̃2j =

1

2
o (I ± Z1Z2 · · ·Zn)

{
n∏
j=1

e−
1
2
γ2j−1Zj

}
o−1 = VD.

Here we have used (4.3.9) and (4.3.23). The matrices VD and o−1VDo
6 are diagonal and so we

have diagonalized
1

2
(I + Ũ)Ṽ + =

(
Ṽ +

11 0
0 0

)
.

6the matrix o−1VDo arises from VD by permuting the elements in the diagonal
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Clearly the eigenvalues of Ṽ +
11 coincide with the non-zero eigenvalues of

o−1VDo =
1

2
(I ± Z1Z2 · · ·Zn)

n∏
j=1

e−
1
2
γ2j−1Zj . (4.3.29)

Let (s1, · · · , sn) be an eigenvector of the right hand side of (4.3.29) and assume that the plus-
sign appears in front of the product Z1Z2 · · ·Zn. Then the corresponding eigenvalue of o−1VDo
is non-zero if the equation

Zj(s1, · · · , sn) = −1 (4.3.30)

only holds for an even number of j ∈ {1, · · · , n}. If the minus sign appears in front of
Z1Z2 · · ·Zn, then the eigenvalues is non-zero if (4.3.30) only holds for an odd number of j:

Corollary 4.3.12. The largest eigenvalue Λn(A) of A ∈ {Ṽ +
11 , Ṽ

−
22} fulfills

Λn(Ṽ +
11) = e

1
2

(±γ1+γ3+···+γ2n−1) and Λn(Ṽ −22) = e
1
2

(±γ0+γ2+···+γ2n−2).

Proof. We only treat A = Ṽ +
11 . Then the lemma directly follows from the last observation and

Lemma 4.3.9 which implies that γ1 = min{γ2j−1 j = 1, · · ·n}.

Since we have the asymptotic equalities

lim
n→∞

−γ1 + γ3 + γ5 + · · ·
2

= lim
n→∞

γ1 + γ3 + γ5 + · · ·
2

=: `+

lim
n→∞

−γ0 + γ2 + γ4 + · · ·
2

= lim
n→∞

γ0 + γ2 + γ4 + · · ·
2

=: `−,

and since `+ ≥ `− (again by Lemma 4.3.9) we finally obtain that

L := lim
n→∞

1

n
log Λ(n) = lim

n→∞

1

2n

(
γ1 + γ3 + · · ·+ γ2n−1

)
,

where Λ(n) denotes the largest eigenvalue of V = Q2Q1.

The limit limn→∞
1
n log Λ(n)

Recall that

lim
N→∞

1

N
logQI(0, T ) =

1

2
log
[
2 sinh(2εβ)

]
+ L.

Next step: We determine an integral representation of L.

We define a function γ : [0, 2π]→ R as the positive solution of the equation

cosh γ(x) = cosh(2βε) cosh(2θ)− cos(x) sinh(2βε) sinh(2θ). (4.3.31)

In particular it follows from the definition of γ` in (4.3.18) that

γ
(π
n

(2k − 1)
)

= γ2k−1.

Approximation of the integral of γ(x) by Riemann sums gives the relation∫ 2π

0

γ(x)dx = lim
n→∞

2π

n

n∑
k=1

γ2k−1.
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Hence we can express the above limit L in form of an integral:

L =
1

4π

∫ 2π

0

γ(x)dx =
1

2π

∫ π

0

γ(x)dx. (4.3.32)

In the last equality we have used γ(x) = γ(2π − x) for x ∈ [0, π].

Remove the parameter θ from the definition of γ(x):

Recall that θ > 0 was defined through the relation tanh θ = e−2βε which shows that

1

sinh(2βε)
=

2

e2βε − e−2βε
=

2e−2βε

1− e−4βε
(4.3.33)

=
2 tanh θ

1− tanh2 θ
= 2 sinh θ cosh θ = sinh(2θ),

where we use (1− tanh2 θ)−1 = cosh2 and from (4.3.33):

cosh(2θ) =

√
sinh2(2θ) + 1 =

√
1

sinh2(2βε)
+ 1 (4.3.34)

=
1

sinh(2βε)

√
1 + sinh2(2βε) =

cosh(2βε)

sinh(2βε)
= coth(2βε).

We insert the identities (4.3.33) and (4.3.34) into the equation (4.3.31):

cosh γ(x) = cosh(2βε) coth(2βε)− cosx. (4.3.35)

In the following calculation we need the identity 7

Lemma 4.3.13. Let z ∈ R, then:

|z| = 1

π

∫ π

0

log
(
2 cosh z − 2 cos t) dt. (4.3.36)

Combining (4.3.35) and (4.3.36) leads to an integral representation of γ(x):

γ(x) =
1

π

∫ π

0

log
(

2 cosh γ(x)− 2 cos t
)
dt

=
1

π

∫ π

0

log
(

2 cosh(2βε) coth(2βε)− 2 cosx− 2 cos t
)
dt.

From the last identity and (4.3.32) we obtain

L =
1

2π2

∫ π

0

∫ π

0

log
(

2 cosh(2βε) coth(2βε)− 2(cosx+ cos t)
)
dtdx.

7this identity follows immediately from an integral formula in [3], p. 942;∫ π

0

log(a± b cosx)dx = π log

(
a+
√
a2 − b2
2

)
, (a ≥ b).
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The above integration is taken over the square [0, π]× [0, π] however, we can as well integrate
over the dotted rectangle in the picture in Exercise 30, Homework assignment 08 without
changing the value of the integral. In fact, consider the two maps F1, F2 : R2 → R2 defined by

F1(x, t) := (t,−x)T and F2(x, t) := (2π − t, x)T .

Then Fj maps the triangles D and F to complementary parts of the triangle A (notation
with respect to the picture in Exercise 30) and both transformation leave the above integrand
unchanged because of

cos(x) + cos(t) = cos(t) + cos(−x) = cos(2π − t) + cos(x).

The square [0, π]× [0, π] is mapped to the dotted rectangle R by the linear transformation

A :=

(
1 −1

2

1 1
2

)
, with detA = 1.

We put D := cosh(2βε) coth(2βε), then it follows from the transformation rule of the integral
and the above observation that

L =
1

2π2

∫
R

log
[
2D − 2(cosx+ cos t)

]
dtdx

=
1

2π2

∫ π

0

∫ π

0

log

[
2D − 2 cos

(
x− t

2

)
− 2 cos

(
x+

t

2

)]
dtdx

=
1

2π2

∫ π

0

∫ π

0

log

[
2D − 4 cos(x) cos

(
t

2

)]
dtdx.

Next, we decompose the integrand as

log

[
2D − 4 cos(x) cos

(
t

2

)]
= log

[
2 cos

(
t

2

)]
+ log

[
D

cos
(
t
2

) − 2 cos(x)

]

and then use the identity (4.3.36) again:

1

π

∫ π

0

log

[
D

cos
(
t
2

) − 2 cos(x)

]
dx = cosh−1

(
D

2 cosh
(
t
2

)) .
Thus we obtain

L =
1

2π

∫ π

0

log

[
2 cos

(
t

2

)]
dt+

1

2π

∫ π

0

cosh−1

(
D

2 cosh
(
t
2

)) dt.

Applying the relation cosh−1 x = log(x+
√
x2 + 1) and using the abbreviation

κ :=
2

D
=

2 sinh(2βε)

cosh2(2βε)
= 4

e2βε − e−2βε

(e2βε + e−2βε)2
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we can therefore write

L =
1

2π

∫ π

0

log

[
D +

√
D2 + 4 cos2

(
t

2

)]
dt

=
1

π

∫ π
2

0

log
[
D(1 +

√
1− κ2 cos2 s)

]
ds

=
1

2π

∫ π

0

log
[
D(1 +

√
1− κ2 sin2 s)

]
ds

=
1

2
log
( 2 cosh2(2βε)

sinh(2βε)︸ ︷︷ ︸
=2D

)
+

1

2π

∫ π

0

log
1

2

(
1 +

√
1− κ2 sin2 s

)
ds.

Lemma 4.3.14. The limit L has the integral representation

L =
1

2
log
(2 cosh2(2βε)

sinh(2βε)

)
+

1

2π

∫ π

0

log
1

2

(
1 +

√
1− κ2 sin2 s

)
ds.

where

κ = 4
e2βε − e−2βε

(e2βε + e−2βε)2
.

Proof. Homework.

We summarize our results

Theorem 4.3.15. Let T > 0 and β = 1/(kT ), then we have the limit

lim
N→∞

1

N
logQI(0, T ) =

1

2
log [2 sinh(2εβ)] + L

= log
[
2 cosh(2βε)

]
+

1

2π

∫ π

0

log
1

2

(
1 +

√
1− κ2 sin2 s

)
ds,

where

κ = 4
e2βε − e−2βε

(e2βε + e−2βε)2
.

4.4 Thermodynamical functions and

physical interpretation

In order to write down the thermodynamical functions we use the notion of elliptic integrals.

Definition 4.4.1. The complete elliptic integral K1(κ) of the first kind and E1(κ) of the second
type are defined by:

K1(κ) =

∫ π
2

0

ds√
1− κ2 sin2 s

=
1

2

∫ π

0

ds

∆
, where ∆ :=

√
1− κ2 sin2 s

E1(κ) =

∫ π
2

0

√
1− κ2 sin2 s ds.
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Lemma 4.4.2. One has the following asymptotic behaviour if κ→ 1:

(i) limκ→1{K1(κ)− log 4√
1−κ2} = 0,

(ii) limκ→1E1(κ) = 1,

Proof. Homework 09.

Together they fullfil the differential equation

dK1

dκ
(κ) =

E1(κ)

κ(1− κ2)
− K1(κ)

κ
. (4.4.1)

From Theorem 4.3.15 and in the case where B = 0 we obtain the thermodynamical functions:

Helmholtz free energy per spin:

aI(0, T ) = − lim
N→∞

1

βN
logQI(0, T )

= −β−1 log
(
2 cosh(2βε)

)
− 1

2πβ

∫ π

0

log
1

2

(
1 +

√
1− κ2 sin2 s

)
ds.

Internal energy per spin: is obtained by

uI(0, T ) =
d

dβ

[
βaI(0, T )

]
(4.4.2)

= −2ε tanh(2βε) +
κ

2π

dκ

dβ

∫ π

0

sin2 s

(1 + ∆)∆
ds,

where ∆ :=
√

1− κ2 sin2 s. We can rewrite the integral on the right hand side. Consider the
relation

κ2 sin2 s

(1 + ∆)∆
= − 1− κ2 sin2 s

(1 +
√

1− κ2 sin2)
√

1− κ2 sin2 s
+

1

(1 +
√

1− κ2 sin2 s)
√

1− κ2 sin2 s

= − ∆

1 + ∆
− 1

1 + ∆
+

1

∆
= −1 +

1

∆
.

Therefore we have ∫ π

0

sin2 s

(1 + ∆)∆
ds = − π

κ2
+

1

κ2

∫ π

0

ds

∆
= − π

κ2
+

2

κ2
K1(κ).

Here we have used the notation of elliptic integrals. We also calculate the expression κ−1dκ/dβ:

1

κ

dκ

dβ
=

cosh2(2βε)

sinh(2βε)

d

dβ

(
sinh(2βε)

cosh2(2βε)

)
= 2ε coth(2βε

)
− 4ε tanh(2βε).

Plugging this relations into (4.4.2) gives

uI(0, T ) = −2ε tanh(2βε) +
1

2π

(
1

κ

dκ

dβ

)
[−π + 2K1(κ)]

= −2ε tanh(2βε) +
[
ε coth(2βε)− 2ε tanh(2βε)

[
−1 +

2

π
K1(κ)

]
= −ε coth(2βε) +

2ε

π
K1(κ)

[
coth(2βε)− 2 tanh(2βε)

]
= −ε coth(2βε)

[
1− 2

π
K1(κ) +

4

π
tanh2(2βε)K1(κ)

]
.
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If we define the function
κ′ = κ′(εβ) := 2 tanh2(2βε)− 1,

then we have

Lemma 4.4.3. The inner energy per spin is given by

uI(0, T ) = −ε coth(2βε)
[
1 + κ′

2

π
K1(κ)

]
. (4.4.3)

where

κ =
2 sinh(2βε)

cosh2(2βε)
and κ′ = κ′(εβ) := 2 tanh2(2βε)− 1.

The functions κ and κ′ are related by

κ2 + κ′
2

= 1. (4.4.4)

Moreover, uI(0, T ) considered as a function of κ does not extend analytically around κ = 1.

Proof. (4.4.4) follows by a direct calculation. We show that

F (κ) := κ′K1(κ) =
√

1− κ2K1(κ)

is not analytic in κ = 1. According to the DGL (4.4.1) we have

K ′1(κ)
√

1− κ2 =
E1(κ)

κ
√

1− κ2
−
√

1− κ2K1(κ)

κ
.

Therefore

F ′(κ) = − κ√
1− κ2

K1(κ) +K ′1(κ)
√

1− κ2

= − κ√
1− κ2

K1(κ) +
E1(κ)

κ
√

1− κ2
−
√

1− κ2K1(κ)

κ
.

Now it follows from the asymptotic behaviour of K1(κ) ∼ log(4/
√

1− κ2) and E1(κ) ∼ 1 as
κ→ 1 in Lemma 4.4.2 that |F ′(κ)| → ∞ as κ→ 1.

We call the temperature Tc corresponding to κ(βcε) = 1 where βc = 1/(kTc) the critical
temperature. This means that κ′(βcε) = 0, or equivalently

tanh(2βcε) = tanh
2ε

kTc
=

1√
2
, and

ε

kTc
= 0, 4406868 · · · . (4.4.5)

In particular, it holds

cosh2(2βcε) =
sinh2(2βcε)

tanh2(2βcε)
= 2

√
cosh2(2βcε)− 1

which gives

cosh(2βcε) =
√

2,

sinh(2βcε) = tanh(2βε) cosh(2βε) = 1.
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Heat capacity per spin: By using (4.4.3) and (4.4.1) one obtains

cI(0, T ) =
∂uI
∂T

(0, T )

=
2κ

π

(
βε coth2(2βε)

)2
[
2K1(κ)− 2E1(κ)− (1− κ′)

(π
2

+ κ′K1(κ)
) ]
.

The “heat capacity per spin” has a logarithmic singularity as |T − Tc| → 0:

cI(0, T ) ∼ C(ε) log

∣∣∣∣T − TcTc

∣∣∣∣ as T → Tc.

Magnetization per spin: In order to calculate mI(0, T ) we need an expression for the inner
energy aI(B, T ) for B 6= 0. Since we have assumed B = 0 in our calculations we cannot use
the above formulas and present an expression of the magnetization/spin without a proof (for
details see [9]):

mI(B, T ) = − ∂

∂B

(
βaI(B, T )

)
|B=0

=

{
0 if T > Tc,

(1+z2)
1
4 (1−6z2+z4)

1
8√

1−z2 , if T < Tc.

Here we put z = e−2βε.



Chapter 5

The renormalization group

(Robert Helling)
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Chapter 6

Ideal gases

Within the mathematical framework of the CCR and CAR algebras we study thermodynamical
models describing non-interacting particles in some bounded set Λ ⊂ Rn. These are the so-called
free gases. The simplifying assumption of non-interacting particles is a good approximation for
a gas at high temperature and low pressure where the intermolecular forces become negligible.

6.1 The ideal Fermi gas

Let (h, 〈·, ·〉) be a “one-particle-Hilbert-space” over C and recall that the Fermi-Fock space was
defined by

F−(h) := P−F(h).

Here we have:

• F(h) =
⊕

n≥0 h
n where hn = h⊗ · · · ⊗ h with n ∈ N and h0 = C. (Fock space over h).

• P−= projection onto the “anti-symmetric part” of F(h).

Let H be a self-adjoint Hamiltonian operator on h with second quantization dΓ(H) on F(h−)

dΓ(H) :=
⊕
n≥0

Hn = self-adjoint closure, H0 = 0,

Hn

(
P−(f1 ⊗ · · · ⊗ fn)

)
: = P−

( n∑
i=1

f1 ⊗ f2 ⊗ · · · ⊗Hfi ⊗ · · · ⊗ fn
)
.

Put ~ = 1 such that the Schrödinger equation for an arbitrary number of fermions moving
independently is given by

i
Ψt

dt
= dΓ(H)Ψt

1

We consider the Gibbs grand canonical ensemble. Let µ ∈ R (chemical potential) and β ∈ R
(inverse temperature) and consider the modified Hamiltonian

Kµ := dΓ(H − µI).

1With solution Ψt = e−itdΓ(H) = Γ(e−itH)Ψ and the evolution τt(A) = Γ(eitH)AΓ(eitH).

65
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The Gibbs equilibrium state on the CAR-algebra ACAR(h) over h takes the form

ω(A) :=
trace(e−βKµA)

trace(e−βKµ)
, where A ∈ A(h).

Recall that ACAR(h) is the algebra generated by the identity I and a(f) with f ∈ h such that

(1) h 3 f 7→ a(f) is anti-linear,

(2) {a(f), a(g)} = 0

(3) {a(f), a(g)∗} = 〈f, g〉I.

Question: Is the Gibbs state ω well-defined? More precisely: when is e−βKµ trace class?

Lemma 6.1.1. Let β ∈ R, then (a) and (b) are equivalent:

(a) e−βH is trace class on h,

(b) e−βdΓ(H−µI) is trace class on F−(h) for all µ ∈ R.

Proof. Proposition 5.2.22 in Bratteli/Robinson.

Remark 6.1.2. If the Gibbs state is not defined for all or some β (e.g. β negative) we can
replace it by a τ -KMS state ω̃ with respect to the following evolution

ACAR(h) 3 A 7→ τt(A) = eitKµAe−itKµ ∈ ACAR(h). (6.1.1)

Recall that the KMS-condition (which would be used in the following arguments) has the form:

ω̃
(
Aτt(B)

)
|t=iβ

= ω̃(BA).

If the Gibbs state exists, then it is the unique τ -KMS state.

We consider the evolution (6.1.1) on generators a∗(f) of ACAR(h).

Lemma 6.1.3. Let a(f) ∈ ACAR(h) with f ∈ h, then we have for all t

(i) eitdΓ(H)a∗(f)e−itdΓ(H) = a∗
(
eitHf

)
,

(ii) eitdΓ(H)a(f)e−itdΓ(H) = a
(
eitHf

)
.

Proof. We only show (i). Put Ut := eitH and recall that the second quantization relates the
unitary one-parameter groups Ut corresponding to H and dΓ(H) in the following way

eitdΓ(H) = Γ(Ut) :=
⊕
n≥0

Un,t,

where U0,t = I and with n ∈ N:

Un,t

(
P−(f1 ⊗ f2 ⊗ · · · ⊗ fn)

)
:= P−

[
Utf1 ⊗ Utf2 ⊗ · · · ⊗ Utfn

]
.
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From this it follows:

eitdΓ(H)a∗(f)e−itdΓ(H)P−
(
f1 ⊗ · · · ⊗ fn

)
= Γ(Ut)a

∗(f)P−

(
U−tf1 ⊗ · · · ⊗ U−tfn

)
=

√
n+ 1

n!
Γ(Ut)P−

(∑
π

επf ⊗ U−tfπ1 ⊗ · · · ⊗ U−tfπn
)

=

√
n+ 1

n!
P−

(∑
π

επUtf ⊗ fπ1 ⊗ · · · ⊗ fπn
)

= P−a
∗(Utf)P−(f1 ⊗ · · · ⊗ fn).

Since = P−a
∗(Utf)P− = a∗(Utf) this finishes the proof.

Write z = eβµ > 0 for the activity. Using the previous lemma we can calculate the so-called
two-point functions of the Gibbs state ω.

Corollary 6.1.4. Let f, g ∈ h, then we have

ω
(
a∗(f)a(g)

)
=
〈
g, ze−βH(I + ze−βH)−1f

〉
. (6.1.2)

Proof. In Lemma 6.1.3 we replace t by iβ and H by H − µI. Then

trace
{
e−βKµa∗(f)a(g)

}
= trace

{
e−βKµa∗(f)eβKµ e−βKµa(g)

}
= trace

{
a∗
(
e−β(H−µI)f

)
e−βKµa(g)

}
= z trace

{
e−βKµa(g)a∗

(
e−βHf

)}
= (∗).

Now we use the anti-commutation relations to switch a∗(e−βHf) back to the left:

(∗) = −z trace
{
e−βKµa∗

(
e−βHf

)
a(g)

}
+ z
〈
g, e−βHf

〉
trace(e−βKµ).

Dividing both sides by trace(e−βKµ) gives

ω
(
a∗(f)a(g)

)
= −zω

(
a∗(e−βHf)a(g)

)
+ z
〈
g, e−βHf

〉
or equivalently

ω
(
a∗
(
[I + ze−βH ]f

)
a(g)

)
= z
〈
g, e−βHf

〉
.

Finally, (6.1.2) follows by replacing f with (I + ze−βH)−1f .

Definition 6.1.5. Consider the group of Bogoliubov transformations of ACAR(h) induced by

τθ
[
a(f)

]
:= a

(
eiθf

)
, where θ ∈ [0, 2π).

These are the so-called gauge transformations. A state on ACAR(h) is called gauge-invariant if
it is invariant under gauge transformations.
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Remark 6.1.6. By a very similar argument one checks that the formula (6.1.2) generalizes to

ω

(
n∏
i=1

a∗(fi)
m∏
j=1

a(gj)

)
=

=

{
0 if n 6= m,∑n

`=1(−1)n−`ω
(
a∗(f1)a(g`)

)
ω
(∏n

i=2 a
∗(fi)

∏m
j=1
j 6=`

a(gj)
)
, else.

In particular,

(I) By iteration of this process it follows that the Gibbs state ω only depends on the values
of all the two-point functions

ω
(
a∗(f)a(g)

)
=
〈
g, ze−βH(I + ze−βH)−1f

〉
.

The state ω is called quasi-free. 2

(II) Remark (I) implies that the Gibbs state ω on ACAR(h) is gauge-invariant and quasi free.

Now we specify the discussion to the following case. Let Λ ⊂ Rn be a bounded and open
subset and put

hΛ : = L2(Λ), and h := L2(Rn),

C∞0 (Ω) =
{
f ∈ C∞(Ω) : supp (f) ⊂ Ω is compact

}
, Ω ∈ {Λ,Rn}.

Consider the (positive) Laplacian −∆ on C∞0 (Λ). With respect to suitable units we define the
Hamiltonians

HΛ = some self-adjoint extension of −∆ on C∞0 (Λ),

H = self-adjoint extension of −∆ on C∞0 (Rn).

There are various self-adjoint extensions HΛ of −∆ on L2(Λ) according to the choice of
boundary conditions. However, the Laplacian on Rn has a unique self-adjoint extension. The
operators HΛ typically have discrete spectrum with eigenvalue asymptotic (Weyl-asymptotic)

λ` ∼ `
dim Λ

2 , as `→∞

and therefore e−βHΛ is trace class if β > 0. However, H has no discrete spectrum and e−βH is
not of trace class for any β ∈ R.

Remark 6.1.7 (classical boundary conditions). Let Λ ⊂ Rn be bounded and open with piece-
wise differentiable boundary ∂Λ. Recall Green’s formula〈

∆ψ, ϕ
〉
−
〈
ψ,∆ϕ

〉
=

∫
∂Λ

{
ψ
∂ϕ

∂n
− ∂ψ

∂n
ϕ

}
dσ.

In order to make ∆ symmetric on its domain of definition we must make sure that the integrand
vanishes for all ϕ, ψ ∈ D(∆). We may choose

2We do not give the exact definition of a quasi-free state here which requires the notion of truncation
functions. As for details see Bratteli/Robinson II, page 43.
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(i) ∂ϕ
∂n

= 0 on ∂Λ, (Neumann boundary conditions),

(ii) ϕ = 0 on ∂Λ, (Dirichlet boundary conditions),

(iii) ∂ϕ
∂n

= hϕ where h ∈ C1(∂Λ) is real-valued.

First we comment on the thermodynamical limit. In the following the limit Λ→∞ means
that Λ is a sequence of open bounded sets that eventually contains all bounded Λ̃ ⊂ Rn.

We write ωΛ for the Gibbs equilibrium state over ACAR(hΛ). Let ω be the gauge-invariant
quasi-free state over ACAR(h) with two point functions (c.f. Corollary 6.1.4):

ω
(
a∗(f)a(g)

)
=
〈
g, ze−βH(I + ze−βH)−1f

〉
h
.

Proposition 6.1.8. For all A ∈ ACAR(hΛ) it holds limΛ→∞ ωΛ(A) = ω(A).

Proof. Bratteli/Robinson II.

In particular, the thermodynamical limit of the “finite-volume equilibrium states” is uniquely
defined and independent of the particular boundary conditions (unique thermodynamic phase).

6.2 Equilibrium phenomena

The explicit expression of the two point functions for the infinite idealized Fermi gas allows us
to study some equilibrium phenomena.

Definition 6.2.1. Consider the number functional N̂ which measures the number of particles
in a given state:

N̂ : EACAR(h) −→ [0,∞] : N̂(ω̃) := sup
F

∑
{fi}⊂F

ω̃
(
a∗(fi)a(fi)

)
. (6.2.1)

F runs through finite dimensional subspaces of h and {fi} through the ONBs of F .

Exercise 6.2.2. Let [ei : i ∈ N0] and [fj : j ∈ N0] be orthonormal bases of h and put

ψ(m) = P−
[
ej1 ⊗ · · · ⊗ ejm

]
,

where m ∈ N0 and the entries of (j1, · · · , jm) ∈ Nn
0 are pairwise distinct (otherwise Ψ(m) = 0).

With the number operator N on F−(h) show that

m =
〈
ψ(m), Nψ(m)

〉
=
∑
n≥0

〈
ψ(m), a∗(fn)a(fn)ψ(m)

〉
.

Consider the quasi-local CAR algebras

AΛ = ACAR

(
hΛ

)
, such that ACAR(h) =

⋃
Λ

AΛ.
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By choosing the sub-spaces F in (6.2.1) only in hΛ we obtain local number functionals

N̂Λ : EAΛ
→ [0,∞].

We calculate the following density for the Gibbs equilibrium state ω (=number of particles per
unit volume in Λ):

Let {fn}n be an orthonormal basis of L2(Λ), then we find from Corollary 6.1.4:

ρ(β, z) : =
N̂Λ(ω)

|Λ|−1
, with |Λ| := volume of Λ

= |Λ|−1
∑
n≥0

ω
(
a∗(fn)a(fn)

)
= |Λ|−1

∑
n≥0

〈
fn, ze

β∆(I + zeβ∆)−1fn
〉
L2(Λ)

= (∗).

Via continuation by zero we can embed L2(Λ) into L2(Rn). Let f̂ be the Fourier transform
of f ∈ L2(Rn), then:〈

fn, ze
β∆(I + zeβ∆)−1fn

〉
L2(Λ)

=
〈
f̂n, ze

−βp2

(1 + ze−βp
2

)−1f̂n

〉
L2(Rn)

=
〈
|f̂n|2, ze−βp

2

(1 + ze−βp
2

)−1
〉
L2(Rn)

.

With p, x ∈ Rn put ep(x) := (2π)−
n
2 eixp, then we have∑

n≥0

|f̂n|2(p) =
∑
n≥0

|〈fn, ep〉|2 = ‖ep‖2
L2(Λ) =

|Λ|
(2π)n

.

Inserting this above gives

Lemma 6.2.3. For each bounded open set Λ ⊂ Rn the density function ρ(β, z) has the form

ρ(β, z) =
1

(2π)n

∫
Rn
ze−βp

2(
1 + ze−βp

2)−1
dp = λ−nI(z) <∞,

where λ :=
√

4πβ (“thermal wave lenght of the individual particle”) and the function I(z) is
given by

I(z) := π−
n
2

∫
Rn
ze−x

2

(1 + ze−x
2

)−1dx.

In particular, ρ(β, z) is independent of Λ (which is expected since the equilibrium state is
invariant under space translations).

Next: Calculate the local energy per unit volume.

Let {fn} ⊂ C1(Λ) be an orthonormal basis of L2(Λ). The local energy per unit volume of the
state ω is given by

ε(β, z) = |Λ|−1
∑
n≥0

ω
(
a∗(
√
−∆fn)a(

√
−∆fn)

)
= |Λ|−1

∑
n≥0

〈
fn, ze

β∆(I + zeβ∆)−1(−∆)fn

〉
L2(Λ)

.
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Exercise 6.2.4. With the notation of Exercise 6.2.2 it holds∑
n≥0

〈
ψ(m), a∗(

√
−∆fn)a(

√
−∆fn)ψ(m)

〉
hΛ

=
〈
ψ(m), TΛψ

(m)
〉
hΛ
,

where {fn}n is a (suitable) orthonormal basis of hΛ and TΛ is a self-adjoint extension of the
second quantization Γ(−∆) of −∆ w.r.t Neumann boundary conditions. 3.

By a similar argument like the one we used for the density function ρ(z, β) we obtain

ε(β, z) =
1

(2π)n

∫
Rn
p2ze−βp

2

(1 + ze−βp
2

)−1dp = (∗).

Note that
zp2

je
−βp2

1 + ze−βp2 = − pj
2β

∂

∂pj
log
(

1 + ze−βp
2
)

and therefore one obtains via partial integration

(∗) = − 1

2β
(2π)−n

n∑
j=1

∫
Rn
pj

∂

∂pj
log
(

1 + ze−βp
2
)
dp

=
1

2β
(2π)−n

n∑
j=1

∫
Rn

log
(

1 + ze−βp
2
)
dp

=
n

2β
(2π)−n

∫
Rn

log
(

1 + ze−βp
2
)
dp.

Lemma 6.2.5. For each bounded and open Λ ⊂ Rn the local energy per unit volume fulfills

ε(β, z) =
n

2β
(2π)−n

∫
Rn

log
(

1 + ze−βp
2
)
dp = β−1λ−nJ(z) <∞,

where λ :=
√

4πβ and the function J(z) is given by

J(z) := π−
n
2

∫
Rn
zx2e−x

2

(1 + ze−x
2

)−1dx.

In particular, ε(β, z) is independent of Λ.

Fermi sea: Consider the idealization of zero temperature: if we take β → ∞, then the
integrand in the expression of ρ(β, z) behaves as follows (recall that z = eβµ):

lim
β→∞

ze−βp
2(

1 + ze−βp
2)−1

= lim
β→∞

e−β(p2−µ)
(
1 + e−β(p2−µ)

)−1
=

{
1, if p2 < µ

0, if p2 > µ.

All states with energy < µ are occupied and states with energy greater than µ are empty. The
critical value µ = p2 is called Fermi surface.

3If ψ ∈ C∞0 (Λ) ⊂ hΛ ⊂ F−(hΛ), then we have TΛ(ψ) = −〈ψ,∆ψ〉hΛ
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6.3 The ideal Bose gas

Consider the Bose Fock space F+(h) over the one-particle Hilbert space h with one-particle
Hamiltonian H, i.e.

F+(h) := P+F(h),

where P+ is the projection onto the symmetric part of F(h). The Hamiltonian for a non-
interacting system of Bosons is given as the second quantization dΓ(H) of H.

The corresponding time evolution of observables A ∈ L
(
F+(h)

)
has the form

A 7→ τt(A) := eitdΓ(H)Ae−itdΓ(H) = Γ
(
eitH

)
AΓ
(
e−itH

)
. (6.3.1)

Let a+(f) and a∗+(f) be the annihilation and creation operator on F+(h), respectively, which
fulfill the canonical commutation relations (CCR) for all f, g ∈ h

(a)
[
a+(f), a+(g)

]
= 0 =

[
a∗+(f), a∗+(g)

]
= 0,

(b)
[
a+(f), a∗+(g)

]
= 〈f, g〉I.

The operators a+(f) and a∗+(f) with f ∈ h are densely defined and unbounded in general.
We pass to the family of Weyl operators W := {W (f) : f ∈ h} which are unitary

W (f) := e
i√
2

[a+(f)+a∗+(f)] ∈ L
(
F+(h)

)
and satisfy

(a) W (−f) = W (f)∗ for all f ∈ h,

(b) W (f)W (g) = e−
i
2

Im 〈f,g〉W (f + g) for all f, g ∈ h.

Definition 6.3.1. The C∗-algebraACCR(h) in L(F+(h)) generated byW is called CCR-algebra.

We consider the action of τt on generators of the CCR algebra:

Lemma 6.3.2. For all t ∈ R and f ∈ h the ∗-automorphism τt acts on Weyl-operators as

τt
(
W (f)

)
= W

(
eitHf

)
. (6.3.2)

In particular, {τt}t defines a group of automorphisms on ACCR(h).

Proof. Homework

Remark 6.3.3. Recall that the one-parameter group of operators (6.3.2) is not strongly con-
tinuous.

With µ ∈ R consider the generalize Hamiltonian Kµ := dΓ(H −µI) and assume that e−βKµ

with β ∈ R is of trace class

Definition 6.3.4. The Gibbs equilibrium state on the CCR-algebra ACCR(h) takes the form

ω(A) :=
trace(e−βKµA)

trace(e−βKµ)
, where A ∈ ACCR(h).
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Next step: We extend the Gibbs state from ACCR(h) to polynomials in a+(f) and a+(g).

Now, fix n ∈ N0 and put f := (f1, · · · , fn) with fj ∈ h. Consider the operator

Af := a(f1)a(f2) · · · a(fn)e−
β
2
Kµ . (6.3.3)

The following result essentially distinguishes the existence of traces in case of the ideal Fermi
and the ideal Bose gas, respectively, (c.f. Lemma 6.1.1).

Proposition 6.3.5. Let µ, β ∈ R and assume that e−βH is a trace class operator on h. Let
z := eβµ denote the “activity”. Assume that β(H − µI) > 0, then

(a) The operator e−βKµ is of trace class.

(b) The operator A∗fAf is of trace class.

(c) The two point functions ω(a∗(f)a(g)) with f, g ∈ h are well-defined and there is a constant
C(z, β) depending on z and β such that∣∣ω(a∗(f)a(g)

)∣∣ ≤ C(z, β)‖f‖ · ‖g‖. (6.3.4)

Proof. (a): Let {λn}n≥0 be the sequence of eigenvalues of H repeated according to the multi-
plicity and increasing (decreasing) if β > 0 (if β < 0). Let {en} ⊂ h be an orthonormal basis
of eigenvectors of H, i.e. Hen = λnen. With

0 ≤ j1 < j2 < · · · < jm,

where m ∈ N and occupation numbers (nj1 , · · · , njm) ∈ Nm consider Enj1 ··· ,njm ∈ F+(h) defined
by:

Enj1 ··· ,njm := P+

(
ej1 ⊗ · · · ⊗ ej1︸ ︷︷ ︸

nj1 times

⊗ ej2 ⊗ · · · ⊗ ej2︸ ︷︷ ︸
nj2 times

⊗ · · · ⊗ ejm ⊗ · · · ⊗ ejm︸ ︷︷ ︸
njm times

)
.

Note that En1,··· ,nm is an eigenvector of e−βKµ . Put N := nj1 + nj2 + · · ·+ njm , then

e−βKµEn1,··· ,nm = Γ(e−β(H−µI))P+

(
ej1 ⊗ · · · ⊗ ej1 ⊗ · · · ⊗ ejm ⊗ · · · ⊗ ejm

)
= zNP+

(
e−βHej1 ⊗ · · · ⊗ e−βHej1 ⊗ · · · ⊗ e−βHejm ⊗ · · · ⊗ e−βHejm

)
= zNe−β(nj1λj1+···+njmλjm )En1,··· ,nm .

According to our assumption β(H − µI) > 0 we have ze−βλj = e−β(λj−µ) < 1. Hence, we can
estimate the trace of e−βKµ as follows:

trace
(
e−βKµ

)
≤
∞∏
j=0

(
1 + ze−βλj + z2e−2βλj + z3e−3βλj + · · ·

)
=
∞∏
j=0

(
1− ze−βλj

)−1

= exp ◦ log
{ ∞∏
j=0

(
1 + ze−βλj(1− ze−βλj)−1

)}
= exp

{ ∞∑
j=0

log
(
1 + ze−βλj(1− ze−βλj)−1

)}
= (∗).
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On the right hand side we apply the estimate log(1 + x) ≤ x whenever x > 0 and find

(∗) ≤ exp

{
∞∑
j=0

ze−βλj(1− ze−βλj)−1

}
= (∗∗).

We only consider the case β > 0 in which we chose the eigenvalue sequence {λj}j to be
increasing. Then we can estimate

sup
j∈N0

(1− ze−βλj)−1 ≤ (1− ze−βλ0)−1

and therefore

(∗∗) ≤ exp

{
z(1− ze−βλ0)

∞∑
j=0

e−βλj

}
= exp

{
z(1− ze−βλ0)trace

(
e−βH

)}
<∞.

(b): The trace of A∗fAf can be estimated in a similar way

trace
(
A∗fAf

)
≤

∞∑
m=0

∑
(nj1 ,··· ,njm )∈Nm

∥∥a(f1) · · · a(fn)e−
β
2
KµEn1,··· ,nm

∥∥2
(6.3.5)

=
∞∑
m=0

∑
(nj1 ,··· ,njm )∈Nm

zNe−β(nj1λj1+···+njmλjm )
∥∥a(f1) · · · a(fn)En1,··· ,nm

∥∥2
.

Now, we use the estimate

‖a(f1) · · · a(fn)En1,··· ,nm‖ ≤ N
n
2 ‖f1‖ · · · ‖fn‖ · ‖En1,··· ,nm‖︸ ︷︷ ︸

=1

,

which together with (6.3.5) gives

trace
(
A∗fAf

)
≤ ‖f1‖2 · · · ‖fn‖2

∞∑
m=0

∑
(nj1 ,··· ,njm )∈Nm

NnzNe−β(nj1λj1+···+njmλjm )

= ‖f1‖2 · · · ‖fn‖2

(
z
d

dz

)n ∞∑
m=0

∑
(nj1 ,··· ,njm )∈Nm

zNe−β(nj1λj1+···+njmλjm )

= ‖f1‖2 · · · ‖fn‖2

(
z
d

dz

)n ∞∏
j=0

(1− ze−βλj)−1 = (∗ ∗ ∗). (6.3.6)

We have seen in (a) that the infinite product on the right hand side converges under the
condition β(H − µI) > 0 and it defines an analytic function in z. Therefore (∗ ∗ ∗) is finite
which proves (b).

(c): Follows from the estimate (6.3.6) together with the Cauchy-Schwarz inequality:∣∣ω(a∗(f)a(g)
)∣∣2 ≤ ∣∣ω(a∗(f)a(f)

)∣∣ · ∣∣ω(a∗(g)a(g)
)∣∣ =

trace(A∗fAf )trace(A∗gAg)

trace(e−βKµ)2
,

where Af = a(f)e−
βKµ

2 and Ag = a(g)e−
βKµ

2 .
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Under the condition of the previous lemma it follows that the two-point functions ω
(
a∗(f)a(g)

)
are well-defined. We calculate their value

trace
{
e−βKµa∗(f)a(g)

}
= trace

{
e−

β
2
Kµa∗(f)e

β
2
Kµ e−βKµ e

β
2
Kµa(g)e−

β
2
Kµ
}

= trace
{
a∗
(
e−

β
2

(H−µI)f
)
e−βKµa

(
e−

β
2

(H−µI)g
)}

= trace
{
e−βKµa

(
e−

β
2

(H−µI)g
)
a∗
(
e−

β
2

(H−µI)f
)}

= (∗).

Now, we use the CCR-relations to switch a∗(· · · ) back to the left:

(∗) = trace
{
e−βKµa∗

(
e−

β
2

(H−µI)f
)
a
(
e−

β
2

(H−µI)g
)}

+
〈
g, e−β(H−µI)f

〉
trace

(
e−βKµ

)
.

Dividing by trace(e−βKµ) gives

ω
(
a∗(f)a(g)

)
= ω

(
a∗
(
e−

β
2

(H−µI)f
)
a
(
e−

β
2

(H−µI)g
))

+
〈
g, e−β(H−µI)f

〉
.

If we iterate this algorithm N times we obtain:

ω
(
a∗(f)a(g)

)
= ω

(
a∗
(
e−

Nβ
2

(H−µI)f
)
a
(
e−

Nβ
2

(H−µI)g
))

+
N∑
m=1

〈
g, e−βm(H−µI)f

〉
. (6.3.7)

Under the assumptions of Proposition 6.3.5 we have β(H − µI) > 0 and therefore

lim
N→∞

∥∥∥e−Nβ2 (H−µI)f
∥∥∥ = 0.

Taking the limit N →∞ on the right of (6.3.7) and using the estimate in Proposition 6.3.5, (c)∣∣ω(a∗(f)a(g)
)∣∣ ≤ C(z, β)‖f‖ · ‖g‖

we obtain:
lim
N→∞

ω
(
a∗
(
e−

Nβ
2

(H−µI)f
)
a
(
e−

Nβ
2

(H−µI)g
))

= 0. (6.3.8)

Hence we end up with the following two-point functions for the Bose gas.

Proposition 6.3.6. Let µ, β ∈ R and assume that e−βH is a trace class operator on h. If
β(H − µI) > 0, then the two-point functions of the Gibbs-state ω are given by

ω
(
a∗(f)a(g)

)
=
〈
g, ze−βH(I − ze−βH)−1f

〉
. (6.3.9)

Moreover, on the Weyl operator ω acts as

ω(W (f)) = exp
{
− 1

4

〈
f, (I + ze−βH)(I − ze−βH)−1f

〉}
.

Proof. We only show the first statement: note that

∞∑
m=1

e−βm(H−µI) =
∞∑
m=1

(
ze−βH

)m
=
(
I − ze−βH

)−1 − I = ze−βH(I − ze−βH)−1.

Hence the assertion follows from (6.3.8) and (6.3.7).
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6.4 Equilibrium phenomena

Assume that the operator ze−βH(I−ze−βH)−1 is positive self-adjoint (not necessarily bounded or
with discrete spectrum). Then the associated sesquilinear form on the right of (6.3.9) determines
a quasi-free state.

Let ω be the gauge-invariant quasi-free state over ACCR(h) with h := L2(Rn) and two point
functions

ω
(
a∗(f)a(g)

)
=
〈
g, ze−βH(I − ze−βH)−1f

〉
h
,

where H is the self-adjoint extension of −∆ on L2(Rn). Put hΛ := L2(Λ)

AΛ := ACCR(hΛ) and A := ACCR(h̃) where h̃ :=
⋃

Λ⊂Rn
L2(Λ).

If ωΛ denotes the Gibbs state on ACCR(hΛ) with respect to a self-adjoint extension HΛ of the
Laplacian −∆ on L2(Λ) (Λ ⊂ Rn bounded and open) and parameters β and µ, then we have
the following result on the thermodynamical limit:

Proposition 6.4.1. If there is c > 0 with HΛ − µI ≥ cI for all Λ, then it follows

lim
Λ̃→∞

ωΛ̃(A) = ω(A), A ∈ AΛ.

Proof. Bratteli/Robinson II.

Now we specify the discussion to an open square box ΛL with edges of length L > 0

ΛL :=
(
− L

2
,
L

2

)
× · · · ×

(
− L

2
,
L

2

)
⊂ Rn

and we assume Dirichlet boundary conditions for the Laplacian −∆ on ΛL. Consider the local
density

ρΛL(β, z) :=
1

|ΛL|
∑
n≥0

ωΛL

(
a∗(fn)a(fn)

)
= (∗),

where {fn} is an orthonormal basis of eigenfunctions−∆ inD(−∆). Assuming that β(H−µI) >
0 we find from the definition of the two point functions of ωΛL in Proposition 6.3.6 that

(∗) = L−n
∑
n≥0

〈
fn, ze

β∆(I − zeβ∆)−1fn

〉
L2(ΛL)

= L−n
∑
α∈Nn

ze−βγα(L)(1− ze−βγα(L))−1.

Note that the eigenvalues of −∆ on ΛL are given by the numbers

E∆(L) :=
{
γα(L) :=

π2

L2
(α2

1 + · · ·+ α2
n) : α ∈ Nn

}
,

with corresponding eigenfunctions

FL
α (x1, · · · , xn) :=

n∏
j=1

sin

(
παj
L

[
xj −

L

2

])
.
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Since HΛL ≥ γ(1,1··· ,1)(L)I it follows that the condition HΛL − µI ≥ cI for all L > 0 which
appears in Proposition 6.4.1 can be fulfilled if

0 < c ≤
(
γ(1,1··· ,1)(L)− µ

)
=
nπ2

L2
− µ, for all L > 0

and therefore we need µ < 0. Since β > 0 we have

0 < z = eµβ < 1.

In this region (single phase region) we have the thermodynamical limit in Proposition 6.4.1
and a unique thermodynamical phase of the infinitely extended Bose gas. However, note that
ρΛL(β, z) has a pole with respect to the activity z as z approaches

eβγ(1,1,··· ,1)(L) = eβ
nπ2

L2 −→ 1 as L→∞.

If we choose von Neumann boundary conditions, then the Laplacian in Λ has a zero-
eigenvalue and the same unboundedness of the local density happens for z → 1 independently
of the choice of box size L. This phenomenon is called Bose-Einstein-condensation.

Remark 6.4.2. We may also look at the local density with respect to the equilibrium state ω
of the infinite extended Bose gas in Proposition 6.4.1. Let ∅ 6= Λ ⊂ Rn be bounded and open
and {fn}n≥0 and orthonormal basis of L2(Λ). Then

ρ(z, β) =
1

|Λ|
∑
n≥0

ω
(
a∗(fn)a(fn)

)
=

1

|Λ|
∑
n≥0

〈
f̂n, ze

−βp2(
1− z−βp2)−1

f̂n

〉
L2(Rn)

=
1

(2π)n

∫
Rn
ze−βp

2(
1− ze−βp2)−1

dp

= λ−nπ−
n
2

∫
Rn
ze−x

2(
1− ze−x2)−1

dx,

where λ :=
√

4πβ. Note that for all x ∈ Rn the map

[0, 1] 3 z 7→ ze−x
2(

1− ze−x2)−1

is monotonely increasing. Therefore, z 7→ ρ(β, z) is strictly increasing and we see that

ρ(z, β) ≤ λ−nπ−
n
2

∫
Rn
e−x

2(
1− e−x2)−1

dx.

Moreover, we have for the integral∫
Rn
e−x

2(
1− e−x2)−1

dx

{
=∞, if n = 1, 2

<∞, if n ≥ 3.

Thus, we see that ρ(z, β) remains bounded for z ∈ [0, 1] in dimensions n ≥ 3. This does not
reflect the unboundedness effect that arises for a finite box as was discussed above. However,
for all 0 < z ≤ 1 one has

lim
L→∞

ρΛL(β, z) = ρ(β, z).
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Next: Analyse the “Bose-Einstein-condensation” appearing when z = 1. We look at the ther-
modynamical limit as L→∞ for fixed densities ρΛL(β, z).

Let n ≥ 3 and fix β, ρ̃ > 0. Since ρΛL(β, ·) is monotonely increasing to +∞ as z ↑ eβ
nπ2

L2 we
can uniquely solve

ρΛL(β, zL) = ρ̃ where 0 < zL < eβ
nπ2

L2 . (6.4.1)

One always has ρΛL(β, z) ≤ ρ(β, z) whenever 0 < z ≤ 1 and L > 0. Moreover, both functions
are monotonely increasing in z. Two cases are possible

I. Assume that 0 < ρ̃ ≤ ρ(β, 1). Then we can also uniquely solve the equation ρ(β, z̃) = ρ̃
where z̃ ∈ (0, 1] and from

ρΛL(β, z̃) ≤ ρ(β, z̃) = ρ̃ = ρΛL(β, zL)

we find that 0 < z̃ ≤ zL. It can be shown that

lim
L→∞

zL = z̃. (6.4.2)

II. Assume that ρ(β, 1) < ρ̃. We have zL > 1 since otherwise we would arrive at the
contradiction

ρ(β, 1) < ρ̃ = ρΛL(β, zL) ≤ ρ(β, zL) ≤ ρ(β, 1).

In this case it can be shown that limL→∞ zL = 1 and

lim
L→∞

1

|ΛL|
zLe

−βγ(1,··· ,1)(L)
(
1− zLe−βγ(1,··· ,1)(L)

)−1
= ρ̃− ρ(β, 1) > 0. (6.4.3)

Recall that

γ(1,··· ,1)(L) =
nπ2

L2

is the smallest eigenvalue of the Laplacian −∆ on ΛL with respect to Dirichlet boundary
conditions and |ΛL| = Ln is the volume of the box.

Moreover, if α ∈ Nn with α 6= (1, · · · , 1), then we have

lim
L→∞

1

|ΛL|
zLe

−βγα(L)
(
1− zLe−βγα(L)

)−1
= 0. (6.4.4)

Now we state the main result:

Theorem 6.4.3. Let n ≥ 3 and fix ρ̃, β > 0. With L > 0 consider the “square boxes” ΛL

having side-length L as above. Moreover, put

(a) HΛL:=self-adjoint extension of −∆ on ΛL w.r.t. Dirichlet boundary conditions and H the
selfadjoint extension of −∆ on Rn.

(b) ωΛL the Gibbs state on ACCR(L2(ΛL)) with respect to β and the activity zL which is chosen
as the unique solution of

ρΛL(β, zL) = ρ̃, where ρ̃ > 0.

Here, ρΛL(β, z) means the local density with respect to ωΛL.
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(c) ρ(β, z), the local density of the infinite extended Bose gas, i.e.

ρ(β, z) = lim
L→∞

ρΛL(β, z) =
1

(2π)n

∫
Rn
ze−βp

2(
1− ze−βp2)−1

dp, 0 < z ≤ 1.

Then the following limit exists

ωρ̃(A) = lim
L→∞

ωΛL(A), where A ∈
⋃
Λ

ACCR(L2(Λ)).

Moreover, ωρ̃ acts as follows on generators of the CCR-algebra

(A) If ρ̃ ≤ ρ(β, 1) and z̃ = limL→∞ zL is the unique solution to ρ̃ = ρ(β, z̃), then

ωρ̃
(
W (f)

)
= exp

{
−1

4

〈
f, (I + z̃e−βH)(I − z̃e−βH)−1f

〉
L2(Rn)

}
.

(B) If ρ̃ > ρ(β, 1), then limL→∞ zL = 1 and

ωρ̃
(
W (f)

)
= exp

{
− 2n−1

(
ρ̃− ρ(β, 1)

)∣∣∣ ∫
Rn
f(x)dx

∣∣∣2−
− 1

4

〈
f, (I + e−βH)(I − e−βH)−1f

〉
L2(Rn)

}
.

Proof. We only comment on (B): Let f ∈ L2(ΛL) and recall from Proposition 6.3.6 that

ωΛL(W (f)) = exp
{
− 1

4

〈
f, (I + zLe

−βHΛL )(I − ze−βHΛL )−1f
〉

︸ ︷︷ ︸
=:IL(f)

}
.

With the eigenvalues γα(L), α ∈ Nn of HΛ and the orthogonal projections Pk(α)(L) where
k(α) = α2

1 + · · ·+ α2
n onto the corresponding eigenspace we can write

IL(f) =
∑
α∈Nn

1 + zLe
−βγα(L)

1− zLe−βγα(L)

〈
f, Pk(α)(L)f

〉
.

Recall that the family of normalized eigenfunction of HΛL with respect to Dirichlet boundary
conditions and corresponding eigenvalues γα(L) was given by

ΨL
α(x1, · · · , xn) =

FL
α (x1, · · · , xn)

‖FL
α ‖

= ‖FL
α ‖−1

n∏
j=1

sin

(
παj
L

[
xj −

L

2

])
, where α ∈ Nn.

Note that ‖FL
α ‖−1 =

√
2n

Ln
is independent of α. In particular, if α = (1, · · · , 1), then the above

expression simplifies to

ΨL
(1,··· ,1)(x1, · · · , xn) =

(−1)n2
n
2

L
n
2

n∏
j=1

cos
(πxj
L

)
.
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Then we have〈
f, Pk(1,··· ,1)(L)f

〉
= ‖Pk(1,··· ,1)(L)f‖2

=
∣∣〈f,ΨL

(1,··· ,1)

〉∣∣2 =
2n

Ln

∣∣∣∣∣
∫

ΛL

f(x)
n∏
j=1

cos
(πxj
L

)
dx

∣∣∣∣∣
2

and therefore

lim
L→∞

Ln
〈
f, Pk(1,··· ,1)(L)f

〉
= 2n

∣∣∣ ∫
Rn
f(x)dx

∣∣∣2. (6.4.5)

Moreover, we find from (6.4.3) that

lim
L→∞

L−n
1 + zLe

−βγ(1,··· ,1)(L)

1− zLe−βγ(1,··· ,1)(L)
= 2
(
ρ̃− ρ(β, 1)

)
. (6.4.6)

Combining (6.4.5) and (6.4.6) gives

lim
L→∞

1 + zLe
−βγ(1,··· ,1)(L)

1− zLe−βγ(1,··· ,1)(L)

〈
f, Pk(1,··· ,1)(L)f

〉
= 2n+1

∣∣∣ ∫
Rn
f(x)dx

∣∣∣2(ρ̃− ρ(β, 1)
)
.

The higher energy states give no contribution to the density. Indeed, if we choose α ∈ Nn

with α 6= (1, · · · , 1), then∣∣〈f, Pk(α)f
〉∣∣2 =

∑
k(β)=k(α)

∣∣〈f,ΨL
β

〉∣∣2
=

1

‖FL
α ‖2

∑
k(β)=k(α)

∣∣∣ ∫
ΛL

f(x)FL
β (x)dx

∣∣∣2
≤ 2n

Ln

∑
k(β)=k(α)

{∫
Rn
|f(x)|dx

}2

.

Therefore, we conclude that there is a constant Cα > 0 independent of L such that

Ln
∣∣〈f, Pk(α)f

〉∣∣2 ≤ Cα

{∫
Rn
|f(x)|dx

}2

. (6.4.7)

From (6.4.4) recall that

lim
L→∞

L−nzLe
−βγα(L)

(
1− zLe−βγα(L)

)−1
= 0. (6.4.8)

By combining (6.4.7) and (6.4.8) one finds for all m ∈ N with m ≥ n that

lim
L→∞

∑
α 6=(1,··· ,1)
k(α)≤m

1 + zLe
−βγα(L)

1− zLe−βγα(L)

〈
f, Pk(α)(L)f

〉
= 0

and therefore

lim
L→∞

{
IL(f)−

∑
k(α)>m

1 + zLe
−βγα(L)

1− zLe−βγα(L)

〈
f, Pk(α)(L)f

〉
︸ ︷︷ ︸

=:ImL (f)

}
= 2n+1

∣∣∣ ∫
Rn
f(x)dx

∣∣∣2(ρ̃− ρ(β, 1)
)
. (6.4.9)
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Finally, one shows that

lim
m→∞

lim
L→∞

{
ImL (f)−

〈
f, (I + e−βH)(I − e−βH)−1f

〉}
= 0.

Let ε > 0 and choose m > 0 such that∣∣∣ lim
L→∞

IL(f)− lim
L→∞

{
IL(f)− ImL (f)

}
−
〈
f, (I + e−βH)(I − e−βH)−1f

〉∣∣∣ =

=
∣∣∣ lim
L→∞

{
ImL (f)−

〈
f, (I + e−βH)(I − e−βH)−1f

〉}∣∣∣ < ε.

Since ε > 0 was chosen arbitrarily and the left hand side does not depend on m we find from
(6.4.9) that

lim
L→∞

IL(f) = 2n+1
∣∣∣ ∫

Rn
f(x)dx

∣∣∣2(ρ̃− ρ(β, 1)
)

+
〈
f, (I + e−βH)(I − e−βH)−1f

〉
,

which finishes the proof of (B).

Remark 6.4.4. We give some comments on the phenomenon of Bose-Einstein-condensation.

(a) In the high density region we have z = 1 and Bose-Einstein condensation takes place, i.e.
a finite proportion of particles are in the lowest energy state. This effect corresponds to
a phase transition of the system of non-interacting Bosons.

(b) In the region z = 1 there is a family of equilibrium states at the same temperature and
parametrized by their particle densities ρ̃ ∈ [ρ(β, 1),∞).

(c) The equilibrium states corresponding to z = 1 have less ergodic properties than the states
in the single phase region.

(d) Consider the equilibrium state ωρ̃ corresponding to ρ̃ ∈ [ρ(β, 1),∞). The calculation in
the proof of Theorem 6.4.3 shows that the two-point-functions of ωρ̃ are given by

ωρ̃
(
a∗(f)a(g)

)
= 2n

[
ρ̃− ρ(β, 1)

] ∫
Rn
g(x)dx

∫
Rn
f(x)dx+

+
1

(2π)n

∫
Rn
f̂(p)ĝ(p)e−βp

2(
1− e−βp2)−1

dp.

The local densities take the form

ρ̃(β, 1) = |ΛL|−1
∑
{fn}

ωρ̃
(
a∗(fn)a(fn)

)
= 2n

[
ρ̃− ρ(β, 1)

]
+ ρ(β, 1).

Recall that the factor “2n” on the right appeared in the proof of Theorem 6.4.3 when we
took the limit

lim
L→∞

Ln
∣∣〈f,ΨL

(1,··· ,1)

〉∣∣2 = lim
L→∞

Ln
∣∣ΨL

(1,··· ,1)(0)
∣∣2∣∣∣ ∫

Rn
f(x)dx

∣∣∣2.
More precisely, in the case of Dirichlet boundary conditions and with the lowest energy
eigenfunction ΨL

(1,··· ,1) of the Dirichlet Laplacian HΛL we had

2n = lim
L→∞

Ln
∣∣ΨL

(1,··· ,1)(0)
∣∣2.

Note that this value, which is interpreted as the relative proportion of the condensate at
the origin, is sensitive under the particular choice of boundary conditions.
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