Lecture

Statistical Mathematical Mechanics

Sommersemester 2013
at the

LMU, Munich

PD. Dr. Wolfram Bauer

Contents

1 Introduction and Motivation 5
1.1 Method of the most probable distribution 5
$2 C^{*}$-algebras in quantum statistical mechanics 9
2.1 Abelian C^{*}-algebras and GN-theorem 11
2.2 Fock-space, CCR and CAR- algebras 18
2.2.1 CAR-Algebra 19
2.2.2 CCR-Algbera 19
2.3 Quasi-local Algebras 19
2.4 States, representations and Gelfand-Segal construction 23
2.4.1 Positive functional and states 24
2.4.2 Star-homomorphisms 27
2.4.3 Representations 29
2.4.4 The GNS-construction 30
2.4.5 The GNS-construction for a matrix algebra 33
3 Equilibrium States and KMS condition 35
4 Ising model in $2 d$ 37
4.1 A decomposition of the transfer matrix 39
4.2 On spin representations of rotations 42
4.3 The Onsager solution for $B=0$ 46
4.4 Thermodynamical functions and physical interpretation 59
5 The renormalization group 63
6 Ideal gases 65
6.1 The ideal Fermi gas 65
6.2 Equilibrium phenomena 69
6.3 The ideal Bose gas 72
6.4 Equilibrium phenomena 76

Chapter 1

Introduction and Motivation

In mathematical statistical physics one studies certain classes of physical systems from a statistical point of view. In particular, one is concerned with

- Equilibrium properties of a macroscopic molecular system,
- Laws of thermodynamics,
- Thermodynamic functions.
" Statistical mechanics, however, does not describe how a system approaches equilibrium, nor does it determine whether a system can ever be found to be in equilibrium. It merely states what the equilibrium situation is for a given system" [7]

We will start with an example how a statistical consideration can lead to the description of a equilibrium in case of a classical system.

Consider a dilute gas with $N \gg 1$ molecules each of mass m and contained in a box $\Lambda \subset \mathbb{R}^{3}$ of volume V. Each molecule is considered as a classical particle having a well-defined position and momentum. We assume that the molecules are distinguishable from each other and they reflected elastically at the walls of Λ.

A (microscopic) state of the gas is given by $3 N$ canonical coordinates $\mathbf{q}=\left(\mathbf{q}_{1}, \cdots, \mathbf{q}_{n}\right) \in \Lambda^{N}$ and $3 N$ canonical momenta $\mathbf{p}=\left(\mathbf{p}_{1}, \cdots, \mathbf{p}_{N}\right) \in \mathbb{R}^{3 N}$ of the N molecules. We put

$$
\Gamma:=\mathbb{R}^{3 N} \times \Lambda^{3 N}:=\text { space of all possible states. }
$$

A macroscopic state of the system (e.g. temperature, pressure, \cdots) can be represented by many microscopic states in Γ. So we can interpret a macroscopic state as a system in Γ (so called ensemble) of corresponding microscopic states.

1.1 Method of the most probable distribution

With $(p, q, t) \in \mathbb{R}^{3} \times \Lambda \times \mathbb{R}_{+}$let $f(p, q, t)$ be the distribution function of the gas. More precisely, if $\Omega \subset \mathbb{R}^{3} \times \Lambda$ and $t>0$, then

$$
\begin{equation*}
\int_{\Omega} f(p, q, t) d p d q=\text { number of molecules with coordinates in } \Omega \text { at time } t . \tag{1.1.1}
\end{equation*}
$$

If a (microscopic) state of the gas is given, then the integrals on the left hand side are uniquely determined for all Ω. However, different states in Γ can have the same distribution, e.g. one may exchange two particles. Since we can distinguish the molecules one obtains different states with the same distribution function. Hence we can identify a distribution function $f(p, q, t)$ with the subset

$$
\Gamma_{f} \subset \Gamma
$$

of all states (in a given ensemble) that are distributed according to f, i.e. all states (in the ensemble) that fulfill (1.1.1) for all $\Omega \subset \mathbb{R}^{3} \times \Lambda$. The equilibrium distribution is the distribution that "maximizes" Γ_{f}.

Let the ensemble be defined by fixing the energy E of the system ${ }^{1}$. The possible values of $(p, q) \in \mathbb{R}^{3} \times \Lambda$ are restricted through the energy condition and we replace the phase space $\mathbb{R}^{3} \times \Lambda$ by a sufficiently large box $B_{\mathrm{ps}}=B \times \Lambda$ where $B \subset \mathbb{R}^{3}$. Then we divide B_{ps} into $K \gg 1$ small cells c_{i} each of volume $\omega=\delta p \delta q$ and number the cells by c_{1}, \cdots, c_{K}. For a given state in Γ and $i=1, \cdots, K$ we put

$$
\begin{aligned}
n_{i} & =\text { number of molecules of the state in cell } c_{i}, \\
\varepsilon_{i} & :=\frac{p_{i}^{2}}{2 m}=\text { energy of a molecule in the } i \text { th cell, }
\end{aligned}
$$

which by assumption must fulfill the conditions

$$
\left\{\begin{array}{l}
(a): \sum_{i=1}^{K} n_{i}=N \\
(b): \sum_{i=1}^{K} \varepsilon_{i} n_{i}=E .
\end{array}\right.
$$

A distribution function $f(p, q)$ is given by the "step function":

$$
f(p, q):=\frac{n_{i}}{\delta p \delta q}, \quad \text { if } \quad(p, q) \in c_{i} .
$$

For given integers $\left\{n_{i}\right\}_{i=1, \cdots, K}$ with (a) and (b) we will write $\widetilde{\Omega}\left(n_{1}, \cdots, n_{K}\right)$ for the number of possibilities to distribute the N (distinguishable) particles to K cells c_{1}, \cdots, c_{K} such that the cell c_{i} contains n_{i} molecules

$$
\widetilde{\Omega}\left(n_{1}, \cdots, n_{K}\right)=\frac{N!}{n_{1}!\cdots n_{K}!} .
$$

We assume that n_{i} is large that we can replace $\log n_{i}$! by $n_{i} \log n_{i}$ due to Stirling's formula ${ }^{2}$

$$
\log \widetilde{\Omega}\left(n_{1}, \cdots, n_{K}\right) \sim F\left(n_{1}, \cdots, n_{K}\right):=N \log N-\sum_{i=1}^{K} n_{i} \log n_{i}
$$

Now we need to maximize $F\left(n_{1}, \cdots, n_{K}\right)$ under the conditions (a) and (b). We consider n_{1}, \cdots, n_{K} as real variables and use the method of Lagrange multipliers. Let us define

$$
F_{\lambda}\left(n_{1}, \cdots, n_{K}\right):=F\left(n_{1}, \cdots, n_{K}\right)+\lambda_{1} \sum_{i=1}^{K} n_{i}+\lambda_{2} \sum_{i=1}^{K} \varepsilon_{i} n_{i}
$$

[^0]with $\lambda_{1}, \lambda_{2} \in \mathbb{R}$. A necessary condition of an extreme point of F under the conditions (a) and (b) is given by
$$
0=\frac{\partial F}{\partial n_{i}}=-\left(\log n_{i}+1\right)+\lambda_{1}+\varepsilon_{i} \lambda_{2}, \quad i=1, \cdots, K
$$

This gives $n_{i}=C e^{\varepsilon_{i} \lambda_{2}}$ for some $C \in \mathbb{R}$ and therefore $f_{i}=C e^{\varepsilon_{i} \lambda_{2}} / \delta p \delta q$. One can check that in fact this choice of n_{i} maximizes F. In the limit $K \rightarrow \infty$ we find the distribution function

$$
f(p, q)=C e^{\frac{p^{2}}{2 m} \lambda_{2}}
$$

which actually only depends on p. The requirement of being a density distribution gives

$$
N=\int_{\mathbb{R}^{3} \times \Lambda} f(p, q) d p d q=C V \int_{\mathbb{R}^{3}} e^{\frac{p^{2} \lambda_{2}}{2 m}} d p=C V\left(-\frac{2 \pi m}{\lambda_{2}}\right)^{\frac{3}{2}} .
$$

If we write $n:=N / \operatorname{vol}(\Lambda)$ for the particle density, then it follows

$$
\begin{equation*}
C=n\left(\frac{-\lambda_{2}}{2 \pi m}\right)^{\frac{3}{2}} \tag{1.1.2}
\end{equation*}
$$

In the next step we calculate λ_{2}. Note that for the mean energy of a molecule we have:

$$
\begin{equation*}
\frac{E}{N}=\frac{\int_{\mathbb{R}^{3}} \frac{p^{2}}{2 m} e^{\frac{p^{2} \lambda_{2}}{2 m}} d p}{\int_{\mathbb{R}^{3}} e^{\frac{p^{2} \lambda_{2}}{2 m}} d p} \tag{1.1.3}
\end{equation*}
$$

By using the standard integral formula

$$
\int_{\mathbb{R}^{3}} p^{2} e^{-a p^{2}} d p=4 \pi \int_{0}^{\infty} x^{4} e^{-a x^{2}} d x=\frac{3 \pi^{\frac{3}{2}}}{2 a^{\frac{5}{2}}}
$$

in (1.1.3) we obtain

$$
\frac{E}{N}=-\frac{3}{2 \lambda_{2}} \quad \Longrightarrow \quad \lambda_{2}=-\frac{3 N}{2 E}=-\frac{1}{k T}
$$

where $k=8,6173 \cdot 10^{-5} \mathrm{eV} / \mathrm{K}$ denotes the Boltzma constant, T is the temperature and we have used that $E / N=\frac{3}{2} k T$. Inserting the value of λ_{2} into (1.1.2) allows us to calculate C :

$$
C=n\left(\frac{1}{2 \pi m k T}\right)^{\frac{3}{2}}
$$

Conclusion: In the case of a dilute gas and under our simplifying assumptions the "most probable distribution" is the Maxwell-Boltzmann distribution:

$$
f(p)=n\left(\frac{1}{2 \pi m k T}\right)^{\frac{3}{2}} e^{-\frac{p^{2}}{2 m k T}} .
$$

Note that we have receive this result by a purely statistical consideration not taking into account the kinematics of the microscopic states.

Chapter 2

C^{*}-algebras in quantum statistical mechanics

In a classical mechanical system the observables are polynomials or more generally elements of the space $C(\Gamma)$ of all real valued continuous functions defined on the phase space Γ. Note that $C(\Gamma)$ has the structure of a commutative algebra under the pointwise multiplication. In the case where Γ is compact or we only admit bounded continuous functions ${ }^{1}$, then $C(\Gamma)$ or $C_{b}(\Gamma)$ are complete normed algebras. The algebra of complex valued continuous functions on the compact space Γ has the structure of a C^{*}-algebra (see the definition below).

More abstractly, we may consider a physical system as being defined by its C^{*}-algebra \mathcal{A} of observables. ${ }^{2}$ The states of the system correspond to the measurements of the observables. In the abstract mathematical framework states are normalized positive linear functionals on \mathcal{A}. We explain these notions now more in detail:

Let us write \mathbb{R} and \mathbb{C} for the field of real and complex numbers, respectively. If $\lambda \in \mathbb{C}$, then we denote by $\bar{\lambda}$ its complex conjugate. Recall the following notions:
I. Let \mathcal{A} be a complex vector space equipped with an associative and distributive product, i.e. if $A B$ denotes the product of $A, B \in \mathcal{A}$, then it holds:
(i) $A(B C)=(A B) C$,
(ii) $A(B+C)=A B+A C$ and $(B+C) A=B A+C A$,
(iii) $\lambda \gamma(A B)=(\lambda A)(\gamma B)$, where $\lambda, \gamma \in \mathbb{C}$.

We call \mathcal{A} an associative algebra over \mathbb{C}.
II. An involution $\mathcal{A} \ni A \mapsto A^{*} \in \mathcal{A}$ of \mathcal{A} is a map such that:
(iv) $A^{* *}=A$,
(v) $(A B)^{*}=B^{*} A^{*}$,
(vi) $(\lambda A+\gamma B)^{*}=\bar{\lambda} A^{*}+\bar{\gamma} B^{*}$, where $\lambda, \gamma \in \mathbb{C}$.
III. The algebra \mathcal{A} is called normed with norm $\|\cdot\|: \mathcal{A} \rightarrow[0, \infty)$ if for all $A, B \in \mathcal{A}$:

[^1](vii) $\|A\| \geq 0$ and $\|A\|=0$ if and only if $A=0$,
(viii) $\|\lambda A\|=|\lambda|\|A\|$ where $\lambda \in \mathbb{C}$,
(ix) $\|A+B\| \leq\|A\|+\|B\|$, (triangle inequality),
(x) $\|A B\| \leq\|A\|\|B\|$, (product inequality).

Definition 2.0.1. (Banach-, B^{*} - and C^{*}-algebra)
(a) Let \mathcal{A} be a normed associative algebra which is complete in the norm topology, then \mathcal{A} is called Banach algebra.
(b) A Banach algebra with an involution and such that $\|A\|=\left\|A^{*}\right\|$ holds for all $A \in \mathcal{A}$ is called a B^{*}-algebra.
(c) A C^{*}-algebra is a B^{*}-algebra which for all $A \in \mathcal{A}$ fulfills the norm equality

$$
\left\|A A^{*}\right\|=\|A\|^{2}
$$

The algebra \mathcal{A} is called abelian or commutative if the product is commutative.
We do not assume that the algebras have a unit. However, if this is the case we call it unital algebra and we add the assumption $\|e\|=1$ where e denotes the unit of the algebra.

Example 2.0.2. (C^{*}-algebras)
(a) Let H be a complex Hilbert space and $\mathcal{L}(H)$ the algebra of bounded operators on H with the operator norm. The adjoint operation

$$
\mathcal{L}(H) \ni A \mapsto A^{*} \in \mathcal{L}(H)
$$

is an involution. Then $\mathcal{L}(H)$ is a C^{*}-algebra. More general: each closed sub-algebra of $\mathcal{L}(H)$ which is invariant under the involution " $*$ " is a C^{*}-algebra.
(b) According to (a) the space $\mathbb{C}(n)$ of complex $n \times n$-matrices can be interpreted as a C^{*} algebra via the identification $\mathbb{C}(n) \cong \mathcal{L}\left(\mathbb{C}^{n}\right)$.
(c) Let X be a compact space, then the space $C(X)$ of continuous complex valued functions on X with the pointwise product, the norm

$$
\|f\|:=\sup \{|f(x)|: x \in X\}
$$

and the involution $f^{*}(x):=\overline{f(x)}$ defines a commutative unital C^{*}-algebra.
(d) Let X be a locally compact space and $f: X \rightarrow \mathbb{C}$ continuous. We say that f vanishes at infinity if for each $\varepsilon>0$ there is a compact set $K \subset X$ such that

$$
|f(x)| \leq \varepsilon \quad \text { for all } \quad x \in X \backslash K
$$

The space $C_{0}(X)$ of all continuous functions on X vanishing at infinity with the norm and the involution in (c) is a commutative C^{*}-algebra which is unital if and only if X is compact.

Exercise 2.0.3. (a) Show that the spaces in Example 2.0.2 in fact define C^{*}-algebras.
(b) The C^{*}-condition $\left\|A A^{*}\right\|=\|A\|^{2}$ implies that $\left\|A^{*}\right\|=\|A\|$.
(c) Let \mathcal{A} be a unital Banach algebra. If $\left\|A^{2}\right\|=\|A\|^{2}$ holds for all $A \in \mathcal{A}$, then \mathcal{A} is commutative.
Hint: Let $B \in \mathcal{A}$ and consider the function $f(z):=e^{-z A} B e^{z A}$ where $z \in \mathbb{C}$.

2.1 Abelian C^{*}-algebras and GN-theorem

In describing a physical system one usually starts with the "geometry" by choosing an appropriate manifold (phase space) and then considering the algebra of observables (continuous functions on the phase space). As a consequence of the GN-theorem one could reverse the procedure: one may start with an abstract characterization of observables by fixing a unital commutative C^{*}-algebra \mathcal{A} which encodes the relations between physical quantities. The GNtheorem (which will be explained in this section) allows to construct a compact Hausdorff space Γ such that \mathcal{A} can be identified with the C^{*}-algebra of continuous functions on Γ.

For the moment we do not assume the existence of an involution. Let \mathcal{A} be a unital commutative Banach algebra over \mathbb{C}.

Definition 2.1.1. A multiplicative functional $m: \mathcal{A} \rightarrow \mathbb{C}$ of \mathcal{A} is a linear map that "preserves the multiplication":

$$
m(A B)=m(A) m(B)
$$

for all $A, B \in \mathcal{A}$. In particular, if $m \neq 0$, then we have $m(I)=1$ where I denotes the unit of \mathcal{A}.

We will show that there is a close relation between multiplicative functionals and maximal ideals on \mathcal{A} which allows us to identify these objects.

Definition 2.1.2. An ideal \mathcal{I} of \mathcal{A} is a sub-algebra with $A \mathcal{I}:=\{A J: J \in \mathcal{I}\} \subset \mathcal{I}$ for all $A \in \mathcal{A}$. The ideal is called maximal if there is no proper ideal $\widetilde{\mathcal{I}} \subset \mathcal{A}$ with $\mathcal{I} \subsetneq \widetilde{\mathcal{I}} \subsetneq \mathcal{A}$.

Exercise 2.1.3. Show the following:
(a) The closure $\overline{\mathcal{I}}$ of an ideal $\mathcal{I} \subset \mathcal{A}$ is an ideal as well. In particular, maximal ideals are closed.
(b) A proper ideal $\mathcal{I} \subsetneq \mathcal{A}$ contains no invertible elements of \mathcal{A}. In particular, it does not contain the unit of \mathcal{A} and the closure of a proper ideal is a proper ideal.

In the following we write \mathcal{A}^{-1} for the group of invertible elements of \mathcal{A}. Recall that the spectrum $\sigma(A)$ of an element $A \in \mathcal{A}$ is defined by

$$
\sigma(A)=\left\{\lambda \in \mathbb{C}: A-\lambda I \notin \mathcal{A}^{-1}\right\} .
$$

As is known the spectrum $\sigma(A)$ is compact and non-empty for all $A \in \mathcal{A}$ (as for a proof see [8]). We call $\rho(A):=\mathbb{C} \backslash \sigma(A)$ the resolvent set of A.

Exercise 2.1.4. Let X be a compact space and let $C(X)$ be the Banach algebra of continuous functions on X (cf. Example 2.0.2, (c)).
(i) Then $\sigma(f)=f(X)$ for all $f \in \mathcal{A}$.
(ii) Let \mathcal{B} be a unital Banach algebra and $B \in \mathcal{B}$, then $\sigma(B) \subset\{\lambda \in \mathbb{C}:|\lambda| \leq\|B\|\}$.

Theorem 2.1.5 (Gel'fand-Mazur). Assume that all elements of $\mathcal{A} \backslash\{0\}$ are invertible in \mathcal{A}, i.e $\mathcal{A}^{-1}=\mathcal{A} \backslash\{0\}$. Then $\mathcal{A}=\{\lambda I: \lambda \in \mathbb{C}\} \cong \mathbb{C}$.

Proof. Let $A \in \mathcal{A}$ and assume that $\lambda \in \sigma(A) \neq \emptyset$. Then $A-\lambda I \notin \mathcal{A}^{-1}$ and by assumption it follows that $A-\lambda I=0$. Therefore $A=\lambda I$.

Lemma 2.1.6. Let \mathcal{A} be a unital commutative Banach algebra. Then (i) and (ii) are equivalent:
(i) $\mathcal{I} \subset \mathcal{A}$ is a maximal ideal
(ii) There is a unique multiplicative functional $0 \neq m: \mathcal{A} \rightarrow \mathbb{C}$ with

$$
\mathcal{I}=\text { ker } m:=\{A \in \mathcal{A}: m(A)=0\}
$$

Proof. (i) \Rightarrow (ii): If $\mathcal{I} \subset \mathcal{A}$ is a maximal ideal, then \mathcal{I} is closed (see Exercise 2.1.3, (a)) and we can consider the quotient space

$$
\mathcal{A} / \mathcal{I}=\{a+\mathcal{I}: a \in \mathcal{A}\} \quad \text { with norm } \quad\|A+\mathcal{J}\|_{\mathcal{A} / \mathcal{I}}:=\inf _{J \in \mathcal{I}}\|A+J\|
$$

If we define a product on $\mathcal{A} / \mathcal{I}$ in a natural way via

$$
(A+\mathcal{I})(B+\mathcal{I}):=A B+\mathcal{I}
$$

then $\mathcal{A} / \mathcal{I}$ becomes a commutative algebra with unit $I+\mathcal{I}$ where I is the unit in \mathcal{A}. Note that for all $J_{1}, J_{2} \in \mathcal{I}$:

$$
\|(A+\mathcal{I})(B+\mathcal{I})\|_{\mathcal{A} / \mathcal{I}}=\|A B+\mathcal{I}\|_{\mathcal{A} / \mathcal{I}} \leq\left\|\left(A+J_{1}\right)\left(B+J_{2}\right)\right\| \leq\left\|A+J_{1}\right\|\left\|B+J_{2}\right\|
$$

By taking the infimum over $J_{1}, J_{2} \in \mathcal{I}$ we see that

$$
\|(A+\mathcal{I})(B+\mathcal{I})\|_{\mathcal{A} / \mathcal{I}} \leq\|A+\mathcal{I}\|_{\mathcal{A} / \mathcal{I}}\|B+\mathcal{I}\|_{\mathcal{A} / \mathcal{I}}
$$

and therefore $\mathcal{A} / \mathcal{I}$ has the structure of a commutative Banach algebra. The natural projection

$$
\pi: \mathcal{A} \longrightarrow \mathcal{A} / \mathcal{I}: \pi(A):=A+\mathcal{I}
$$

becomes a surjective algebra homomorphism, i.e. π is linear continuous and

$$
\pi(A B)=\pi(A) \pi(B), \quad \text { for all } A, B \in \mathcal{A}
$$

We show that all non-trivial elements $0 \neq \pi(A) \in \mathcal{A} / \mathcal{I}$ are invertible in $\mathcal{A} / \mathcal{I}$. This follows from the following two observations:
(1): The quotient algebra $\mathcal{A} / \mathcal{I}$ contains no proper non-trivial ideal: If $\{0\} \neq \mathcal{Q} \subsetneq \mathcal{A} / \mathcal{I}$ was such an ideal then the pre-image

$$
\mathcal{I} \subsetneq \pi^{-1}(\mathcal{Q}):=\{A \in \mathcal{A}: \pi(A) \in \mathcal{Q}\} \subsetneq \mathcal{A}
$$

would be an ideal in \mathcal{A} which properly contains \mathcal{I}. This contradicts the assumption that \mathcal{I} was chosen maximal.
(2): If $0 \neq \pi(A)$ is not invertible in $\mathcal{A} / \mathcal{I}$, then

$$
\{0\} \neq \mathcal{Q}:=\pi(A)(\mathcal{A} / \mathcal{I}):=\{A B+\mathcal{I}: B \in \mathcal{A}\} \subsetneq \mathcal{A} / \mathcal{I}
$$

is a proper non-trivial ideal in $\mathcal{A} / \mathcal{I}$. This would contradict the first observation (1).
From the Gelfand-Mazur-theorem (Theorem 2.1.5) one concludes that

$$
\mathcal{A} / \mathcal{I}=\{\lambda e+\mathcal{I}: \lambda \in \mathbb{C}\} \cong \mathbb{C}
$$

and $m: \mathcal{A} \xrightarrow{\pi} \mathcal{A} / \mathcal{I} \xrightarrow{\cong} \mathbb{C}$ defines a multiplicative functional on \mathcal{A} with $\mathcal{I}=$ ker m.
(ii) \Rightarrow (i): Let $0 \neq m: \mathcal{A} \rightarrow \mathbb{C}$ be a multiplicative functional with $\mathcal{I}:=$ ker m, then \mathcal{I} is an ideal of \mathcal{A}, in fact, if $A \in \mathcal{A}$ and $B \in \mathcal{I}$, then

$$
m(A B)=m(A) m(B)=0 \quad \Longrightarrow \quad A B \in \mathcal{I}=\text { ker } m
$$

Moreover, since $\mathcal{A} / \mathcal{I}=\mathcal{A} /$ ker $m \cong \operatorname{im} m=\mathbb{C}$ is complex one-dimensional it follows that \mathcal{J} is maximal. Finally assume that ker $m=\mathcal{I}=\operatorname{ker} \tilde{m}$ where \tilde{m} is a multiplicative functional. Then \tilde{m} defines a multiplicative functional on $\mathcal{A} / \operatorname{ker} m=\mathbb{C}$ and therefore $m=\alpha \tilde{m}$ with $\alpha \in \mathbb{C}$. Since

$$
1=m(e)=\alpha \tilde{m}(e)=\alpha
$$

one concludes that $m=\tilde{m}$ and the statement about uniqueness follows.
Example 2.1.7. Let X be a compact space. For each $x \in X$ a maximal ideal $\mathcal{I}_{x} \subset C(X)$ is given by

$$
\mathcal{I}_{x}:=\{f \in C(X): f(x)=0\}=\operatorname{ker} \delta_{x}
$$

where $\delta_{x}: C(X) \longrightarrow \mathbb{C}$ is the multiplicative functional which acts by evaluation in $x \in X$, i.e. $\delta_{x}(f)=f(x)$ for $f \in C(X)$.

Definition 2.1.8. We denote by $M(\mathcal{A})$ the space of all non-trivial multiplicative functionals on \mathcal{A} and according to Lemma 2.1.6 we call $M(\mathcal{A})$ the maximal ideal space or the Gelfand spectrum of \mathcal{A}. ${ }^{3}$

Consider the topological dual \mathcal{A}^{\prime} of \mathcal{A} :

$$
\mathcal{A}^{\prime}=\{\varphi: \mathcal{A} \rightarrow \mathbb{C}: \varphi \text { is linear and continuous }\} .
$$

Then \mathcal{A}^{\prime} is a complete normed space with norm

$$
\|\varphi\|_{\mathcal{A}^{\prime}}:=\sup \{|\varphi(A)|: A \in \mathcal{A},\|A\| \leq 1\}
$$

[^2]Multiplicative functionals on a unital commutative Banach algebra \mathcal{A} are automatically continuous and therefore

$$
\begin{equation*}
M(\mathcal{A}) \subset \mathcal{A}^{\prime} \tag{2.1.1}
\end{equation*}
$$

More precisely, $M(\mathcal{A})$ is contained in the unit sphere of \mathcal{A}^{\prime}

$$
M(\mathcal{A}) \subset S_{\mathcal{A}^{\prime}}:=\left\{\varphi \in \mathcal{A}^{\prime}:\|\varphi\|_{\mathcal{A}^{\prime}}=1\right\} \subset \mathcal{A}^{\prime}
$$

This a consequence of the following lemma:
Lemma 2.1.9. Each multiplicative functional $m \in M(\mathcal{A})$ is continuous with $\|m\|_{\mathcal{A}^{\prime}}=1$.
Proof. Let $m \in M(\mathcal{A})$ and recall ker m is a maximal ideal and in particular ker m is closed in \mathcal{A} (see Exercise 2.1.3, (a)). Therefore m factorizes through the quotient $\mathcal{A} /$ ker m :

$$
m: \mathcal{A} \xrightarrow{\pi} \mathcal{A} / \operatorname{ker} m \xrightarrow{\widetilde{m}} \mathbb{C}, \quad \text { where } \quad \widetilde{m}(A+\operatorname{ker} m):=m(A) .
$$

Since $\mathcal{A} /$ ker m is one-dimensional it is clear that \widetilde{m} is continuous. The continuity of the natural projection π shows the continuity of $m=\pi \circ \widetilde{m}$.

It remains to show that $\|m\|_{\mathcal{A}^{\prime}}=1$: Let $A \in \mathcal{A}$ and assume that $m(A)>\|A\|$. Then $\left\|m(A)^{-1} A\right\|<1$ and we have

$$
e-m(A)^{-1} A \in \mathcal{A}^{-1}
$$

(geometric series!). If we define $B:=\left(I-m(A)^{-1} A\right)^{-1} \in \mathcal{A}$, then we obtain the contradiction:

$$
\begin{aligned}
1=m(e) & =m\left(B\left(e-m(A)^{-1} A\right)\right) \\
& =m\left(B-m(A)^{-1} B A\right)=m(B)-m(B)=0 .
\end{aligned}
$$

Therefore, it holds $m(A) \leq\|A\|$ for all $A \in \mathcal{A}$. From $m(e)=1$ and the definition of $\|\cdot\|_{\mathcal{A}}$, we have $\|m\|_{\mathcal{A}^{\prime}}=1$.

On the dual \mathcal{A}^{\prime} of \mathcal{A} we can consider a second topology which in a sense is "weaker" than the norm topology ${ }^{4}$ and is called weak-*-topology or topology of pointwise convergence. We explain the construction: On \mathcal{A}^{\prime} a family of maps E_{A} parametrized by $A \in \mathcal{A}$ is defined by

$$
E_{A}: \mathcal{A}^{\prime} \longrightarrow \mathbb{C}: E_{A}(\varphi):=\varphi(A)
$$

The weak *-topology on \mathcal{A}^{\prime} is the "roughest topology" such that all the maps E_{A} with $A \in \mathcal{A}$ are continuous. According to the inclusion $M(\mathcal{A}) \subset \mathcal{A}^{\prime}$ in (2.1.1) the weak-*-topology descends from \mathcal{A}^{\prime} to the maximal ideal space $M(\mathcal{A})$.

Exercise 2.1.10. Show that $M(\mathcal{A})$ is weak-*-closed in $B^{\circ}=\left\{\varphi \in \mathcal{A}^{\prime}:\|\varphi\|_{\mathcal{A}^{\prime}} \leq 1\right\}$.
Theorem 2.1.11. The maximal ideal space $M(\mathcal{A})$ equipped with the weak-*-topology is compact.
Proof. This follows from an abstract result in functional analysis (Banach-Alaoglu theorem) which implies that the ball $B^{\circ}:=\left\{\varphi \in \mathcal{A}^{\prime}:\|\varphi\|_{\mathcal{A}^{\prime}} \leq 1\right\}$ is weak-*-compact. Note that $M(\mathcal{A})$ is weak-*-closed in B° (see Exercise 2.1.10) and according to Lemma 2.1.1 we have the inclusion $M(\mathcal{A}) \subset B^{\circ}$. Since closed subsets of compacts sets are compact the statement follows.

[^3]Consider the space $C(M(\mathcal{A}))$ of all continuous functions on $M(\mathcal{A})$ with respect to the weak-*-topology. Note that due to the compactness of $M(\mathcal{A})$ the space $C(M(\mathcal{A}))$ has the structure of a C^{*}-algebra in the sense of Example 2.0.2, (c).

Definition 2.1.12 (Gelfand-transform). For each $A \in \mathcal{A}$ and $m \in M(\mathcal{A})$ put $\Gamma(A)(m):=$ $m(A) .{ }^{5}$ The map

$$
\begin{equation*}
\Gamma: \mathcal{A} \longrightarrow C(M(\mathcal{A})): A \mapsto \Gamma(A) \tag{2.1.2}
\end{equation*}
$$

is well-defined and called Gelfand transform.
Let \mathcal{B} be a Banach algebra. We call a linear map $\pi: \mathcal{A} \rightarrow \mathcal{B}$
(i) (algebra) homomorphism, if π is multiplicative $\pi(A B)=\pi(A) \pi(B)$
(ii) *-homomorphism, if \mathcal{A} and \mathcal{B} are C^{*}-algebras and π is a homomorphism with $\pi\left(A^{*}\right)=$ $\pi(A)^{*}$ for all $A \in \mathcal{A}$
(iii) $*$-isomorphism, if π is bijective $*$-homomorphism and isometric, i.e. $\|\pi(A)\|=\|A\|$. ${ }^{6}$

Theorem 2.1.13 (Gelfand). The Gelfand transform is a continuous homomorphism of algebras with norm 1, i.e.

$$
\|\Gamma\|=\sup \{\|\Gamma(A)\|:\|A\| \leq 1\}=1
$$

Moreover, for all $A \in \mathcal{A}$ the spectrum of A fulfills

$$
\begin{equation*}
\sigma(A)=\{m(A): m \in M(\mathcal{A})\} \tag{2.1.3}
\end{equation*}
$$

and in particular

$$
\|\Gamma(A)\|=\sup \{|m(A)|: m \in M(\mathcal{A})\}=r(A):=\lim _{n \rightarrow \infty}\left\|A^{n}\right\|^{\frac{1}{n}}=" \text { spectral radius of } A^{\prime}
$$

Proof. From the definition of the weak-*-topology it is clear that $\Gamma(A)$ is a continuous function on $M(\mathcal{A})$ and therefore the Gelfand transform is well-defined. It is clear that Γ is linear and $\Gamma(A B)=\Gamma(A) \Gamma(B)$ follows with $m \in M(\mathcal{A})$ from

$$
\Gamma(A B)(m)=m(A B)=m(A) m(B)=\Gamma(A)(m) \cdot \Gamma(B)(m) .
$$

We show that $\|\Gamma\|=1$: According to Lemma 2.1.9 we have $|\Gamma(A)(m)|=|m(A)| \leq\|A\|$ for all $A \in \mathcal{A}$ and therefore

$$
\|\Gamma(A)\|=\sup \{|\Gamma(A)(m)|: m \in M(\mathcal{A})\} \leq\|A\|
$$

Since $\Gamma(e)=e \in C(M(\mathcal{A}))$ we see that $\|\Gamma\|=\sup \{\|\Gamma(A)\|:\|A\| \leq 1\}=1$.
It remains to show the equality (2.1.3). From this the last assertion clearly follows. " \supseteq ": Let $m \in M(\mathcal{A})$, then $A-m(A) e \in$ ker m and therefore

$$
A-m(A) e \notin \mathcal{A}^{-1}
$$

[^4]This implies that $m(A) \in \sigma(A)$.
" \subseteq ": Assume that $\lambda \in \sigma(A)$ with $A \in \mathcal{A}$. Then $A-\lambda e \notin \mathcal{A}^{-1}$ and

$$
J_{\lambda, A}:=\{(A-\lambda e) B: B \in \mathcal{A}\} \subsetneq \mathcal{A}
$$

is a proper ideal of \mathcal{A}. There is a maximal ideal J with $J_{\lambda, A} \subset J \subsetneq \mathcal{A}$. Let $m \in M(\mathcal{A})$ with $J=$ ker m. Then

$$
0=m(A-\lambda e)=m(A)-\lambda
$$

and as a consequence $\lambda=m(A) \in\{m(A): m \in M(\mathcal{A})\}$.
Exercise 2.1.14. Let \mathcal{A} be a commutative unital Banach algebra which contains nilpotent elements, i.e. there is $A \in \mathcal{A}$ such that $A^{n}=0$ for some $n \in \mathbb{N}$.
(i) Show that the Gelfand transform $\Gamma: \mathcal{A} \longrightarrow C(M(\mathcal{A}))$ is not injective.
(ii) Give an explicit example of a commutative unital Banach algebra that contains nilpotent elements.

Exercise 2.1.15. Prove the formula for the spectral radius $r(A):=\lim _{n \rightarrow \infty}\left\|A^{n}\right\|^{\frac{1}{n}}$ of an operator $A \in \mathcal{A}$ in Theorem 2.1.13.

Lemma 2.1.16. Let \mathcal{A} be a unital commutative C^{*}-algebra and $m \in M(\mathcal{A})$, then m is a *-homomorphism, i.e. $m\left(A^{*}\right)=\overline{m(A)}$.

Proof. First we show that if $A=A^{*}$, then $m(A)$ is real. If we write $m(A)=a+i b$ with $a, b \in \mathbb{R}$, then we have for all $c \in \mathbb{R}$:

$$
\begin{aligned}
b^{2}+c^{2}+2 b c=|b+c|^{2} & \leq|a+i(b+c)|^{2} & & (m(e)=1) \\
& =|m(A+i c e)|^{2} & & \\
& \leq\|A+i c e\|^{2} & & \left(\left\|B B^{*}\right\|=\|B\|^{2}, \text { for all } B \in \mathcal{A}\right) \\
& =\left\|(A+i c e)\left(A^{*}-i c e\right)\right\| & & \left(A^{*}=A\right) \\
& =\left\|A^{2}+c^{2} e\right\| & &
\end{aligned}
$$

Here we have used $\|m\|_{\mathcal{A}^{\prime}}=1$ and the C^{*}-property of the norm. Hence we have shown that

$$
b^{2}+2 b c \leq\|A\|^{2} .
$$

Since c is arbitrary we have $b=0$ and therefore $m(A)=a \in \mathbb{R}$.
Let now $A \in \mathcal{A}$ be arbitrary, then we decompose A in the form $A=A_{r}+i A_{i}$ where

$$
A_{r}=\frac{1}{2}\left(A+A^{*}\right) \quad \text { and } \quad A_{i}=\frac{1}{2 i}\left(A-A^{*}\right)
$$

Since $A_{r}=A_{r}^{*}$ and $A_{i}=A_{i}^{*}$ we obtain from the first part of the proof

$$
m\left(A^{*}\right)=m\left(A_{r}-i A_{i}\right)=m\left(A_{r}\right)-i m\left(A_{i}\right)=\overline{m(A)},
$$

and the assertion is proven.

The proof of the GN-theorem requires the Stone Weierstrass theorem which we recall next:
Theorem 2.1.17 (Stone-Weierstrass). Let X be a compact space and let $C(X)$ be the algebra of complex valued continuous functions on X. Assume that $\mathcal{A} \subset C(X)$ is a sub-algebra with the following properties:
(i) \mathcal{A} contains all constant functions and if $f \in \mathcal{A}$, then $\bar{f} \in \mathcal{A}$.
(ii) \mathcal{A} separates the points of X, i.e. for $x \neq y \in X$ there is $f \in \mathcal{A}$ such that $f(x) \neq f(y)$.

Then the inclusion $\mathcal{A} \subset C(X)$ is dense.
Now we can state and prove the Gelfand-Naimark theorem (GN-theorem). Roughly speaking it says that all unital commutative C^{*}-algebras can be identified with an algebra of continuous functions as in Example 2.0.2, (c).

Theorem 2.1.18 (Gelfand-Naimark). Let \mathcal{A} be a unital commutative C^{*}-algebra. Then the Gelfand transform $\Gamma: \mathcal{A} \rightarrow C(M(\mathcal{A}))$ is a $*$-isomorphism.

Proof. 1. Step: Show that $\Gamma\left(A^{*}\right)=\Gamma(A)^{*}$ for $A \in \mathcal{A}$:
Let $m \in M(\mathcal{A})$. According to the definition of the Gelfand transform and Lemma 2.1.16 we have

$$
\Gamma\left(A^{*}\right)(m)=m\left(A^{*}\right)=\overline{m(A)}=\overline{\Gamma(A)(m)}=\Gamma(A)^{*}(m) .
$$

2. Step: Show that $\|\Gamma(A)\|=\|A\|$ for all $A \in \mathcal{A}$, i.e. Γ is an isometry:

Let $B=B^{*} \in \mathcal{A}$ be self-adjoint, then it follows from the C^{*}-property of the norm that

$$
\left\|B^{2}\right\|=\left\|B B^{*}\right\|=\|B\|^{2}
$$

Inductively, we have $\left\|B^{2^{n}}\right\|=\|B\|^{2^{n}}$ for all $n \in \mathbb{N}$ and we obtain for the spectral radius of B :

$$
\begin{equation*}
r(B)=\lim _{n \rightarrow \infty}\left\|B^{n}\right\|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left\|B^{2^{n}}\right\|^{\frac{1}{2^{n}}}=\|B\| . \tag{2.1.4}
\end{equation*}
$$

In particular, we put $B=A^{*} A$ with $A \in \mathcal{A}$. Then we conclude from Theorem 2.1.13, the first step and (2.1.4) that

$$
\|\Gamma(A)\|^{2}=\left\|\Gamma(A) \Gamma(A)^{*}\right\|=\left\|\Gamma\left(A A^{*}\right)\right\|=r\left(A A^{*}\right)=\left\|A A^{*}\right\|=\|A\|^{2} .
$$

Since the Gelfand transform Γ is an isometry it is clearly injective and it also follows that the range

$$
\begin{equation*}
\Gamma(\mathcal{A}) \subset C(M(\mathcal{A})) \tag{2.1.5}
\end{equation*}
$$

is closed. In order to prove the equality $\Gamma(\mathcal{A})=C(M(\mathcal{A}))$ it therefore is sufficient to show that the inclusion (2.1.5) is dense. Note that $\Gamma(A)$ fulfills the following properties:
(i) Since $\Gamma(\lambda e)=\lambda e$ for all $\lambda \in \mathbb{C}$ we conclude that the range $\Gamma(\mathcal{A})$ is a subalgebra of $C(M(\mathcal{A}))$ which contains the constant functions. Also $M(\mathcal{A})$ is weak-*- compact.
(ii) $\Gamma(\mathcal{A})$ is invariant under complex conjugation since $\overline{\Gamma(A)}=\Gamma(A)^{*}=\Gamma\left(A^{*}\right)$.
(iii) $\Gamma(\mathcal{A})$ separates points of $M(\mathcal{A})$, i.e. for any pair $m_{1} \neq m_{2} \in M(\mathcal{A})$ there is $A \in \mathcal{A}$ with

$$
\Gamma(A)\left(m_{1}\right)=m_{1}(A) \neq m_{2}(A)=\Gamma(A)\left(m_{2}\right)
$$

Therefore the density of the inclusion (2.1.5) is a consequence of the Stone-Weierstrass theorem, (Theorem 2.1.17).

Exercise 2.1.19. Let \mathcal{A} be a commutative unital Banach algebra. The space

$$
\operatorname{Rad}(\mathcal{A}):=\bigcap\{\mathcal{I} \subset \mathcal{A}: \mathcal{I} \text { is a maximal ideal }\}
$$

is an ideal of \mathcal{A} itself and is called the radical of \mathcal{A}.
(i) If $A \in \mathcal{A}$ is nilpotent, then $A \in \operatorname{Rad}(\mathcal{A})$.
(ii) Calculate the radical of a commutative unital C^{*}-algebra \mathcal{A}. Show that a commutative unital C^{*}-algbera contains no nilpotent elements.

Exercise 2.1.20. Let X be a compact space, then the maximal ideal space $M(C(X))$ can be identified with X via the map ${ }^{7}$

$$
\Delta: X \longrightarrow M(C(X)): x \mapsto \delta_{x}
$$

where $\delta_{x}(f):=f(x)$ for all $f \in C(X)$ (cf. Example 2.1.7). Show that the map Δ is surjective.
Hint: Assume that there is $m \in M(C(X)) \backslash \Delta(X)$. By using the compactness of X construct $f \in C(X)$ with $f>0$ and $m(f)=0$.

More precisely, for each $x \in X$ there is $f_{x} \in C(X)$ such that $f_{x}(x) \neq 0$ and $m\left(f_{x}\right)=0$. Put

$$
U_{x}:=\left\{y \in X: f_{x}(y) \neq 0\right\}
$$

Then $\left\{U_{x}\right\}_{x \in X}$ defines an open covering of X and since X is compact we may pass to a sub-cover $\left\{U_{x_{j}}\right\}_{j=1}^{N}$. Consider the function

$$
h=\sum_{j=1}^{N} f_{x_{j}} f_{x_{j}}^{*}=\sum_{j=1}^{N}\left|f_{x_{j}}\right|^{2} .
$$

Then $h \in C(X)$ and $h>0$ on X and $m(h)=\sum_{j=1}^{N}\left|m\left(f_{x_{j}}\right)\right|^{2}=0$. Hence $h \in$ ker m is invertible in $C(X)$, which gives a contradiction.

2.2 Fock-space, CCR and CAR- algebras

(Robert Helling)

[^5]
2.2.1 CAR-Algebra

Let h be a pre-Hilbert space with completion \bar{h}.
Definition 2.2.1 (CAR-algebra). The (unique up to $*$-isomorphisms) algebra $\mathcal{A}(h)$ generated by element $a(f)$ where $f \in h$ with the properties (i)-(iii) below is called CAR-algebra.
(i) $h \ni f \mapsto a(f)$ is anti-linear
(ii) $\{a(f), a(g)\}=0$, with $f, g \in h$
(iii) $\left\{a(f), a(g)^{*}\right\}=\langle f, g\rangle$ id, with $f, g \in h$

2.2.2 CCR-Algbera

Let H be a real Hilbert space with a non-degenerate symplectic bilinear form $\sigma: H \times H \rightarrow \mathbb{R}$, i.e. σ is anti-symmetric.

$$
\sigma(f, g)=-\sigma(g, f), \quad \text { for all } f, g \in H
$$

Definition 2.2.2 (CCR-algebra). The (unique up to $*$-isomorphisms) algebra $\mathcal{A}(H)$ generated by Weyl-operators $W(f)$ where $f \in H$ with the properties (i)-(ii) is called CCR-algebra.
(i) $W(-f)=W(f)^{*}$ for all $f \in H$,
(ii) $W(f) W(g)=e^{-\frac{i}{2} \sigma(f, g)} W(f+g)$ for all $f, g \in H$.

2.3 Quasi-local Algebras

We introduce the notion of quasi-local algebras. These are classes of C^{*}-algebras that are used to describe infinite systems of statistical mechanics. We start with the definition.
A directed set $I=(I, \prec)^{8}$ is said to possess an orthogonality relation \perp if the following properties hold:
(a) if $\alpha \in I$, then there is $\beta \in I$ with $\alpha \perp \beta$.
(b) if $\alpha \prec \beta$ and $\beta \perp \gamma$, then $\alpha \perp \gamma$.
(c) if $\alpha \perp \beta$ and $\alpha \perp \gamma$, then there is $\delta \in I$ such that $\alpha \perp \delta$ and $\gamma, \beta \prec \delta$.

Example 2.3.1. The following are intrinsic examples for a directed set with an orthogonality relation:

1. Let $I:=$ bounded open subsets of \mathbb{R}^{n} or $I:=$ finite subsets of \mathbb{Z}^{n} directed by inclusion:

$$
A \prec B: \Longleftrightarrow A \subset B \quad \text { and } \quad A \perp B: \Longleftrightarrow A \cap B=\emptyset
$$

In (c) choose $\delta=\beta \cup \gamma$

[^6]2. Let H be a vector space over \mathbb{R} with a non-degenerated symplectic bilinear form ${ }^{9} b$ and $I:=$ set of linear subspaces of H directed by inclusion as in 1 . Put
$$
L \perp G: \Longleftrightarrow b(\ell, g)=0 \quad \text { for all } \ell \in L \text { and } g \in G
$$

In (c) choose $\delta=\operatorname{span}\{\beta, \gamma\}$.
We also assume an abstract versions of the "union" or "span" in 1. and 2. of the above example. Let $\alpha, \beta \in I$, then we assume existence of a least upper bound denoted by $\alpha \vee \beta \in I$ with
(d) $\alpha \prec \alpha \vee \beta$ and $\beta \prec \alpha \vee \beta$.
(e) if $\alpha \prec \gamma$ and $\beta \prec \gamma$ then $\alpha \vee \beta \prec \gamma$.

Let \mathcal{A} be a C^{*}-algebra equipped with an involutive automorphism σ, i.e. $\sigma^{2}=$ id. Given $A \in \mathcal{A}$ we can define its even part A^{e} and odd part A^{o} with respect to σ :

$$
A^{e}=\frac{1}{2}\{A+\sigma(A)\} \quad \text { and } \quad A^{o}=\frac{1}{2}\{A-\sigma(A)\}
$$

such that $A=A^{e}+A^{o}$. Clearly it holds $\sigma\left(A^{e}\right)=A^{e}$ and $\sigma\left(A^{o}\right)=-A^{o}$. Moreover,

$$
\begin{aligned}
& \mathcal{A}^{e}:=\left\{A^{e}: A \in \mathcal{A}\right\}=C^{*} \text {-subalgebra of } \mathcal{A} . \\
& \mathcal{A}^{o}:=\left\{A^{o}: A \in \mathcal{A}\right\}=\text { Banach space }
\end{aligned}
$$

Definition 2.3.2 (quasi-local algebra). Let I be a directed index set with an orthogonality relation. A quasi-local algebra is a C^{*}-algebra \mathcal{A} with an involutive automorphism $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ and a net $\{\mathcal{A}\}_{\alpha \in I}$ of C^{*}-sub-algebras such that the following properties hold:
(a) if $\beta \prec \alpha$, then $\mathcal{A}_{\beta} \subset \mathcal{A}_{\alpha}$.
(b) all algebras \mathcal{A}_{α} have the common identity $e \in \mathcal{A}$.
(c) $\bigcup_{\alpha \in I} \mathcal{A}_{\alpha}$ is dense in \mathcal{A} (with respect to the norm topology).
(d) Each \mathcal{A}_{α} for $\alpha \in I$ is invariant under σ, i.e. $\sigma\left(\mathcal{A}_{\alpha}\right)=\mathcal{A}_{\alpha}$.
(e) With the commutator $[\cdot, \cdot]$ and the anti-commutator $\{\cdot, \cdot\}$ on \mathcal{A} and with $\alpha, \beta \in I$ such that $\alpha \perp \beta$ it holds:

- $\left[\mathcal{A}_{\alpha}^{e}, \mathcal{A}_{\beta}^{e}\right]=\{0\}$,
- $\left[\mathcal{A}_{\alpha}^{e}, \mathcal{A}_{\beta}^{o}\right]=\{0\}$,
- $\left\{\mathcal{A}_{\alpha}^{o}, \mathcal{A}_{\beta}^{o}\right\}=\{0\}$.

Remark 2.3.3. We may choose $\sigma=\mathrm{id}$, then property (d) simply reduces to

[^7]$$
\left[\mathcal{A}_{\alpha}, \mathcal{A}_{\beta}\right]=0 \quad \text { for all } \quad \alpha, \beta \in I \text { with } \alpha \perp \beta
$$

If I is the set of bounded open subsets of \mathbb{R}^{n} as in Example 2.3.1 1., then \mathcal{A}_{α} can be interpreted as the observables for a sub-system localized in $\alpha \subset \mathbb{R}^{n}$.
The corresponding quasi-local algebra describes the observables of the infinite system. The condition

$$
\left[\mathcal{A}_{\alpha}, \mathcal{A}_{\beta}\right]=0, \quad \alpha \perp \beta
$$

states that observations become independent if $\alpha \cap \beta=\emptyset$.
We now give some explicit examples for quasi-local algebras that play a role in statistical mechanics:

Example 2.3.4. (quasi-local algebras)

1. Let the index set $I:=\left\{\Lambda \subset \mathbb{Z}^{n}: \Lambda\right.$ is finite $\}$ be directed by inclusion and define the orthogonality relation $\Lambda_{1} \perp \Lambda_{2}: \Longleftrightarrow \Lambda_{1} \cap \Lambda_{2}=\emptyset$ for all $\Lambda_{1}, \Lambda_{2} \in I$.
Let $\Lambda \in I$ and assign to each $x \in \Lambda$ a finite dimensional Hilbert space H_{x}. Consider the tensor product Hilbert spaces H_{Λ} and a corresponding C^{*}-algebra \mathcal{A}_{Λ} :

$$
H_{\Lambda}:=\bigotimes_{x \in \Lambda} H_{x} \quad \text { and } \quad \mathcal{A}_{\Lambda}:=\mathcal{L}\left(H_{\Lambda}\right)=\text { bounded operators on } H_{\Lambda}
$$

The family of algebras $\left\{\mathcal{A}_{\Lambda}\right\}_{\Lambda \in I}$ is increasing: if $\Lambda_{1} \cap \Lambda_{2}=\emptyset$ then $H_{\Lambda_{1} \cup \Lambda_{2}}=H_{\Lambda_{1}} \otimes H_{\Lambda_{2}}$ and it holds

$$
\mathcal{A}_{\Lambda_{1}} \cong \mathcal{A}_{\Lambda_{1}} \otimes \operatorname{id}_{\Lambda_{2}}=\mathcal{L}\left(H_{\Lambda_{1}}\right) \otimes \operatorname{id}_{\Lambda_{2}} \subset \mathcal{L}\left(H_{\Lambda_{1}} \otimes H_{\Lambda_{2}}\right)=\mathcal{A}_{\Lambda_{1} \cup \Lambda_{2}}
$$

A quasi local algebra \mathcal{A} with $\sigma=\mathrm{id}$ is defined by the minimal norm completion of the normed algebra

$$
\bigcup_{\Lambda \in I} \mathcal{A}_{\Lambda} .
$$

If $\Lambda_{1} \cap \Lambda_{2}=\emptyset$ and $A_{j} \in \mathcal{A}_{\Lambda_{j}}$ where $j=1,2$, then property (e) follows from

$$
\begin{aligned}
{\left[A_{1}, A_{2}\right] } & =A_{1} A_{2}-A_{2} A_{1} \\
& =\left(A_{1} \otimes \mathrm{id}\right)\left(\mathrm{id} \otimes A_{2}\right)-\left(\mathrm{id} \otimes A_{2}\right)\left(A_{1} \otimes \mathrm{id}\right) \\
& =A_{1} \otimes A_{2}-A_{1} \otimes A_{2}=0
\end{aligned}
$$

Algebras of the above type where the index set I is countable frequently are called $U H F$ algebras ${ }^{10}$. They play a role in the study of quantum spin systems.
2. Let $(H,\langle\cdot, \cdot\rangle)$ be a Hilbert space and consider an index set

$$
I \subset\{M \subset H: M \text { is a closed non-empty subspace }\}
$$

which should be directed by inclusion and such that

$$
\bigcup_{M \in I} M \subset H
$$

[^8]is norm dense. Assume that usual orthogonality \perp with respect to the inner product defines an orthogonality relation on I in the previous sense.

Let $\mathcal{A}_{\mathrm{CAR}}(H)$ be the $C A R$-algebra over H generated by $\{a(f): f \in H\}$ with the conditions in Definition 2.2.1. For each $M \in I$ put

$$
\mathcal{A}_{\mathrm{CAR}}(M):=C^{*} \text {-algebra generated by } a(f) \text { with } f \in M
$$

Define an involutive automorphism σ on $\mathcal{A}_{\mathrm{CAR}}(H)$ via the requirement $\sigma(a(f))=-a(f)$, for all $f \in H$. Then

$$
\left(\mathcal{A}_{\mathrm{CAR}}(H),\left\{\mathcal{A}_{\mathrm{CAR}}(M)\right\}_{M \in I}\right)
$$

defines a quasi-local algebra (proof see [2] vol II, Proposition 5.2.6).
Exercise 2.3.5. With the notation in 2. and $M \in I$ let us write
$P^{o}(M):=$ odd polynomials in elements $a(f)$ and $a(g)$ where $f, g \in M$
$P^{e}(M):=$ even polynomials in elements $a(f)$ and $a(g)$ where $f, g \in M$.
Show that
(a) $P^{e}(M) \subset \mathcal{A}_{\mathrm{CAR}}^{e}(M)$ and $P^{o}(M) \subset \mathcal{A}_{\mathrm{CAR}}^{o}(M)$.
(b) the conditions (e) in Definition 2.3.2 are fulfilled if we replace there $\mathcal{A}_{\mathrm{CAR}}^{e}(M)$ by polynomial $P^{e}(M)$ and $\mathcal{A}_{\mathrm{CAR}}^{o}(M)$ by polynomial $P^{o}(M)$.
3. Let H be a vector space over \mathbb{R} equipped with a non-degenerated symplectic bilinear form $b: H \times H \rightarrow \mathbb{R}$. Define the index set

$$
I:=\{M \subset H: M \text { is a subspace }\}
$$

ordered by inclusion and with the orthogonality relation \perp in Example 2.3.1, 2.:

$$
M \perp N: \Longleftrightarrow b(\ell, g)=0 \quad \text { for all } \ell \in M \text { and } g \in N .
$$

In particular, it holds

$$
H=\bigcup_{M \in I} M
$$

Let $\mathcal{A}_{\mathrm{CCR}}(H)$ be the $C C R$-algbera over H generated by Weyl-operators $\{W(f): f \in H\}$ with the conditions in Definition 2.2.2. For $M \in I$ put

$$
\mathcal{A}_{\mathrm{CCR}}(M):=C^{*} \text {-algbera generated by } W(f) \text { with } f \in M .
$$

With the involutive automorphism $\sigma=\mathrm{id}$

$$
\left(\mathcal{A}_{\mathrm{CCR}}(H),\left\{\mathcal{A}_{\mathrm{CCR}}(M)\right\}_{M \in I}\right)
$$

defines a quasi-local algebra (proof, see [2] vol. II, Proposition 5.2.10), e,g if $\sigma(f, g)=0$, then

$$
W(f) W(g)=W(f+g)=W(g) W(f)
$$

Remark 2.3.6. The Examples 2.3.4 2. and 3. have different features. Whereas one always has equality $\mathcal{A}_{\mathrm{CAR}}(h)=\mathcal{A}_{\mathrm{CAR}}(H)$ for any dense subset h of the Hilbert space H it can be shown that

$$
\mathcal{A}_{\mathrm{CCR}}\left(H_{1}\right) \cong \mathcal{A}_{\mathrm{CCR}}\left(H_{2}\right)
$$

for $H_{1} \subset H_{2}$ exactly holds in the case where $H_{1}=H_{2}$.

2.4 States, representations and Gelfand-Segal construction

Let \mathcal{A} be a C^{*}-algebra. To simplify the proofs we assume that \mathcal{A} is unital with unit $e \in \mathcal{A}$. However, most of the results here are also true in general and in the proofs one may use so called approximate units which always exist (or an extension to a unital algebra).

We start with some remarks on self-adjoint functional calculus. Let $A=A^{*} \in \mathcal{A}$ be selfadjoint. Consider the commutative C^{*}-algebra \mathcal{A}_{A} which is generated by A and the unit $e \in \mathcal{A}$. According to Exercise 8 there is an isometric $*$-isomorphism

$$
\pi: \mathcal{A}_{A} \longrightarrow C(\sigma(A))
$$

where $C(\sigma(A))$ denotes the C^{*}-algebra of continuous functions on the spectrum $\sigma(A)$ of A and such that $\pi \circ p(A)=p$ for all polynomials. Given $f \in C(\sigma(A))$ we define

$$
\begin{equation*}
f(A):=\pi^{-1}(f) \in \mathcal{A}_{A} \subset \mathcal{A} \tag{2.4.1}
\end{equation*}
$$

Hence we have for $f, g \in C(\sigma(A))$:

$$
\begin{equation*}
(f g)(A)=f(A) g(A) \quad \text { and } \quad f(A)^{*}=\bar{f}(A) \tag{2.4.2}
\end{equation*}
$$

by using the fact that π^{-1} is a $*$-isomorphism.
Exercise 2.4.1. Let $A \in \mathcal{A}$ be selfadjoint, i.e. $A=A^{*}$. Show that $\sigma(A) \subset \mathbb{R}$.
Definition 2.4.2. An element $A \in \mathcal{A}$ is called positive if it is self-adjoint and $\sigma(A) \subset[0, \infty)$.
If $A \in \mathcal{A}$ is positive then we write $A \geq 0$ and by $A \geq B$ we mean that $A-B \geq 0$.
Exercise 2.4.3. Let $A \in \mathcal{A}$ be self-adjoint, i.e. $A=A^{*}$ with $\|A\| \leq 2$. Then $A \geq 0$ if and only if $\|e-A\| \leq 1$.

Exercise 2.4.4. A subset $\mathcal{C} \subset \mathcal{A}$ is called a "cone" if \mathcal{C} is invariant under multiplications with $\lambda \in(0, \infty)$. Show
(1) What are the positive elements of $\mathcal{A}=C(X)$ where X is a compact Hausdorff space?
(2) The positive elements of a C^{*}-algebra form a closed convex cone.

Hint: Use the characterization of positivity in Exercise 2.4.3.
(3) If $A, B \in \mathcal{A}$ are positive, then $A+B$ is positive.
(4) Elements of the form $A A^{*}$ are positive.

Exercise 2.4.5. Let $A \in \mathcal{A}$ be positive. Show that there exist a positive element $B \in \mathcal{A}$ such that $A=B^{2}$. We write $B=A^{\frac{1}{2}}$.
Hint: Use the above self-adjoint functional calculus.

2.4.1 Positive functional and states

We write $\mathcal{A}^{* 11}$ for the topological dual of \mathcal{A} consisting of all continuous linear functionals $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ and with norm

$$
\|\varphi\|_{\mathcal{A}^{*}}:=\sup \{|\varphi(A)|: A \in \mathcal{A} \text { and }\|A\|=1\}
$$

Example 2.4.6. Let X be a compact Hausdorff-space and let $\mathcal{A}=C(X)$. Then \mathcal{A}^{*} can be identified with the space of all complex Borel measures on X.

A linear functional φ is called positive if $\varphi\left(A^{*} A\right) \geq 0$ holds for all $A \in \mathcal{A}$. (Here we do not assume continuity of φ explicitely, it will be a consequence of positivity)

Definition 2.4.7 (state). A positive functional $\varphi \in \mathcal{A}^{*}$ with norm $\|\varphi\|=1$ is called state. We denote the set of all states in \mathcal{A}^{*} by $E_{\mathcal{A}}$.
Exercise 2.4.8. Each element $A \in \mathcal{A}$ with $\|A\| \leq 1$ can be decomposed in the form

$$
\begin{equation*}
A=B_{0}-B_{1}+i\left(B_{2}-B_{3}\right) \tag{2.4.3}
\end{equation*}
$$

where $B_{j} \in \mathcal{A}$ with $B_{j} \geq 0$ and $\left\|B_{j}\right\| \leq 1$ for $j=0, \cdots, 3$.
Proof. First, decompose A in real and imaginary part:

$$
A_{r}=\frac{1}{2}\left(A+A^{*}\right) \quad \text { and } \quad A_{i}:=\frac{1}{2 i}\left(A-A^{*}\right)
$$

both are selfadjoint, i.e. $A_{r}=A_{r}^{*}$ and $A_{i}=A_{i}^{*}$. We further decompose $A_{r}=A_{r,+}-A_{r,-}$ and $A_{i}=A_{i,+}-A_{i,-}$ into their "positive" and "negative parts"

$$
A_{r, \pm}=\frac{1}{2}\left(\left|A_{r}\right| \pm A_{r}\right):=f_{ \pm}\left(A_{r}\right) \quad \text { and } \quad A_{i, \pm}=\frac{1}{2}\left(\left|A_{i}\right| \pm A_{i}\right)=f_{ \pm}\left(A_{i}\right) .
$$

where $f_{ \pm}=(|x| \pm x) / 2$ maps $\sigma\left(A_{r}\right)$ and $\sigma\left(A_{i}\right)$ to $[0, \infty)$. Using the relation (2.4.2) and taking square root of $f_{ \pm}$the first assertion follows.

We show some simple properties of positive functionals. Note that the proof makes neither use of the closedness of \mathcal{A} nor of the C^{*}-property of the norm.

Lemma 2.4.9. Let $\varphi: \mathcal{A} \longrightarrow \mathbb{C}$ be positive and linear, then we have for all $A, B \in \mathcal{A}$:
(1) $\varphi\left(A^{*} B\right)=\overline{\varphi\left(B^{*} A\right)}$. In particular, with $B=e$ one has $\varphi\left(A^{*}\right)=\overline{\varphi(A)}$.
(2) $\left|\varphi\left(A^{*} B\right)\right|^{2} \leq \varphi\left(A^{*} A\right) \varphi\left(B^{*} B\right)$, (Cauchy-Schwarz inequality),

Proof. For all $\lambda \in \mathbb{C}$ it follows from the positivity of φ :

$$
0 \leq \varphi\left((\lambda A+B)^{*}(\lambda A+B)\right)=|\lambda|^{2} \varphi\left(A^{*} A\right)+\bar{\lambda} \varphi\left(A^{*} B\right)+\lambda \varphi\left(B^{*} A\right)+\varphi\left(B^{*} B\right)
$$

(1): Taking the imaginary part of both sides gives:

$$
0=\bar{\lambda}\left[\varphi\left(A^{*} B\right)-\overline{\varphi\left(B^{*} A\right)}\right]-\lambda\left[\overline{\varphi\left(A^{*} B\right)}-\varphi\left(B^{*} A\right)\right]=2 i \operatorname{Im}\left[\lambda\left[\varphi\left(A^{*} B\right)-\overline{\varphi\left(B^{*} A\right)}\right]\right]
$$

[^9]Since this is true for all $\lambda \in \mathbb{C}$, we conclude (1).
(2): Using (1) in the above inequality gives

$$
0 \leq|\lambda|^{2} \varphi\left(A^{*} A\right)+\bar{\lambda} \varphi\left(A^{*} B\right)+\lambda \overline{\varphi\left(A^{*} B\right)}+\varphi\left(B^{*} B\right)
$$

If $\varphi\left(A^{*} A\right)=0$ then we conclude that $\varphi\left(A^{*} B\right)=0$ and (2) follows trivially. Otherwise we choose

$$
\lambda:=-\varphi\left(A^{*} B\right) / \varphi\left(A^{*} A\right)
$$

which implies (2) again.
Proposition 2.4.10. Let φ be a positive linear functional on a unital C^{*}-algebra \mathcal{A}, then φ is continuous with $\varphi(e)=\|\varphi\|$ (e is the unit in \mathcal{A}).

Proof. Assume that φ is unbounded and consider

$$
\begin{equation*}
M:=\sup \{\varphi(A): A \geq 0,\|A\| \leq 1\} \in \mathbb{R}_{+} \cup\{\infty\} \tag{2.4.4}
\end{equation*}
$$

Assume that $M<\infty$ and let $A \in \mathcal{A}$ with $\|A\| \leq 1$. According to Exercise 2.4.8 we can decompose A in the form

$$
A=\left(B_{0}-B_{1}\right)+i\left(B_{2}-B_{3}\right)
$$

where $B_{j} \geq 0$ and $\left\|B_{j}\right\| \leq 1$. Hence, by the triangle inequality

$$
|\varphi(A)| \leq \sum_{j=0}^{3}\left|\varphi\left(B_{j}\right)\right| \leq 4 M<\infty
$$

which contradicts the assumption that φ is unbounded. Hence $M=\infty$ and we can choose a sequence $\left\{A_{j}\right\}_{j \in \mathbb{N}} \subset \mathcal{A}$ with $\left\|A_{j}\right\| \leq 1$ and

$$
\varphi\left(A_{j}\right)>2^{j}, \quad j \in \mathbb{N}
$$

Consider the partial sums $S_{m}:=\sum_{j=0}^{m} 2^{-j} A_{j} \in \mathcal{A}$ where $m \in \mathbb{N}$. Then

$$
S:=\lim _{m \rightarrow \infty} S_{m} \in \mathcal{A}
$$

exists and is positive (according to Exercise 2.4.3, (2)) and $S_{m} \leq S$ for all m. ${ }^{12}$ We have for all $m \in \mathbb{N}$:

$$
\infty>\varphi(S) \geq \varphi\left(S_{m}\right)=\sum_{j=0}^{m} \underbrace{2^{-j} \varphi\left(A_{j}\right)}_{>1}>m+1
$$

which is a contradiction. Hence φ must be bounded.
It remains to show that $\|\varphi\|=\varphi(e)$. Since $\|e\|=1$ we have $\varphi(e) \leq\|\varphi\|$ and the CauchySchwarz inequality (Lemma 2.4.9) shows:

$$
|\varphi(A)|^{2}=|\varphi(A e)|^{2} \leq \varphi\left(A A^{*}\right) \varphi(e) \leq\|\varphi\|\left\|A A^{*}\right\| \varphi(e)=\|\varphi\|\|A\|^{2} \varphi(e)
$$

Dividing both sides by $\|A\|^{2}$ and taking the supremum over $0 \neq A \in \mathcal{A}$ on the right hand side gives

$$
\|\varphi\|^{2} \leq\|\varphi\| \varphi(e)
$$

Hence $\|\varphi\| \leq \varphi(e)$ and we have proven equality $\|\varphi\|=\varphi(e)$.

[^10]Corollary 2.4.11. Let \mathcal{A} be a unital C^{*}-algebra and let $\varphi_{1}, \varphi_{2} \in \mathcal{A}^{*}$ be positive functionals. Then
(i) the sum $\varphi_{1}+\varphi_{2} \in \mathcal{A}^{*}$ is positive with norm $\left\|\varphi_{1}+\varphi_{2}\right\|_{\mathcal{A}^{*}}=\left\|\varphi_{1}\right\|_{\mathcal{A}^{*}}+\left\|\varphi_{2}\right\|_{\mathcal{A}^{*}}$,
(ii) the states over \mathcal{A} form a convex subset of \mathcal{A}^{*}.

Proof. (i): It is clear that $\varphi_{1}+\varphi_{2}$ is positive. Moreover, it follows from Proposition 2.4.10 that

$$
\left\|\varphi_{1}+\varphi_{2}\right\|_{\mathcal{A}^{*}}=\left(\varphi_{1}+\varphi_{2}\right)(e)=\varphi_{1}(e)+\varphi_{2}(e)=\left\|\varphi_{1}\right\|_{\mathcal{A}^{*}}+\left\|\varphi_{2}\right\|_{\mathcal{A}^{*}}
$$

(ii): let $\lambda \in[0,1]$ and assume that $\varphi_{1}, \varphi_{2} \in \mathcal{A}^{*}$ are states, i.e. $\left\|\varphi_{1}\right\|_{\mathcal{A}^{*}}=\left\|\varphi_{2}\right\|_{\mathcal{A}^{*}}=1$, then

$$
\left\|\lambda \varphi_{1}+(1-\lambda) \varphi_{2}\right\|_{\mathcal{A}^{*}}=\lambda\left\|\varphi_{1}\right\|_{\mathcal{A}^{*}}+(1-\lambda)\left\|\varphi_{2}\right\|_{\mathcal{A}^{*}}=1,
$$

where we have used the property (i). The convexity follows.
We can define a partial ordering on \mathcal{A}^{*} using the notion of "positivity".
Definition 2.4.12. Let $\varphi_{1}, \varphi_{2} \in \mathcal{A}^{*}$ be positive, then we write $\varphi_{1} \geq \varphi_{2}$ if $\varphi_{1}-\varphi_{2}$ is positive. In this case one says " φ_{1} majorizes φ_{2}.

Assume that $\varphi_{1}, \varphi_{2} \in \mathcal{A}^{*}$ are states and fix $\lambda \in[0,1]$. According to Corollary 2.4.11 we know that $\varphi:=\lambda \varphi_{1}+(1-\lambda) \varphi_{2}$ is a stated with

$$
\varphi \geq \lambda \varphi_{1} \quad \text { and } \quad \varphi \geq(1-\lambda) \varphi_{2}
$$

States that cannot be expressed as a non-trivial convex combination of two other states will play a special role.

Definition 2.4.13. A state $\varphi \in \mathcal{A}^{*}$ is called pure if the only positive linear functionals that are majorized by φ have the form $\lambda \varphi$ with $\lambda \in[0,1]$. We write $P_{\mathcal{A}} \subset E_{\mathcal{A}}$ for the set of pure states.

The pure states are the so called extreme points of $E_{\mathcal{A}}$. If K is a subset of a vector space X, then $\rho \in K$ is called extreme point of K if it cannot be expressed in the form

$$
\rho=\alpha \rho_{1}+(1-\alpha) \rho_{2}, \quad \text { with } \quad \alpha \in(0,1) \quad \text { and } \quad \rho_{1}, \rho_{2} \in K .
$$

In this framework the following is an important result:
Theorem 2.4.14 (Krein-Milman ${ }^{13}$). Let X be a topological vector space on which the dual X^{*} separates points. If K is a non-empty compact convex set in X, then K is the closed convex hull of its extreme points. In particular, the set of extreme points is non-empty.

Exercise 2.4.15. Let \mathcal{A} be a unital C^{*}-algebra. Then the set of states is a weak-*-compact convex subset of \mathcal{A}^{*}.

[^11]
2.4.2 Star-homomorphisms

Before introducing the important concept of representations we start with some general observations on $*$-homomorphism between C^{*}-algebras.

Let \mathcal{A}, \mathcal{B} be C^{*}-algebras with units $e_{\mathcal{A}}$ and $e_{\mathcal{B}}$, respectively. Consider a $*$-homomorphism

$$
\begin{equation*}
\pi: \mathcal{A} \longrightarrow \mathcal{B} \tag{2.4.5}
\end{equation*}
$$

We assume that If $\pi\left(e_{\mathcal{A}}\right)=e_{\mathcal{B}}$. Otherwise we replace \mathcal{B} by the C^{*}-subalgebra $\widetilde{\mathcal{B}} \subset \mathcal{B}$ defined by

$$
\widetilde{\mathcal{B}}:=\pi\left(e_{\mathcal{A}}\right) \mathcal{B} \pi\left(e_{\mathcal{A}}\right)=\left\{\pi\left(e_{\mathcal{A}}\right) B \pi\left(e_{\mathcal{A}}\right): B \in \mathcal{B}\right\}
$$

with the same norm as \mathcal{B} and the unit

$$
e_{\widetilde{\mathcal{B}}}:=\pi\left(e_{\mathcal{A}}\right) e_{\mathcal{B}} \pi\left(e_{\mathcal{A}}\right)=\pi\left(e_{\mathcal{A}}\right) .
$$

Assume that $A \in \mathcal{A}$ and $\lambda \in \rho_{\mathcal{A}}(A)=$ "resolvent set of \mathcal{A} ", i.e. $A-\lambda e_{\mathcal{A}} \in \mathcal{A}^{-1}$. Then

$$
\pi(A)-\lambda e_{\mathcal{B}}=\pi\left(A-\lambda e_{\mathcal{A}}\right) \in \mathcal{B}^{-1}
$$

The inverse is given by $\pi\left(\left(A-\lambda e_{\mathcal{A}}\right)^{-1}\right)$ and therefore $\lambda \in \rho_{\mathcal{B}}(\pi(A))$. In particular, we have for all $A \in \mathcal{A}$:

$$
\begin{equation*}
\sigma_{\mathcal{B}}(\pi(A)) \subset \sigma_{\mathcal{A}}(A) \tag{2.4.6}
\end{equation*}
$$

Here $\sigma_{\mathcal{A}}(\cdot)$ and $\sigma_{\mathcal{B}}(\cdot)$ denote the spectrum in \mathcal{A} and \mathcal{B}, respectively.
Proposition 2.4.16. The $*$-homomorphism π is (automatically) continuous and contractive, i.e. $\|\pi(A)\| \leq\|A\|$ for all $A \in \mathcal{A}$.

Proof. Let $A \in \mathcal{A}$ and note that $\pi\left(A A^{*}\right) \in \mathcal{B}$ is self-adjoint. It follows from the inclusion (2.4.6) and the property

$$
\|C\|=r(C)=\text { spectral radius of } C
$$

for all self-adjoint elements C of a C^{*}-algebra that

$$
\begin{aligned}
\|\pi(A)\|^{2}=\left\|\pi(A) \pi(A)^{*}\right\|=\left\|\pi\left(A A^{*}\right)\right\| & =\sup \left\{\lambda \in \sigma_{\mathcal{B}}\left(\pi\left(A A^{*}\right)\right)\right\} \\
& \leq \sup \left\{\lambda \in \sigma_{\mathcal{A}}\left(A A^{*}\right)\right\}=\left\|A A^{*}\right\|=\|A\|^{2}
\end{aligned}
$$

By taking the square root on both sides the assertion follows.
Let \mathcal{A} and \mathcal{B} be commutative unital C^{*}-algebras with maximal ideal spaces $M(\mathcal{A})$ and $M(\mathcal{B})$, respectively (interpreted as multiplicative functionals). Let $\pi: \mathcal{A} \rightarrow \mathcal{B}$ be an injective *-homomorphism which maps the unit $e_{\mathcal{A}}$ in \mathcal{A} to the unit $e_{\mathcal{B}}$ in \mathcal{B}. Then π induces a map

$$
\begin{equation*}
\pi^{t}: M(\mathcal{B}) \rightarrow M(\mathcal{A}): m \mapsto \pi^{t}(m):=m \circ \pi \tag{2.4.7}
\end{equation*}
$$

which is continuous with respect to the weak-*-topology. Since $M(\mathcal{B})$ is weak-*-compact, it follows that the range $\pi^{t}(M(\mathcal{A}))$ is compact in $M(\mathcal{B})$ and, in particular, closed.

Lemma 2.4.17. Under the above assumption it follows that the map π^{t} in (2.4.7) is surjective, i.e. $\pi^{t}(M(\mathcal{B}))=M(\mathcal{A})$.

Proof. Assume that $X:=M(\mathcal{A}) \backslash \pi^{t}(M(\mathcal{B})) \neq \emptyset$ and let $m_{0} \in X$. Since X is open we can choose two non-trivial functions $f, g \in C(M(\mathcal{A}))$ with $f \cdot g \equiv 0$ and

$$
\begin{equation*}
f(m) \equiv 1 \quad \text { for all } m \in \pi^{t}(M(\mathcal{B})) \tag{2.4.8}
\end{equation*}
$$

Consider the Gelfand transform

$$
\Gamma: \mathcal{A} \longrightarrow C(M(\mathcal{A})) \ni f, g
$$

which is a $*$-isomorphism. Define $A:=\Gamma^{-1}(f) \in \mathcal{A}$ and $0 \neq B=\Gamma^{-1}(g) \in \mathcal{A}$. Then we have

$$
\begin{equation*}
A B=\Gamma^{-1}(f) \Gamma^{-1}(g)=\Gamma^{-1}(f \cdot g)=0 \tag{2.4.9}
\end{equation*}
$$

and for all $m \in M(\mathcal{B})$ it follows from (2.4.7)

$$
m(\pi(A))=\pi^{t}(m)(A)=\Gamma(A)\left(\pi^{t}(m)\right)=f\left(\pi^{t}(m)\right)=1
$$

Therefore $\pi(A)$ does not belong to any maximal ideal of \mathcal{B} and as a consequence must be invertible. Applying the inverse to both sides of

$$
\pi(A) \pi(B)=\pi(A B)=\pi(0)=0
$$

gives $\pi(B)=0$ and by injectivity $B=0$ which is a contradiction.
Corollary 2.4.18. Let \mathcal{A} and \mathcal{B} be unital C^{*}-algebras (not necessarily commutative) and assume that $\pi: \mathcal{A} \rightarrow \mathcal{B}$ an injective $*$-homomorphism. Then π is isometric, i.e.

$$
\|\pi(A)\|=\|A\|, \quad \text { for all } \quad A \in \mathcal{A}
$$

Proof. First assume that $A=A^{*} \in \mathcal{A}$ is self-adjoint. Without restriction we can assume that $\pi\left(e_{\mathcal{A}}\right)=e_{\mathcal{B}}$. Denote by \mathcal{A}_{A} and $\mathcal{B}_{\pi(A)}$ the commutative C^{*}-subalgebras of \mathcal{A} and \mathcal{B} generated by A and $\pi(A)$, respectively. According to Lemma 2.4.17 we have

$$
\begin{aligned}
\|\pi(A)\|=r(\pi(A)) & =\sup \{m(\pi(A)): m \in M(\mathcal{B})\} \\
& =\sup \left\{\pi^{t}(m)(A): m \in M(\mathcal{B})\right\} \\
& =\sup \left\{\widetilde{m}(A): \widetilde{m} \in \pi^{t}(M(\mathcal{B}))\right\} \\
& =\sup \{\widetilde{m}(A): \widetilde{m} \in M(\mathcal{A})\}=r(A)=\|A\| .
\end{aligned}
$$

For general $A \in \mathcal{A}$ this observation implies

$$
\|A\|^{2}=\left\|A^{*} A\right\|=\left\|\pi\left(A A^{*}\right)\right\|=\left\|\pi(A) \pi(A)^{*}\right\|=\|\pi(A)\|^{2}
$$

and the assertion follows by taking the square root.
Corollary 2.4.19. Let $\pi: \mathcal{A} \rightarrow \mathcal{B}$ be $a *$-homomorphism, then the range $\pi(A)$ is a C^{*}-algebra and in particular closed.

Proof. According to Corollary 2.4.18 the induced map

$$
\tilde{\pi}: \mathcal{A} / \operatorname{ker} \pi \longrightarrow \mathcal{B}
$$

is an injective isometric $*$-homomorphism. Since the quotient $\mathcal{A} /$ ker has the structure of a unital C^{*}-algebra the assertion follows.
Exercise 2.4.20. Assume that $\pi(A)>0$ for all $A \in \mathcal{A}$ with $A>0$. Show that π is isometric.

2.4.3 Representations

In order to show the connection between the abstract C^{*}-algebras and Hilbert space operators we introduce the concept of representation. A link between representations and states is then given by the Gelfand-Naimark-Segal construction which we explain in this section.

Consider a complex Hilbert space H and choose $\mathcal{B}:=\mathcal{L}(H)$. Let

$$
\pi: \mathcal{A} \longrightarrow \mathcal{L}(H)
$$

be a $*$-homomorphism.
Definition 2.4.21. The pair (H, π) is called a representation of the C^{*}-algebra \mathcal{A}.
(i) A representation is called faithful if π is even a $*$-isomorphism (then it is isometric!).
(ii) Two representations π and ρ of \mathcal{A} on H_{1} and H_{2}, respectively, are called (unitarily) equivalent, if there is a unitary operator $U: H_{1} \rightarrow H_{2}$ with

$$
U \pi(x) U^{*}=\rho(x), \quad \text { for all } x \in \mathcal{A} .
$$

We will often identify unitarily equivalent representations.
Let $\mathcal{M} \subset \mathcal{L}(H)$ be a set of bounded operator on H. A vector $\Omega \in H$ is called cyclic for \mathcal{M} if the inclusion $\{A \Omega: A \in \mathcal{M}\} \subset H$ is dense. We define
Definition 2.4.22. A "cyclic representation" of a C^{*}-algebra \mathcal{A} by definition is a triple (H, π, Ω), where (H, π) is a representation of \mathcal{A} and $\Omega \in H$ is cyclic for $\pi(\mathcal{A})$.
Exercise 2.4.23. Let (H, π, Ω) be a cyclic representation. Then (H, π) is non-degenerate in the sense that

$$
\{f \in H: \pi(A) f=0 \text { for all } A \in \mathcal{A}\}=0
$$

Definition 2.4.24 (Commutant). The commutant \mathcal{M}^{\prime} of \mathcal{M} is defined by

$$
\mathcal{M}^{\prime}:=\{C \in \mathcal{L}(H):[C, M]=C M-M C=0 \quad \text { for all } M \in \mathcal{M}\}
$$

A subspace $G \subset H$ is said to be invariant under \mathcal{M} if

$$
T(G) \subset G, \quad \text { for all } T \in \mathcal{M}
$$

We call \mathcal{M} irreducible if the only closed invariant subspaces $G \subset H$ of \mathcal{M} are $G=\{0\}$ and $G=H$. There are some relation between these notions. Without a proof we mention:
Proposition 2.4.25. Let $\mathcal{M} \subset \mathcal{L}(H)$ be a"self-adjoint" subset, i.e. $M \in \mathcal{M}$ implies that $M^{*} \in \mathcal{M}$. Then (i) and (ii) are equivalent
(i) \mathcal{M} is irreducible
(ii) $\mathcal{M}^{\prime}=\{\lambda \cdot \mathrm{id}: \lambda \in \mathbb{C}\}$,

Proof. See [8].
Exercise 2.4.26. Proof (ii) \Longrightarrow (i) of Proposition 2.4.25.
Definition 2.4.27. A representation (H, π) of a C^{*}-algebra \mathcal{A} is called irreducible if the set $\pi(\mathcal{A}) \subset \mathcal{L}(H)$ is irreducible.
Exercise 2.4.28. If (H, π) is an irreducible representation of the C^{*}-algebra \mathcal{A}, then each vector $\xi \in H$ is cyclic or $\pi(\mathcal{A})=\{0\}$ and $H=\mathbb{C}$.

2.4.4 The GNS-construction

The GNS construction was discovered independently by Gelfand/Naimark and by I. Segal. It provides a method to construct representations of C^{*}-algebras with the help of positive linear functionals.

Let \mathcal{A} be a C^{*}-algebra with positive linear functional $\varphi: \mathcal{A} \rightarrow \mathbb{C}$, i.e. $\varphi \in \mathcal{A}^{*}$. We put a pre-inner product on \mathcal{A} by

$$
\langle A, B\rangle_{\varphi}:=\varphi\left(A^{*} B\right)
$$

(see Lemma 2.4.9). We define

$$
\mathcal{N}_{\varphi}:=\left\{N \in \mathcal{A}: \varphi\left(N^{*} N\right)=0\right\} .
$$

Lemma 2.4.29. \mathcal{N}_{φ} is a closed left ideal of \mathcal{A}, i.e. $A N \in \mathcal{N}_{\varphi}$ for all $A \in \mathcal{A}$ and $N \in \mathcal{N}_{\varphi}$.
Proof. As a preparation for the proof we show that for all $A, B \in \mathcal{A}$ we have

$$
\begin{equation*}
\varphi\left(A^{*} B^{*} B A\right) \leq\|B\|^{2} \varphi\left(A^{*} A\right) \tag{2.4.10}
\end{equation*}
$$

In fact, since $\sigma\left(B^{*} B\right) \subset\left[0,\|B\|^{2}\right]$ it follows that $B^{*} B-\|B\|^{2} e \leq 0$ and therefore

$$
\begin{equation*}
\|B\|^{2} A^{*} A-A^{*} B^{*} B A=A^{*} \underbrace{\left(\|B\|^{2} e-B^{*} B\right)}_{\text {is of form } C^{*} C \geq 0} A=(C A)^{*} C A \geq 0 \tag{2.4.11}
\end{equation*}
$$

Since φ is positive we find that (2.4.10) holds. Let $N \in \mathcal{N}_{\varphi}$ and $A \in \mathcal{A}$ then $A N \in \mathcal{N}_{\varphi}$ follows by applying (2.4.10) from:

$$
0 \leq \varphi\left((A N)^{*}(A N)\right)=\varphi\left(N^{*} A^{*} A N\right) \leq \underbrace{\varphi\left(N^{*} N\right)}_{=0}\left\|A^{*} A\right\|=0 .
$$

By using the Cauchy-Schwarz inequality again one easily shows that \mathcal{N}_{φ} is a linear space and closedness follows from the continuity of φ.

According to Lemma 2.4.29 we can consider the quotient algebra

$$
\mathcal{A} / \mathcal{N}_{\varphi}=\left\{\widehat{A}:=A+\mathcal{N}_{\varphi}: A \in \mathcal{A}\right\}
$$

with the inner product (for simplicity we use the same notation as before):

$$
\begin{equation*}
\langle\widehat{A}, \widehat{B}\rangle_{\varphi}:=\varphi\left(A^{*} B\right) \tag{2.4.12}
\end{equation*}
$$

Exercise 2.4.30. Check that the inner-product (2.4.12) is well-defined on the quotient $\mathcal{A} / \mathcal{N}_{\varphi}$.
Definition 2.4.31. We write H_{φ} for the Hilbert space completion of $\left(\mathcal{A} / \mathcal{N}_{\varphi},\langle\cdot, \cdot\rangle_{\varphi}\right)$ which then is a Hilbert space.

Our next aim is to define a representation of \mathcal{A} on H_{φ}. The quotient $\mathcal{A} / \mathcal{N}_{\varphi}$ can be identified with a closed subspace of H_{φ}. For any given $A \in \mathcal{A}$ we define $\pi_{\varphi}(A): \mathcal{A} / \mathcal{N}_{\varphi} \rightarrow \mathcal{A} / \mathcal{N}_{\varphi}$ by

$$
\begin{equation*}
\pi_{\varphi}(A)\left(B+\mathcal{N}_{\varphi}\right):=A B+\mathcal{N}_{\varphi} \tag{2.4.13}
\end{equation*}
$$

Since \mathcal{N}_{φ} is a left ideal in \mathcal{A} it is clear that $\pi_{\varphi}(A)$ is well-defined. We show that $\pi_{\varphi}(A)$ is continuous on $\mathcal{A} / \mathcal{N}_{\varphi}$ with respect to the norm $\|\cdot\|_{\varphi}$ induced by the inner-product $\langle\cdot, \cdot\rangle_{\varphi}$.

$$
\begin{aligned}
\left\|\pi_{\varphi}(A)(\widehat{B})\right\|_{\varphi}^{2} & =\left\|A B+\mathcal{N}_{\varphi}\right\|_{\varphi}^{2} \\
& =\varphi\left((A B)^{*} A B\right) \\
& =\varphi\left(B^{*} A^{*} A B\right) \\
& \leq\left\|A^{*} A\right\| \varphi\left(B^{*} B\right)=\|A\|^{2}\|\widehat{B}\|_{\varphi}^{2}
\end{aligned}
$$

The inequality follows from (2.4.10). Hence $\pi_{\varphi}(A)$ extends to a bounded operator on the completion H_{φ} with

$$
\left\|\pi_{\varphi}(A)\right\|_{\varphi} \leq\|A\|
$$

and clearly the assignment

$$
\pi_{\varphi}: \mathcal{A} \longrightarrow \mathcal{L}\left(H_{\varphi}\right): A \mapsto \pi_{\varphi}(A)
$$

gives a representation of \mathcal{A} on H_{φ} (in particular we have $\pi_{\varphi}\left(A_{1}\right) \pi_{\varphi}\left(A_{2}\right)=\pi_{\varphi}\left(A_{1} A_{2}\right)$.)
Definition 2.4.32 (GNS-representation). $\left(H_{\varphi}, \pi_{\varphi}\right)$ is called GNS-representation associated with φ.

We show that the GNS-representation is cyclic. Put $\xi_{\varphi}:=\pi_{\varphi}\left(e_{\mathcal{A}}\right)=e_{\mathcal{A}}+\mathcal{N}_{\varphi}=\widehat{e_{\mathcal{A}}} \in H_{\varphi}$. Then we have for all $A \in \mathcal{A}$

$$
\begin{equation*}
\left\langle\xi_{\varphi}, \pi_{\varphi}(A) \xi_{\varphi}\right\rangle_{\varphi}=\left\langle\widehat{e_{\mathcal{A}}}, \widehat{A}\right\rangle_{\varphi}=\varphi\left(e_{\mathcal{A}}^{*} A\right)=\varphi(A) \tag{2.4.14}
\end{equation*}
$$

and due to Proposition 2.4.10 we find

$$
\left\|\xi_{\varphi}\right\|_{\varphi}^{2}=\varphi\left(e_{\mathcal{A}}\right)=\|\varphi\|_{\mathcal{A}^{*}}
$$

Definition 2.4.33. States of the form $\pi(A)=\langle\Omega, \pi(A) \Omega\rangle$ where (H, π) is a representation of a C^{*}-algebra \mathcal{A} and $\Omega \in H$ are called vector states.

Proposition 2.4.34. The triple $\left(H_{\varphi}, \pi_{\varphi}, \xi_{\varphi}\right)$ defines a cyclic representation of \mathcal{A}.
Proof. By definition we need to show that

$$
\left\{\pi_{\varphi}(A) \xi_{\varphi}: A \in \mathcal{A}\right\}=\left\{A+\mathcal{N}_{\varphi}: A \in \mathcal{A}\right\}=\mathcal{A} / \mathcal{N}_{\varphi}
$$

is dense in H_{φ}. But this is clear since H_{φ} is the completion of $\mathcal{A} / \mathcal{N}_{\varphi}$.
Exercise 2.4.35. Let $\mathcal{A}:=\mathbb{C}^{n \times n}=" C^{*}$-algebra of $n \times n$ complex matrices". On \mathcal{A} consider the trace functional $\varphi_{\operatorname{tr}}: \mathcal{A} \rightarrow \mathbb{C}$ defined by the usual matrix trace

$$
\varphi_{\operatorname{tr}}(A)=\operatorname{trace}(A), \quad A \in \mathcal{A}
$$

(a) Show that $\varphi_{\operatorname{tr}}$ is a positive linear functional on \mathcal{A}.
(b) Give an explicit description of the GNS-representation $\left(H_{\varphi_{\mathrm{tr}}}, \pi_{\varphi_{\mathrm{tr}}}, \xi_{\varphi_{\mathrm{tr}}}\right)$.

The GNS-construction gives is a relation between the notions "pure state" and "irreducible representation".

Theorem 2.4.36. Let \mathcal{A} be a unital C^{*}-algebra with a state φ and corresponding $G N S$-representation $\left(H_{\varphi}, \pi_{\varphi}, \xi_{\varphi}\right)$. Then (a) and (b) are equivalent:
(a) the representation $\left(H_{\varphi}, \pi_{\varphi}\right)$ is irreducible
(b) φ is a pure state (extreme point of $E_{\mathcal{A}}$).

Proof. (a) $\Longrightarrow(\mathrm{b})$: Assume that (a) holds and φ is not a pure state. Then we find a state ω not of the form $\omega=\lambda \varphi$ where $\lambda \in[0,1]$ with $\omega \leq \varphi$. The Cauchy-Schwarz inequality implies for all $A, B \in \mathcal{A}$:

$$
\begin{aligned}
\left|\omega\left(B^{*} A\right)\right|^{2} & \leq \omega\left(B^{*} B\right) \omega\left(A^{*} A\right) \\
& \leq \varphi\left(B^{*} B\right) \varphi\left(A^{*} A\right) \\
& =\|\widehat{B}\|_{\varphi}^{2}\|\widehat{A}\|_{\varphi}^{2} \\
& =\left\|\pi_{\varphi}(B) \xi_{\varphi}\right\|_{\varphi}^{2}\left\|\pi_{\varphi}(A) \xi_{\varphi}\right\|_{\varphi}^{2} .
\end{aligned}
$$

Therefore the assignment

$$
\mathcal{A} / \mathcal{N}_{\varphi} \times \mathcal{A} / \mathcal{N}_{\varphi} \longrightarrow \mathbb{C}:\left(\pi_{\varphi}(B) \xi_{\varphi}, \pi_{\varphi}(A) \xi_{\varphi}\right) \mapsto \omega\left(B^{*} A\right)
$$

is continuous w.r. to $\|\cdot\|_{\varphi}$ and extends to a bounded bilinear form $S: H_{\varphi} \times H_{\varphi} \longrightarrow \mathbb{C}$. Hence we can choose a bounded operator $T \in \mathcal{L}\left(H_{\varphi}\right)$ such that

$$
\left\langle\pi_{\varphi}(B) \xi_{\varphi}, T \pi_{\varphi}(A) \xi_{\varphi}\right\rangle_{\varphi}=S\left(\pi_{\varphi}(B) \xi_{\varphi}, \pi_{\varphi}(A) \xi_{\varphi}\right)=\omega\left(B^{*} A\right)
$$

If there was $\lambda \in \mathbb{R}$ such that $T=\lambda \cdot$ id then we had

$$
\lambda \varphi\left(A^{*} A\right)=\left\langle\pi_{\varphi}(A) \xi_{\varphi}, \lambda \pi_{\varphi}(A) \xi_{\varphi}\right\rangle_{\varphi}=\omega\left(A^{*} A\right)
$$

with $\lambda \in[0,1]$ which contradicts our above assumption. Fix $A, B, C \in \mathcal{A}$, then we have

$$
\begin{aligned}
\langle\pi_{\varphi}(B) \xi_{\varphi}, T \overbrace{\pi_{\varphi}(C) \pi_{\varphi}(A)}^{=\pi_{\varphi}(C A)} \xi_{\varphi}\rangle_{\varphi} & =\omega\left(B^{*} C A\right) \\
& =\omega\left(\left(C^{*} B\right)^{*} A\right) \\
& =\left\langle\pi_{\varphi}\left(C^{*} B\right) \xi_{\varphi}, T \pi_{\varphi}(A) \xi_{\varphi}\right\rangle_{\varphi} \\
& =\left\langle\pi_{\varphi}(B) \xi_{\varphi}, \pi_{\varphi}(C) T \pi_{\varphi}(A) \xi_{\varphi}\right\rangle_{\varphi} .
\end{aligned}
$$

Since A and B were chosen arbitrarily we conclude that T commutes with all elements in $\pi_{\varphi}(\mathcal{A}) \subset \mathcal{L}\left(H_{\varphi}\right)$. In other words $\lambda \cdot \mathrm{id} \neq T$ is in the commutant $\pi_{\varphi}(\mathcal{A})^{\prime} \subset \mathcal{L}\left(H_{\varphi}\right)$ and according to Proposition 2.4.25, (i) \Longrightarrow (ii) the representation π_{φ} cannot be irreducible. Contradiction.
$(\mathrm{b}) \Longrightarrow(\mathrm{a})$: No proof here (requires the notation of spectral projections).
As for the uniqueness of the $G N S$-construction up one can say the following
Exercise 2.4.37. With the above notation let $(\tilde{H}, \tilde{\pi}, \tilde{\xi})$ be another cyclic representation of the unital C^{*}-algebra \mathcal{A} such that $\varphi(A)=\langle\widetilde{\xi}, \widetilde{\pi}(A) \widetilde{\xi}\rangle_{\widetilde{H}}$ for all $A \in \mathcal{A}$, cf. (2.4.14).
(a) Show that there is a unitary operator $U: \widetilde{H} \rightarrow H$ which sets up a unitary equivalence between π_{φ} and $\widetilde{\pi}$.

The following result (which we state without a proof) sometimes also is called the GelfandNaimark theorem (cf. Theorem 2.1.18).

Theorem 2.4.38 (Gelfand-Naimark). If \mathcal{A} is a C^{*}-algebra, then \mathcal{A} has a faithful representation, i.e. \mathcal{A} is isometrically isomorphic to a concrete C^{*}-algbera of operators on a Hilbert space H. If \mathcal{A} is separable, then H may be chosen separable.

2.4.5 The GNS-construction for a matrix algebra

(see Robert's lecture)

Chapter 3

Equilibrium States and KMS condition

(see Robert's lecture)

Chapter 4

Ising model in $2 d$

Consider a square lattice $\Lambda \subset \mathbb{R}^{2}$ with n rows and n columns, i.e we have $N=n^{2}$ lattice points.
(i) The spin variable is a function $\Lambda \ni p \mapsto s_{p} \in\{ \pm 1\}$.
(ii) A configuration of the system is given by

$$
S=\left\{s_{p}: p \in \Lambda\right\} .
$$

(iii) The energy in the configuration state S has the form

$$
\begin{equation*}
E_{I}(S)=-\sum_{\langle p q\rangle} \epsilon_{p q} s_{p} s_{q}-B \sum_{p=1}^{N} s_{p} . \tag{4.0.1}
\end{equation*}
$$

Here

$$
\begin{aligned}
\langle p q\rangle & =\langle q p\rangle:=\text { direct neighbors in } \Lambda, \\
B & =\text { exterior magnetic field, } \\
\epsilon_{p q} & =\text { interaction energy between } p \text { and } q .
\end{aligned}
$$

The partition function is given by

$$
\begin{equation*}
Q_{I}(B, T)=\sum_{S} e^{-\beta E_{I}(S)}, \quad \text { with } \quad \beta=\frac{1}{k T} \tag{4.0.2}
\end{equation*}
$$

The sum is taken over all $2^{N}=\left|\left\{S=\left(s_{1}, \cdots, s_{N}\right): s_{p}= \pm 1\right\}\right|$ configurations S. The Helmholtz free energy has the form

$$
\begin{equation*}
A_{I}(B, T)=-k T \log Q_{I}(B, T)=-\beta^{-1} \log Q_{I}(B, T) \tag{4.0.3}
\end{equation*}
$$

Goal of this section: Calculate the thermodynamical limit for the two dimensional Ising model ("Onsager solution" for the Ising model)

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \log Q_{I}(B, T), \quad N=n^{2} \tag{4.0.4}
\end{equation*}
$$

and observe a phase transition. ${ }^{1}$

[^12]
Simplifications:

(1) Assume that $\epsilon_{p q}=\epsilon>0$ (ferromagnetism) is independent of the pair $\langle p q\rangle$.
(2) Pose boundary conditions: add one column and one row to the right and to the bottom which has the same configuration as the first column and the first row, respectively.

Some notation: With $\alpha \in\{1, \cdots, n+1\}$ we write $R_{\alpha}=\left(s_{\alpha, 1}, \cdots, s_{\alpha, n}\right)$ for the spin coordinates of the α-th row of Λ. It follows from (2) that

$$
R_{1}=R_{n+1} \quad \text { and } \quad s_{\alpha, 1}=s_{\alpha, n+1}, \quad \text { for } \alpha=1, \cdots n
$$

- Interaction energies:

$$
\begin{array}{rlr}
E_{I}\left(R_{\alpha}, R_{\alpha+1}\right)=-\epsilon \sum_{k=1}^{n} s_{\alpha, k} s_{\alpha+1, k} & \text { (between neighboring rows) } \\
E_{I}\left(R_{\alpha}\right)=-\epsilon \sum_{k=1}^{n} s_{\alpha, k} s_{\alpha, k+1}-B \sum_{k=1}^{n} s_{\alpha, k} \quad \text { (within the } \alpha \text {-th row). }
\end{array}
$$

If the configuration S of the system is determined by the rows R_{1}, \cdots, R_{n}, then we can write the energy $E_{I}(S)$ in (4.0.1) as

$$
E_{I}(S)=\sum_{\alpha=1}^{n}\left[E_{I}\left(R_{\alpha}, R_{\alpha+1}\right)+E_{I}\left(R_{\alpha}\right)\right] .
$$

The partition functions takes the form

$$
Q_{I}(B, T)=\sum_{R_{1}} \cdots \sum_{R_{n}} \exp \left\{-\beta \sum_{\alpha=1}^{n}\left[E_{I}\left(R_{\alpha}, R_{\alpha+1}\right)+E_{I}\left(R_{\alpha}\right)\right]\right\} .
$$

Strategy: Express this complicated sum in form of a "matrix trace" using the periodic boundary conditions with respect to the rows (i.e. $R_{1}=R_{n+1}$).
Consider the set

$$
\mathcal{R}=\left\{\left(s_{1}, \cdots, s_{n}\right): s_{p}= \pm 1\right\}=\text { "possible configurations of the row } R ", \quad|\mathcal{R}|=2^{n} .
$$

Fix an order of \mathcal{R} and define a matrix $P \in \mathcal{M}_{2^{n}}(\mathbb{R})$ having the entries

$$
\langle R| P\left|R^{\prime}\right\rangle:=e^{-\beta\left[E_{I}\left(R, R^{\prime}\right)+E(R)\right]}, \quad R, R^{\prime} \in \mathcal{R} .
$$

We can rewrite $Q_{I}(B, T)$ in the form:

$$
\begin{aligned}
Q_{I}(B, T) & =\sum_{R_{1}} \cdots \sum_{R_{n}}\left\langle R_{1}\right| P\left|R_{2}\right\rangle\left\langle R_{2}\right| P\left|R_{3}\right\rangle \cdots\left\langle R_{n}\right| P\left|R_{1}\right\rangle \\
& =\sum_{R_{1}}\left\langle R_{1}\right| P^{n}\left|R_{1}\right\rangle=\operatorname{Trace} P^{n} .
\end{aligned}
$$

Assume that P can be diagonalized with eigenvalues $\left\{\lambda_{1}(n), \cdots, \lambda_{2^{n}}(n)\right\}$ (counted with multiplicities). Then P^{n} has the eigenvalues $\left\{\lambda_{1}(n)^{n}, \cdots, \lambda_{2^{n}}(n)^{n}\right\}$. Therefore

$$
\begin{equation*}
Q_{I}(B, T)=\text { Trace } P^{n}=\sum_{i=1}^{2^{n}} \lambda_{i}(n)^{n} \tag{4.0.5}
\end{equation*}
$$

Observation: Assume that $\lambda_{i}(n)$ for all i grow of the order e^{n} as $n \rightarrow \infty$ and let $\lambda_{\max }(n)$ denote the largest eigenvalue for fixed n. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \lambda_{\max }(n)=c \in \mathbb{R}
$$

Then we obtain from (4.0.5) that

$$
\begin{aligned}
\frac{1}{n} \log \lambda_{\max }(n) & =\frac{1}{n^{2}} \log \lambda_{\max }(n)^{n} \\
& \leq \frac{1}{n^{2}} \log \sum_{i=1}^{2^{n}} \lambda_{i}(n)^{n}=\frac{1}{N} \log Q_{I}(B, T) \\
& \leq \frac{1}{n^{2}} \log \left(2^{n} \lambda_{\max }(n)^{n}\right) \\
& =\frac{1}{n} \log \lambda_{\max }(n)+\frac{1}{n} \log 2
\end{aligned}
$$

This shows

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log Q_{I}(B, T)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \lambda_{\max }(n)
$$

Therefore, in order to calculate the limit (4.0.4) we will study the eigenvalues (in particular the largest one) of the matrices P as a function of n.

4.1 A decomposition of the transfer matrix

Let $R=\left(s_{1}, \cdots, s_{n}\right) \in \mathcal{R}$ and $R^{\prime}=\left(s_{1}^{\prime}, \cdots, s_{n}^{\prime}\right) \in \mathcal{R}$ be two configuration of rows. The entries of P are:

$$
\begin{align*}
\langle R| P\left|R^{\prime}\right\rangle & =e^{-\beta\left[E_{I}\left(R, R^{\prime}\right)+E_{I}(R)\right]} \\
& =\exp \left\{\beta \epsilon \sum_{k=1}^{n} s_{k} s_{k}^{\prime}+\beta \epsilon \sum_{k=1}^{n} s_{k} s_{k+1}+\beta B \sum_{k=1}^{n} s_{k}\right\} \\
& =\prod_{k=1}^{n} e^{\beta B s_{k}} \cdot \prod_{k=1}^{n} e^{\beta \epsilon s_{k} s_{k+1}} \cdot \prod_{k=1}^{n} e^{\beta \epsilon s_{k} s_{k}^{\prime}} . \tag{4.1.1}
\end{align*}
$$

define the matrix $Q_{1}=\left(\langle R| Q_{1}\left|R^{\prime}\right\rangle\right)_{R, R^{\prime} \in \mathcal{R}} \in \mathcal{M}_{2^{n}}(\mathbb{R})=2^{n} \times 2^{n}$-real matrices by

$$
\langle R| Q_{1}\left|R^{\prime}\right\rangle=\prod_{k=1}^{n} e^{\beta \epsilon s_{k} s_{k}^{\prime}}
$$

Let Q_{2} and Q_{3} be the diagonal matrices

$$
\begin{align*}
& \langle R| Q_{2}\left|R^{\prime}\right\rangle= \begin{cases}0, & \text { if } R \neq R^{\prime} \\
\prod_{k=1}^{n} e^{\beta \epsilon s_{k} s_{k+1}}, & \text { if } R=R^{\prime}\end{cases} \tag{4.1.2}\\
& \langle R| Q_{3}\left|R^{\prime}\right\rangle= \begin{cases}0, & \text { if } R \neq R^{\prime} \\
\prod_{k=1}^{n} e^{\beta B s_{k}}, & \text { if } R=R^{\prime} .\end{cases} \tag{4.1.3}
\end{align*}
$$

Note that $Q_{3}=I d$ in the case where $B=0$ (we will assume this later on in order to further simplify things).

Lemma 4.1.1. The matrix P decomposes into a product $P=Q_{3} Q_{2} Q_{1}$.
Proof. This follows from (4.1.1), the well-known formula for the matrix multiplication

$$
\langle R| Q_{3} Q_{2} Q_{1}\left|R^{\prime}\right\rangle=\sum_{\tilde{R}, \tilde{\tilde{R}}}\langle R| Q_{3}|\tilde{R}\rangle\langle\tilde{R}| Q_{2}|\tilde{\tilde{R}}\rangle\langle\tilde{\tilde{R}}| Q_{1}\left|R^{\prime}\right\rangle
$$

together with the definition of the diagonal matrices Q_{2} and Q_{3}.
Next: Find an expression of Q_{1} which we can handle more easily. We need some preparations:

Definition 4.1.2. Let $A_{1}, \cdots, A_{k} \in \mathcal{M}_{m}(\mathbb{C})$ with $k \in \mathbb{N}$ with entries $\langle i| A_{l}|j\rangle$ for $l=1, \cdots, k$. Define the tensor product $A_{1} \otimes A_{2} \otimes \cdots \otimes A_{k} \in \mathcal{M}_{m^{k}}(\mathbb{C})$ by ${ }^{2}$

$$
\left\langle\left(i_{1}, \cdots, i_{k}\right)\right| A_{1} \otimes \cdots \otimes A_{k}\left|\left(j_{1}, \cdots, j_{k}\right)\right\rangle:=\prod_{l=1}^{k}\left\langle i_{l}\right| A_{l}\left|j_{l}\right\rangle,
$$

where $\left(i_{1}, \cdots, i_{k}\right),\left(j_{1}, \cdots, j_{k}\right) \in\{1, \cdots, m\}^{k}$.
Lemma 4.1.3. Tensor products of matrices $A_{l}, B_{l} \in \mathcal{M}_{m}(\mathbb{C})$ multiply as follows:

$$
\left(A_{1} \otimes \cdots \otimes A_{k}\right) \cdot\left(B_{1} \otimes \cdots \otimes B_{k}\right)=\left(A_{1} \cdot B_{1}\right) \otimes\left(A_{2} \cdot B_{2}\right) \otimes \cdots \otimes\left(A_{k} \cdot B_{k}\right),
$$

where " ${ }^{\prime \prime}$ " denotes the usual matrix multiplication.
Proof. Exercise 24, homework 06.
Let now $m=2$ and consider in particular the matrix

$$
A:=\left(\begin{array}{cc}
e^{\beta \epsilon} & e^{-\beta \epsilon} \\
e^{-\beta \epsilon} & e^{\beta \epsilon}
\end{array}\right) \in \mathcal{M}_{2}(\mathbb{C})
$$

Lemma 4.1.4. Q_{1} can be expressed as n-fold tensor product of A, i.e. $Q_{1}=A \otimes \cdots \otimes A$.

[^13]Proof. With $R=\left(s_{1}, \cdots, s_{n}\right), R^{\prime}=\left(s_{1}^{\prime}, \cdots, s_{n}^{\prime}\right) \in \mathcal{R}$ we have from Lemma 4.1.3

$$
\langle R| \underbrace{A \otimes \cdots \otimes A}_{n \text { times }}\left|R^{\prime}\right\rangle=\prod_{k=1}^{n}\left\langle s_{k}\right| A\left|s_{k}^{\prime}\right\rangle=\prod_{k=1}^{n} e^{\beta \epsilon s_{k} s_{k}^{\prime}}=\langle R| Q_{1}\left|R^{\prime}\right\rangle .
$$

The assertion follows from the definition of Q_{1}.
Recall that the Pauli matrices X, Y, Z are defined by

$$
X=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \text { and } \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Let $I \in \mathcal{M}_{2}(\mathbb{C})$ denote the identity matrix.
Lemma 4.1.5. With $\theta \in \mathbb{R}$ we have $e^{\theta X}=\cosh (\theta) I+X \sinh (\theta)$. Moreover, A and X are related via

$$
\sqrt{2 \sinh (2 \epsilon \beta)} e^{\theta X}=A, \quad \text { where } \quad \tanh \theta=e^{-2 \beta \epsilon}
$$

Proof. Straightforward calculation, (see Exercise 24, (iii) of the homework assignment 6).
For $\alpha=1, \cdots, n$ we now put:

$$
\begin{aligned}
X_{\alpha} & =I \otimes \cdots \otimes X \otimes \cdots \otimes I \in \mathcal{M}_{2^{n}}(\mathbb{C}) \\
Y_{\alpha} & =I \otimes \cdots \otimes Y \otimes \cdots \otimes I \in \mathcal{M}_{2^{n}}(\mathbb{C}), \\
Z_{\alpha} & =I \otimes \cdots \otimes Z \otimes \cdots \otimes I \in \mathcal{M}_{2^{n}}(\mathbb{C}),
\end{aligned}
$$

(each tensor product has n factors and X, Y, Z are located at the α-th position).
Lemma 4.1.6. With $\theta>0$ such that $\tanh \theta=e^{-2 \beta \epsilon}$ it holds

$$
\begin{equation*}
Q_{1}=A \otimes \cdots \otimes A=[2 \sinh (2 \epsilon \beta)]^{\frac{n}{2}} e^{\theta\left(X_{1}+X_{2}+\cdots+X_{n}\right)} \tag{4.1.4}
\end{equation*}
$$

Proof. From Lemma 4.1.4 and Lemma 4.1.5 it follows that

$$
Q_{1}=A \otimes \cdots \otimes A=[2 \sinh (2 \epsilon \beta)]^{\frac{n}{2}} e^{\theta X} \otimes \cdots \otimes e^{\theta X}
$$

It remains to show that $e^{\theta X} \otimes \cdots \otimes e^{\theta X}=e^{\theta\left(X_{1}+X_{2}+\cdots+X_{n}\right)}$. It is clear that $e^{\theta X_{\alpha}}=I \otimes \cdots \otimes$ $e^{\theta X} \otimes \cdots \otimes$ where the $e^{\theta X}$ is at the α 's position. Hence it follows from Lemma 4.1.3 that

$$
e^{\theta X} \otimes \cdots \otimes e^{\theta X}=e^{\theta X_{1}} e^{\theta X_{2}} \cdots e^{\theta X_{n}}
$$

Since the matrices X_{α} and $X_{\alpha^{\prime}}$ commute for $\alpha \neq \alpha^{\prime}$ we see that the right hand side of the last equality coincides with $e^{\theta\left(X_{1}+X_{2}+\cdots+X_{n}\right)}$.

Instead of Q_{1} we further examine the matrix that appears on the right hand side of (4.1.4) and we set

$$
\begin{equation*}
\widetilde{Q}_{1}:=e^{\theta\left(X_{1}+\cdots+X_{n}\right)} \in \mathcal{M}_{2^{n}}(\mathbb{C}) \tag{4.1.5}
\end{equation*}
$$

The diagonal matrices Q_{2} and Q_{3} in (4.1.2) and (4.1.3) can be expressed in terms of Z_{α} as well.

Lemma 4.1.7. Let $Z_{n+1}:=Z_{1}$, then

$$
\begin{aligned}
& (a): Q_{2}=\prod_{\alpha=1}^{n} e^{\beta \epsilon Z_{\alpha} Z_{\alpha+1}} \\
& (b): Q_{3}=\prod_{\alpha=1}^{n} e^{\beta B Z_{\alpha}}
\end{aligned}
$$

Proof. (a): Since $Z^{2}=1$ we find for fixed $\alpha \in\{1, \cdots, n\}$ that

$$
e^{\beta \epsilon Z_{\alpha} Z_{\alpha+1}}=\cosh (\beta \epsilon) I+\sinh (\beta \epsilon) Z_{\alpha} Z_{\alpha+1} .
$$

Therefore $e^{\beta \epsilon Z_{\alpha} Z_{\alpha+1}}$ is diagonal with

$$
\begin{aligned}
& \left\langle\left(s_{1}, \cdots, s_{n}\right)\right| e^{\beta \epsilon Z_{\alpha} Z_{\alpha+1}}\left|\left(s_{1}^{\prime}, \cdots, s_{n}^{\prime}\right)\right\rangle= \\
& \quad=\delta_{s_{1}, s_{1}^{\prime}} \cdots \delta_{s_{n}, s_{n}^{\prime}} \begin{cases}\cosh (\beta \epsilon)+\sinh (\beta \epsilon)=e^{\beta \epsilon}, & \text { if } \operatorname{sgn}\left(s_{\alpha}\right)=\operatorname{sgn}\left(s_{\alpha+1}\right) \\
\cosh (\beta \epsilon)-\sinh (\beta \epsilon)=e^{-\beta \epsilon}, & \text { if } \operatorname{sgn}\left(s_{\alpha}\right) \neq \operatorname{sgn}\left(s_{\alpha+1}\right)\end{cases} \\
& =\delta_{s_{1}, s_{1}^{\prime}} \cdots \delta_{s_{n}, s_{n}^{\prime}} e^{\beta \epsilon s_{\alpha} s_{\alpha+1}} .
\end{aligned}
$$

Now, (a) follows from the definition (4.1.2).
(b): Follows by a similar argument from $e^{\beta B Z_{\alpha}}=\cosh (\beta B) I+\sinh (\beta B) Z_{\alpha}$ and (4.1.3).

Summarizing these calculation we have
Proposition 4.1.8. Let $\theta>0$ with $\tanh \theta=e^{-2 \beta \epsilon}$. Then the matrix $P \in \mathcal{M}_{2^{n}}(\mathbb{R})$ decomposes in the form

$$
P=Q_{3} Q_{2} Q_{1}=[2 \sinh (2 \epsilon \beta)]^{\frac{n}{2}} \prod_{\alpha=1}^{n} e^{\beta B Z_{\alpha}} \prod_{\alpha=1}^{n} e^{\beta \epsilon Z_{\alpha} Z_{\alpha+1}} e^{\theta\left(X_{1}+\cdots+X_{n}\right)}
$$

4.2 On spin representations of rotations

Consider the following $2 n$ matrices in $\mathcal{M}_{2^{n}}(\mathbb{C})$:

$$
\begin{equation*}
\Gamma_{2 \alpha}=X_{1} X_{2} \cdots X_{\alpha-1} Y_{\alpha} \quad \text { and } \quad \Gamma_{2 \alpha-1}=X_{1} X_{2} \cdots X_{\alpha-1} Z_{\alpha} \tag{4.2.1}
\end{equation*}
$$

where $\alpha=1, \cdots, n$. From Lemma 4.1.3 check that $X_{\alpha}, Y_{\alpha}, Z_{\alpha}$ fulfill the relations
I. $\alpha \neq \beta$: then $\left[X_{\alpha}, X_{\beta}\right]=\left[Y_{\alpha}, Y_{\beta}\right]=\left[Z_{\alpha}, Z_{\beta}\right]=0$ and $\left[X_{\alpha}, Y_{\beta}\right]=\left[X_{\alpha}, Z_{\beta}\right]=\left[Y_{\alpha}, Z_{\beta}\right]=0$.
II. For fixed $\alpha \in\{1, \cdots, n\}$ the matrices $Z_{\alpha}, Y_{\alpha}, Z_{\alpha}$ are involutive and anti-commute, i.e. it holds $Z_{\alpha}^{2}=Y_{\alpha}^{2}=Z_{\alpha}^{2}=I$ and

$$
\left\{X_{\alpha}, Y_{\alpha}\right\}=X_{\alpha} Y_{\alpha}+Y_{\alpha} X_{\alpha}=\left\{Y_{\alpha}, Z_{\alpha}\right\}=\left\{X_{\alpha}, Z_{\alpha}\right\}=0
$$

Proposition 4.2.1. The matrices $\Gamma_{\nu} \in \mathcal{M}_{2^{n}}(\mathbb{C})$ with $\nu=1, \cdots, 2 n$ fullfil

$$
\begin{equation*}
\Gamma_{\mu} \Gamma_{\nu}+\Gamma_{\nu} \Gamma_{\mu}=2 \delta_{\mu, \nu} \mathrm{I}, \quad \quad \mu, \nu=1, \cdots, 2 n \tag{4.2.2}
\end{equation*}
$$

Proof. We only check one case. Let $\mu<\nu$, then

$$
\begin{aligned}
& \Gamma_{2 \nu} \Gamma_{2 \mu}=X_{1} \cdots X_{\nu-1} Y_{\nu} X_{1} \cdots X_{\mu-1} Y_{\mu}=X_{\mu} X_{\mu+1} \cdots X_{\nu-1} Y_{\nu} Y_{\mu} \\
& \Gamma_{2 \mu} \Gamma_{2 \nu}=X_{1} \cdots X_{\mu-1} Y_{\mu} X_{1} \cdots X_{\nu-1} Y_{\nu}=Y_{\nu} Y_{\mu} X_{\mu} \cdots X_{\nu-1}=-\Gamma_{2 \nu} \Gamma_{2 \mu} .
\end{aligned}
$$

In the case where $\nu=\mu$ the right hand sides of both of the above equations give the identity since $Y_{\nu}^{2}=1$.
Consider any system $\left\{\widetilde{\Gamma}_{\nu}: \nu=1, \cdots, 2 n\right\} \subset \mathcal{M}_{2^{n}}(\mathbb{C})$ of matrices that fullfil

$$
\begin{equation*}
\widetilde{\Gamma}_{\nu} \widetilde{\Gamma}_{\mu}+\widetilde{\Gamma}_{\mu} \widetilde{\Gamma}_{\nu}=2 \delta_{\nu, \mu} I, \quad \nu, \mu=1, \cdots, 2 n \tag{4.2.3}
\end{equation*}
$$

In the following we write

- $O(m):=$ group of orthogonal elements in $\mathcal{M}_{m}(\mathbb{R})$, i.e $\omega \in O(m): \Longleftrightarrow \omega \omega^{t}=I$.
- $\mathrm{GL}(\mathbb{C}, m):=$ group of invertible matrices in $\mathcal{M}_{m}(\mathbb{C})$.

Lemma 4.2.2. Let $S \in \operatorname{GL}\left(\mathbb{C}, 2^{n}\right)$, then it holds
(i) The system $\left\{\Gamma_{\nu}^{S}:=S \widetilde{\Gamma}_{\nu} S^{-1}: \nu=1, \cdots, 2 n\right\}$ fulfills the anti-commutator relations (4.2.3).
(ii) There is $T \in \mathrm{GL}\left(\mathbb{C}, 2^{n}\right)$ such that $T \Gamma_{\nu} T^{-1}=\widetilde{\Gamma}_{\nu}$ for $\nu=1, \cdots, 2 n$.
(iii) Let $\omega=\left(\omega_{\mu \nu}\right) \in O(2 n)$ and define

$$
\Gamma_{\mu}^{\prime}:=\sum_{\ell=1}^{2 n} \omega_{\mu \ell} \widetilde{\Gamma}_{\ell}, \quad(\mu=1, \cdots, 2 n)
$$

Then the system $\left\{\Gamma_{\mu}^{\prime}: \mu=1, \cdots, 2 n\right\}$ fulfills the anti-commutator relations (4.2.3).
Proof. (Homework 7) (i) is an easy calculations and we omit the proof of (ii). The statement (iii) is obtained as follows:

$$
\begin{aligned}
\Gamma_{\mu}^{\prime} \Gamma_{\nu}^{\prime}+\Gamma_{\nu}^{\prime} \Gamma_{\mu}^{\prime} & =\sum_{i, \ell=1}^{2 n} \omega_{\mu \ell} \omega_{\nu i}\left\{\widetilde{\Gamma}_{\ell} \widetilde{\Gamma}_{i}+\widetilde{\Gamma}_{i} \widetilde{\Gamma}_{\ell}\right\} \\
& =2 \sum_{i, \ell=1}^{2 n} \omega_{\mu \ell} \omega_{\nu i} \delta_{i, \ell} I \\
& =2 \sum_{\ell=1}^{2 n} \omega_{\mu \ell} \omega_{\nu \ell} I=2 \delta_{\mu, \nu} I
\end{aligned}
$$

where in the last equality we have used the orthogonality of $\omega=\left(\omega_{\mu \nu}\right) \in O\left(2^{n}\right)$.
Let $\omega=\left(\omega_{\mu \nu}\right) \in O(2 n)$ and Γ_{α} be the matrices defined in (4.2.1). By combining Lemma 4.2.2 (ii) and (iii) we conclude that there is $S(\omega) \in \mathrm{GL}\left(\mathbb{C}, 2^{n}\right)$ with

$$
\begin{equation*}
\sum_{\ell=1}^{2 n} \omega_{\mu \ell} \Gamma_{\ell}=S(\omega) \Gamma_{\mu} S(\omega)^{-1} \tag{4.2.4}
\end{equation*}
$$

Definition 4.2.3. If $\omega=\left(\omega_{\mu, \nu}\right) \in O(2 n)$ and $S(\omega) \in O\left(2^{n}\right)$ are related via (4.2.4), then we call $S(\omega)$ a spin representation of the "rotation" ω. In this case we write $\omega \leftrightarrow S(\omega)$.

Remark 4.2.4. Let $\omega_{1}, \omega_{2} \in O(2 n)$ with spin representations $S\left(\omega_{1}\right)$ and $S\left(\omega_{2}\right)$. Then

$$
S\left(\omega_{1} \omega_{2}\right)=S\left(\omega_{1}\right) S\left(\omega_{2}\right)
$$

is a spin representation of $\omega_{1} \omega_{2}$. In particular, if ω_{1} and ω_{2} are commuting rotations, then the spin representations $S\left(\omega_{1}\right)$ and $S\left(\omega_{2}\right)$ commute, as well.

Now we specialize the previous observation to rotations in the α - β-plane

$$
\omega(\alpha \beta \mid \theta) \in O(2 n), \quad \alpha \neq \beta \in\{1, \cdots, 2 n\} .
$$

with angular $\theta \in[0,2 \pi)$ where $\omega(\alpha \beta \mid \theta)$ acts on the standard basis $\left[e_{i}:=\left(\delta_{i, \ell}\right)_{\ell=1}^{n}: i=1, \cdots, 2 n\right]$ of $\mathbb{R}^{2 n}$ as

$$
\begin{cases}\omega(\alpha \beta \mid \theta) e_{i}=e_{i}, & \text { if } i \notin\{\alpha, \beta\} \\ \omega(\alpha \beta \mid \theta) e_{\alpha}=e_{\alpha} \cos \theta+e_{\beta} \sin \theta & \\ \omega(\alpha \beta \mid \theta) e_{\beta}=-e_{\alpha} \sin \theta+e_{\beta} \cos \theta . & \end{cases}
$$

We can also admit "complex angles" θ in the definition of $\omega(\mu \nu \mid \theta)$. Let $\theta_{1}, \theta_{2} \in \mathbb{C}$, then
(i) $\omega\left(\mu \nu \mid \theta_{1}\right) \omega\left(\mu \nu \mid \theta_{2}\right)=\omega\left(\mu \nu \mid \theta_{1}+\theta_{2}\right)$. In particular: $\omega(\mu \nu \mid \theta)^{-1}=\omega(\mu \nu \mid-\theta)$,
(ii) $\omega\left(\mu \nu \mid \theta_{1}\right)=\omega\left(\nu \mu \mid-\theta_{1}\right)$.

We calculate a spin representation of $\omega(\alpha \beta \mid \theta)$:
Lemma 4.2.5. With $\alpha \neq \beta \in\{1, \cdots, 2 n\}$ it holds

$$
\omega(\alpha \beta \mid \theta) \longleftrightarrow e^{-\frac{\theta}{2} \Gamma_{\alpha} \Gamma_{\beta}} .
$$

Proof. (Homework 7) Since $\alpha \neq \beta$ we have from the anti-commutator relation

$$
\left(\Gamma_{\alpha} \Gamma_{\beta}\right)^{2}=\Gamma_{\alpha} \Gamma_{\beta} \Gamma_{\alpha} \Gamma_{\beta}=-\Gamma_{\alpha}^{2} \Gamma_{\beta}^{2}=-I
$$

and therefore

$$
\begin{equation*}
e^{-\frac{\theta}{2} \Gamma_{\alpha} \Gamma_{\beta}}=\cos \frac{\theta}{2}-\Gamma_{\alpha} \Gamma_{\beta} \sin \frac{\theta}{2} \tag{4.2.5}
\end{equation*}
$$

Clearly, $e^{-\frac{\theta}{2} \Gamma_{\alpha} \Gamma_{\beta}}$ has the inverse $e^{\frac{\theta}{2} \Gamma_{\alpha} \Gamma_{\beta}}$. If $\lambda \notin\{\alpha, \beta\}$ then $\left[\Gamma_{\lambda}, e^{\frac{\theta}{2} \Gamma_{\alpha} \Gamma_{\beta}}\right]=0$ and therefore

$$
e^{-\frac{\theta}{2} \Gamma_{\alpha} \Gamma_{\beta}} \Gamma_{\lambda} e^{\frac{\theta}{2} \Gamma_{\alpha} \Gamma_{\beta}}=\Gamma_{\lambda} .
$$

Moreover, assume that $\lambda=\alpha$, then it follows from (4.2.5) that

$$
\begin{aligned}
e^{-\frac{\theta}{2} \Gamma_{\alpha} \Gamma_{\beta}} \Gamma_{\alpha} e^{\frac{\theta}{2} \Gamma_{\alpha} \Gamma_{\beta}} & =\left(\cos \frac{\theta}{2}-\Gamma_{\alpha} \Gamma_{\beta} \sin \frac{\theta}{2}\right) \Gamma_{\alpha}\left(\cos \frac{\theta}{2}+\Gamma_{\alpha} \Gamma_{\beta} \sin \frac{\theta}{2}\right) \\
& =\left(\cos \frac{\theta}{2}-\Gamma_{\alpha} \Gamma_{\beta} \sin \frac{\theta}{2}\right)\left(\Gamma_{\alpha} \cos \frac{\theta}{2}+\Gamma_{\beta} \sin \frac{\theta}{2}\right) \\
& =\Gamma_{\alpha}\left(\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}\right)+2 \Gamma_{\beta} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \\
& =\Gamma_{\alpha} \cos \theta+\Gamma_{\beta} \sin \theta .
\end{aligned}
$$

Here we have used $\Gamma_{\beta}=-\Gamma_{\alpha} \Gamma_{\beta} \Gamma_{\alpha}$. If $\lambda=\beta$, then the relation

$$
e^{-\frac{\theta}{2} \Gamma_{\alpha} \Gamma_{\beta}} \Gamma_{\beta} e^{\frac{\theta}{2} \Gamma_{\alpha} \Gamma_{\beta}}=-\Gamma_{\alpha} \sin \theta+\Gamma_{\beta} \cos \theta
$$

is obtained by a similar calculation.
The importance of the previous lemma lies in the fact the eigenvalues of $\omega(\alpha \beta \mid \theta)$ and its spin representation $e^{-\frac{\theta}{2} \Gamma_{\alpha} \Gamma_{\beta}}$ are related. Clearly the set of eigenvalues of $\omega(\alpha \beta \mid \theta)$ are given by $\left\{1, e^{-i \theta}, e^{i \theta}\right\}$ where the eigenvalue 1 has the multiplicity $2 n-2$.
Lemma 4.2.6. The spin representation $e^{-\frac{\theta}{2} \Gamma_{\alpha} \Gamma_{\beta}}$ of $\omega(\alpha \beta \mid \theta)$ has the eigenvalues $\left\{e^{i \frac{\theta}{2}}, e^{-i \frac{\theta}{2}}\right\}$. Each eigenvalue has the multiplicity 2^{n-1}.
Proof. If we replace Γ_{ℓ} in the definition (4.2.4) of $S(\omega)$ by another family $\widetilde{\Gamma}_{\ell}=L^{-1} \Gamma_{\ell} L$ of matrices that fulfill the anti-commutator relation (cf. Lemma 4.2.2, (ii)), then a spin representation $S(\omega)$ transforms to a spin representation $\widetilde{S}(\omega)=L^{-1} S(\omega) L$ with respect to $\widetilde{\Gamma}_{\ell}$. In particular, the eigenvalues of $S(\omega)$ and $\widetilde{S}(\omega)$ are the same.

We pass to a new system $\widetilde{\Gamma}_{\ell}$ of matrices obeying the anti-commutator relations by exchanging the role of X, Y and Z in the definition (4.2.1) of Γ_{ℓ}.

$$
Y \longrightarrow X \longrightarrow Z \longrightarrow Y
$$

Without restriction we choose $\widetilde{\Gamma}_{\alpha}=Z_{1} X_{2}$ and $\widetilde{\Gamma}_{\beta}=Z_{1} Y_{2}$. Then it follows

$$
\widetilde{\Gamma}_{\alpha} \widetilde{\Gamma}_{\beta}=Z_{1} X_{2} Z_{1} Y_{2}=X_{2} Y_{2}=i Z_{2}=I \otimes\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \otimes I \otimes \cdots \otimes I .
$$

Therefore it holds

$$
\begin{align*}
e^{-\frac{\theta}{2} \widetilde{\Gamma}_{\alpha} \tilde{\Gamma}_{\beta}} & =\cos \frac{\theta}{2}-\widetilde{\Gamma}_{\alpha} \widetilde{\Gamma}_{\beta} \sin \frac{\theta}{2} \tag{4.2.6}\\
& =I \otimes\left(\begin{array}{cc}
e^{-i \frac{\theta}{2}} & 0 \\
0 & e^{i \frac{\theta}{2}}
\end{array}\right) \otimes I \otimes \cdots \otimes I
\end{align*}
$$

It follows that $e^{-\frac{\theta}{2} \widetilde{\Gamma}_{\alpha} \widetilde{\Gamma}_{\beta}}$ has the matrix elements

$$
\left\langle\left(s_{1}, \cdots, s_{n}\right)\right| e^{-\frac{\theta}{2} \widetilde{\Gamma}_{\alpha} \widetilde{\Gamma}_{\beta}}\left|\left(s_{1}^{\prime}, \cdots, s_{n}^{\prime}\right)\right\rangle=e^{-i \frac{\theta}{2} s_{2}} \prod_{k=1}^{n} \delta_{s_{k}, s_{k}^{\prime}}
$$

This means that $e^{-\frac{\theta}{2} \tilde{\Gamma}_{\alpha} \widetilde{\Gamma}_{\beta}}$ is a diagonal matrix with eigenvalues $e^{-i \frac{\theta}{2}}$ (if $s_{2}=1$) and eigenvalues $e^{i \frac{\theta}{2}}$ (if $s_{2}=-1$), respectively, and each of multiplicity 2^{n-1}.

Assume that $a, b, c, d \in\{1, \cdots, 2 n\}$ are pairwise distinct. Then the matrices $\Gamma_{a} \Gamma_{b}$ and $\Gamma_{c} \Gamma_{d}$ commute Hence the matrices

$$
e^{\frac{\theta_{1}}{2} \Gamma_{a} \Gamma_{b}} \quad \text { and } \quad e^{\frac{\theta_{1}}{2} \Gamma_{c} \Gamma_{d}}, \quad \theta_{1}, \theta_{2} \in \mathbb{C}
$$

commute and can be diagonalized simultaneously. It follows from Lemma 4.2.6 that:

Corollary 4.2.7. Let π be a permutation of $\{1, \cdots, 2 n\}$ and fix $\theta_{1}, \cdots, \theta_{n} \in \mathbb{C}$, then the 2^{n} eigenvalues of

$$
\begin{equation*}
\prod_{j=1}^{n} e^{-\frac{\theta_{j}}{2} \Gamma_{\pi_{2 j-1}} \Gamma_{\pi_{2 j}}}=\exp \left\{-\frac{\theta_{j}}{2} \sum_{j=1}^{n} \Gamma_{\pi_{2 j-1}} \Gamma_{\pi_{2 j}}\right\} \in \mathcal{M}_{2^{n}}(\mathbb{C}) \tag{4.2.7}
\end{equation*}
$$

are given by $e^{\frac{i}{2}\left(\pm \theta_{1} \pm \theta_{2} \pm \cdots \pm \theta_{n}\right)}$ where the sings + and - are chosen independently. Note that (4.2.7) is the spin representation of a product of commuting rotations.

Remark 4.2.8. The set of eigenvalues must be invariant under all possible reflections $\theta_{j} \rightarrow-\theta_{j}$ (which can be seen as a change of the set $\left\{\Gamma_{\alpha}\right\}_{\alpha}$ to another one with the same anti-commutation relation). Therefore, all possible combinations of signs must appear in the set $e^{\frac{i}{2}\left(\pm \theta_{1} \pm \theta_{2} \pm \cdots \pm \theta_{n}\right)}$ of eigenvalues.

4.3 The Onsager solution for $B=0$

We calculate the Onsager solution for the Ising model when $B=0$, (i.e. no exterior magnetic field). Recall that

$$
Q_{I}(B, T)=\operatorname{Trace} P^{n}
$$

and according to Proposition 4.1 .8 we in the case where $B=0$ that $Q_{3}=I$ and therefore

$$
P=Q_{2} Q_{1}=[2 \sinh (2 \epsilon \beta)]^{\frac{n}{2}} \underbrace{\prod_{\alpha=1}^{n} e^{\beta \epsilon Z_{\alpha} Z_{\alpha+1}}}_{=\widetilde{Q}_{2}} \overbrace{e^{\theta\left(X_{1}+\cdots+X_{n}\right)}}^{=Q_{1}} \in \mathbb{R}\left(2^{n}\right),
$$

with $Z_{n+1}:=Z_{1}$ and $\theta>0$ such that $\tanh \theta=e^{-2 \beta \epsilon}$. We have argued that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \log Q_{I}(B, T)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \lambda_{\max }(n), \quad\left(N=n^{2}\right) \tag{4.3.1}
\end{equation*}
$$

where $\lambda_{\max }(n)$ denotes the largest eigenvalue of P. Let $V:=\widetilde{Q}_{2} Q_{1}$ and assume that V has only positive eigenvalues. Let $\Lambda=\Lambda(n)$ be the largest eigenvalue of V. Then we have

$$
\lambda_{\max }(n)=[2 \sinh (2 \epsilon \beta)]^{\frac{n}{2}} \Lambda(n)
$$

and it follows from (4.3.1) that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \log Q_{I}(0, T)=\frac{1}{2} \log [2 \sinh (2 \epsilon \beta)]+\lim _{n \rightarrow \infty} \frac{1}{n} \log \Lambda(n) \tag{4.3.2}
\end{equation*}
$$

Next aim: Justify the above assumptions and to calculate the limits on both sides of (4.3.2).
First, we rewrite V and Q_{j} for $j=1,2$: for $\alpha=1, \cdots, n$ one has

$$
\Gamma_{2 \alpha} \Gamma_{2 \alpha-1}=X_{1} X_{2} \cdots X_{\alpha-1} Y_{\alpha} X_{1} X_{2} \cdots X_{\alpha-1} Z_{\alpha}=Y_{\alpha} Z_{\alpha}=i X_{\alpha}
$$

Therefore

$$
\begin{equation*}
Q_{1}=e^{\theta\left(X_{1}+\cdots+X_{n}\right)}=\prod_{\alpha=1}^{n} e^{\theta X_{\alpha}}=\prod_{\alpha=1}^{n} e^{-i \theta \Gamma_{2 \alpha} \Gamma_{2 \alpha-1}} \tag{4.3.3}
\end{equation*}
$$

and similarly

$$
\begin{aligned}
\Gamma_{2 \alpha+1} \Gamma_{2 \alpha} & =X_{1} \cdots X_{\alpha} Z_{\alpha+1} X_{1} \cdots X_{\alpha-1} Y_{\alpha}=X_{\alpha} Y_{\alpha} Z_{\alpha+1}=i Z_{\alpha} Z_{\alpha+1} \\
\Gamma_{1} \Gamma_{2 n} & =Z_{1} X_{1} \cdots X_{n-1} Y_{n}=Z_{1} \underbrace{Y_{n} X_{n}}_{=-i Z_{n}} X_{1} \cdots X_{n-1} X_{n}=-i Z_{1} Z_{n}\left(X_{1} \cdots X_{n}\right) .
\end{aligned}
$$

If we define

$$
U:=X_{1} X_{2} \cdots X_{n} \in \mathcal{M}_{2^{n}}(\mathbb{C})
$$

with $U^{2}=I$ then we have $i \Gamma_{1} \Gamma_{2 n} U=Z_{n} Z_{1}$ and find the following representation of Q_{2} from these relations ${ }^{3}$

$$
\begin{equation*}
\widetilde{Q}_{2}=e^{\beta \epsilon Z_{n} Z_{1}}\left[\prod_{\alpha=1}^{n-1} e^{\beta \epsilon Z_{\alpha} Z_{\alpha+1}}\right]=e^{i \beta \epsilon \Gamma_{1} \Gamma_{2 n} U} \prod_{\alpha=1}^{n-1} e^{-i \beta \epsilon \Gamma_{2 \alpha+1} \Gamma_{2 \alpha}} . \tag{4.3.4}
\end{equation*}
$$

Lemma 4.3.1. The matrix $V=\widetilde{Q}_{2} Q_{1}$ can be expressed in the form

$$
\begin{equation*}
V=e^{i \beta \epsilon \Gamma_{1} \Gamma_{2 n} U}\left[\prod_{\alpha=1}^{n-1} e^{-i \beta \epsilon \Gamma_{2 \alpha+1} \Gamma_{2 \alpha}}\right]\left[\prod_{\alpha=1}^{n} e^{-i \theta \Gamma_{2 \alpha} \Gamma_{2 \alpha-1}}\right] \tag{4.3.5}
\end{equation*}
$$

where Γ_{α} were defined in (4.2.1). Here $\theta>0$ is the solution of the equation $\tanh \theta=e^{-2 \epsilon \beta}$.
We want to get rid of the matrix U which appears in the exponent of the first factor of V and just work with products of spin representation. In the next step we further decompose V. First we collect some properties of the matrix U :

Lemma 4.3.2. The matrix $U=X_{1} \cdots X_{n} \in \mathcal{M}_{2^{n}}(\mathbb{C})$ satisfies:
(i) $U=X \otimes X \otimes \cdots \otimes X=i^{n} \Gamma_{1} \Gamma_{2} \cdots \Gamma_{2 n}$,
(ii) U has the eigenvalues ± 1 each of multiplicity 2^{n-1},
(iii) $U^{2}=I,(I-U) U=-(I-U)$ and $(I+U) U=I+U$,
(iv) If $a \neq b \in\{1, \cdots 2 n\}$, then $\Gamma_{a} \Gamma_{b}$ commutes with U.
(v) Let ω be an orthogonal transformation with spin representation $S(\omega)$, then we have

$$
S(\omega) U S(\omega)^{-1}=\operatorname{det}(\omega) U
$$

Proof. The first equation in (i) follows from the definition of X_{α} and Lemma 4.1.3, the second equation is a consequence of

$$
\begin{equation*}
U=X_{1} \cdots X_{n}=\left(i Z_{1} Y_{1}\right)\left(i Z_{2} Y_{2}\right) \cdots\left(i Z_{n} Y_{n}\right)=i^{n} \Gamma_{1} \cdots \Gamma_{2 n} \tag{4.3.6}
\end{equation*}
$$

Note that by (i) the matrix $Z \otimes \cdots \otimes Z$ is a diagonal form of U and $Z \in \mathcal{M}_{2}(\mathbb{C})$ has the eigenvalues ± 1. The equations in (iii) immediately follow from the definition of U and (iv) is obtained as follows from (i):

$$
\begin{aligned}
\Gamma_{a} \Gamma_{b} U & =i^{n} \Gamma_{a} \Gamma_{b} \Gamma_{1} \cdots \Gamma_{2 n} \\
& =i^{n}(-1)^{2 n-1} \Gamma_{a} \Gamma_{1} \cdots \Gamma_{2 n} \Gamma_{b} \\
& =i^{n}(-1)^{4 n-2} \Gamma_{1} \cdots \Gamma_{2 n} \Gamma_{a} \Gamma_{b}=U \Gamma_{a} \Gamma_{b} .
\end{aligned}
$$

[^14]Consider the factor $e^{i \beta \epsilon \Gamma_{1} \Gamma_{2 n} U}$ which appears in the representation (4.3.5) of V. Lemma 4.3.2, (iv) implies $\left(i \Gamma_{1} \Gamma_{2 n} U\right)^{2}=-U^{2}\left(\Gamma_{1} \Gamma_{2 n}\right)^{2}=I$ which means that

$$
e^{i \beta \epsilon \Gamma_{1} \Gamma_{2 n} U}=\cosh (\beta \epsilon)+i U \Gamma_{1} \Gamma_{2 n} \sinh (\beta \epsilon) .
$$

From the relations in Lemma 4.3.2, (iii) we see that

$$
\begin{aligned}
e^{i \beta \epsilon \Gamma_{1} \Gamma_{2 n} U}= & {\left[\frac{1}{2}(I+U)+\frac{1}{2}(I-U)\right]\left[\cosh (\beta \epsilon)+i \Gamma_{1} \Gamma_{2 n} \sinh (\beta \epsilon)\right] } \\
= & \frac{1}{2}(I+U)\left[\cosh (\beta \epsilon)+i \Gamma_{1} \Gamma_{2 n} \sinh (\beta \epsilon)\right]+ \\
& \quad+\frac{1}{2}(I-U)\left[\cosh (\beta \epsilon)-i \Gamma_{1} \Gamma_{2 n} \sinh (\beta \epsilon)\right] \\
= & \frac{1}{2}(I+U) e^{i \epsilon \beta \Gamma_{1} \Gamma_{2 n}}+\frac{1}{2}(I-U) e^{-i \epsilon \beta \Gamma_{1} \Gamma_{2 n}} .
\end{aligned}
$$

If we plug this result into the representation of V in Lemma 4.3.1 then we obtain

$$
\begin{equation*}
V=\frac{1}{2}(I+U) V^{+}+\frac{1}{2}(I-U) V^{-} \tag{4.3.7}
\end{equation*}
$$

where $V^{ \pm} \in \mathcal{M}_{2^{n}}(\mathbb{C})$ are defined by

$$
\begin{equation*}
V^{ \pm}:=e^{ \pm i \beta \epsilon \Gamma_{1} \Gamma_{2 n}}\left[\prod_{\alpha=1}^{n-1} e^{-i \beta \epsilon \Gamma_{2 \alpha+1} \Gamma_{2 \alpha}}\right]\left[\prod_{\alpha=1}^{n} e^{-i \theta \Gamma_{2 \alpha} \Gamma_{2 \alpha-1}}\right] \tag{4.3.8}
\end{equation*}
$$

and $\tanh \theta=e^{-2 \epsilon \beta}$. Note that the matrices $V^{ \pm}$have the form of a product of spin representation from the last section and therefore they are easier to handle than V.

Lemma 4.3.3. The matrices U, V^{+}and V^{-}pairwise commute. In particular, they can be diagonalized simultaneously.

Proof. First we show that U commutes with V^{+}and V^{-}. Let $a \neq b \in\{1, \cdots, 2 n\}$ then we see from Lemma 4.3.2, (iv) that $\Gamma_{a} \Gamma_{b}$ and U commute. Now $\left[U, V^{+}\right]=\left[U, V^{-}\right]=0$ follows from the form of $V^{ \pm}$. Note that by a similar reason U also commutes with V. Since $(I+U) / 2$ and $(I-U) / 2$ are projection onto complementary spaces we find:

$$
\begin{aligned}
& V^{+} V^{-}=\frac{1}{4}(I+U) V(I-U) V=\frac{1}{4} V(I+U)(I-U) V=0, \\
& V^{-} V^{+}=\frac{1}{4}(I-U) V(I+U) V=\frac{1}{4} V(I-U)(I+U) V=0 .
\end{aligned}
$$

In particular, it follows that V^{+}and V^{-}commute.
Consider the orthogonal matrix $g \in \mathcal{M}_{2^{n}}(\mathbb{C})$ defined by

$$
g=2^{-\frac{n}{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \otimes \cdots \otimes\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=g^{-1}
$$

Then $g U g$ is diagonal, more precisely:

$$
\begin{align*}
g U g^{-1} & =g(X \otimes X \otimes \cdots \otimes X) g^{-1}=Z \otimes Z \otimes \cdots \otimes Z=Z_{1} Z_{2} \cdots Z_{n} \tag{4.3.9}\\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \otimes \cdots \otimes\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{align*}
$$

Now we can choose an orthogonal matrix $o \in \mathcal{M}_{2^{n}}(\mathbb{R})$ that permutes all eigenvalues " +1 " of $g U g^{-1}$ to the upper left corner and all eigenvalues " -1 " to the lower right corner. If we define

$$
R:=o g \quad \text { and } \quad \widetilde{U}:=R U R^{-1}
$$

then $R \in \mathcal{M}_{2^{n}}(\mathbb{C})$ is orthogonal and

$$
(o g) U(o g)^{-1}=R U R^{-1}=\widetilde{U}=\left(\begin{array}{cc}
I_{2^{n-1}} & 0 \tag{4.3.10}\\
0 & -I_{2^{n-1}}
\end{array}\right)
$$

We put $\widetilde{V}^{ \pm}=R V^{ \pm} R^{-1}$ and conjugate the decomposition (4.3.7) by R :

$$
R V R^{-1}=: \widetilde{V}=\frac{1}{2}(I+\widetilde{U}) \widetilde{V}^{+}+\frac{1}{2}(I-\widetilde{U}) \widetilde{V}^{-}
$$

It follows from Lemma 4.3.3 that $\widetilde{U}, \widetilde{V}^{+}$and \widetilde{V}^{-}are pairwise commuting:

$$
\widetilde{V}^{+} \widetilde{U}=\left(\begin{array}{cc}
\widetilde{V}_{11}^{+} & -\widetilde{V}_{12}^{+} \\
\widetilde{V}_{21}^{+} & -\widetilde{V}_{22}^{+}
\end{array}\right)=\widetilde{U} \widetilde{V}^{+}=\left(\begin{array}{cc}
\widetilde{V}_{11}^{+} & \widetilde{V}_{12}^{+} \\
-\widetilde{V}_{21}^{+} & -\widetilde{V}_{22}^{+}
\end{array}\right)
$$

We find that $\widetilde{V}_{12}^{+}=\widetilde{V}_{21}^{+}=0$ and (by the analogous calculation for \widetilde{V}^{-}) we have

$$
\widetilde{V}^{ \pm}=\left(\begin{array}{cc}
\widetilde{V}_{11}^{ \pm} & 0 \\
0 & \widetilde{V}_{22}^{ \pm}
\end{array}\right), \quad \text { with } \quad \widetilde{V}_{11}^{ \pm}, \widetilde{V}_{22}^{ \pm} \in \mathcal{M}_{2^{n-1}}(\mathbb{C})
$$

Therefore we find that

$$
\begin{align*}
& \frac{1}{2}(I+\widetilde{U}) \widetilde{V}^{+}=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\widetilde{V}_{11}^{+} & 0 \\
0 & \widetilde{V}_{22}^{+}
\end{array}\right)=\left(\begin{array}{cc}
\widetilde{V}_{11}^{+} & 0 \\
0 & 0
\end{array}\right) \tag{4.3.11}\\
& \frac{1}{2}(I-\widetilde{U}) \widetilde{V}^{-}=\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
\widetilde{V}_{11}^{-} & 0 \\
0 & \widetilde{V}_{22}^{-}
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & \widetilde{V}_{22}^{-}
\end{array}\right) \tag{4.3.12}
\end{align*}
$$

which shows that \widetilde{V} has the following matrix representation:

$$
\widetilde{V}=\frac{1}{2}(I+\widetilde{U}) \widetilde{V}^{+}+\frac{1}{2}(I-\widetilde{U}) \widetilde{V}^{-}=\left(\begin{array}{cc}
\widetilde{V}_{11}^{+} & 0 \\
0 & \widetilde{V}_{22}^{-}
\end{array}\right)
$$

We are aiming to find the eigenvalues of V. We have

$$
\{\text { eigenvalues of } V\}=\{\text { eigenvalues of } \widetilde{V}\}=\left\{\text { eigenvalues of } \widetilde{V}_{11}^{+}\right\} \cup\left\{\text { eigenvalues of } \widetilde{V}_{22}^{-}\right\} .
$$

Moreover, we know

$$
\begin{aligned}
& \left\{\text { eigenvalues of } \widetilde{V}_{11}^{+}\right\} \subset\left\{\text { eigenvalues of } \widetilde{V}^{+}\right\}=\left\{\text {eigenvalues of } V^{+}\right\} \\
& \left\{\text {eigenvalues of } \widetilde{V}_{22}^{-}\right\} \subset\left\{\text { eigenvalues of } \widetilde{V}^{-}\right\}=\left\{\text {eigenvalues of } V^{-}\right\} .
\end{aligned}
$$

In other words:

Lemma 4.3.4. The union of the eigenvalues of V^{+}and V^{-}contains all eigenvalues of V.
In the next step we calculate the eigenvalues of V^{+}and V^{-}. Consider the matrices

$$
\begin{equation*}
\Omega^{ \pm}:=\omega(1,2 n \mid \pm 2 i \beta \epsilon)\left[\prod_{\alpha=1}^{n-1} \omega(2 \alpha+1,2 \alpha \mid-2 i \beta \epsilon)\right]\left[\prod_{\alpha=1}^{n} \omega(2 \alpha, 2 \alpha-1 \mid-2 i \theta)\right] \in \mathcal{M}_{2 n}(\mathbb{C}) . \tag{4.3.13}
\end{equation*}
$$

Then $V^{ \pm}=S\left(\Omega^{ \pm}\right)$is a "spin representation" of $\Omega^{ \pm} .{ }^{4}$ Define

$$
\begin{equation*}
\Delta:=\prod_{\alpha=1}^{n} \omega(2 \alpha, 2 \alpha-1 \mid-i \theta) \in \mathcal{M}_{2 n}(\mathbb{C}) \tag{4.3.14}
\end{equation*}
$$

Note that $\omega\left(\mu \nu \mid \theta_{1}\right) \omega\left(\mu \nu \mid \theta_{2}\right)=\omega\left(\mu \nu \mid \theta_{1}+\theta_{2}\right)$ and $\omega(\mu \nu \mid \theta)^{-1}=\omega(\mu, \nu \mid-\theta)$. Therefore:

$$
\begin{equation*}
\left[\prod_{\alpha=1}^{n} \omega(2 \alpha, 2 \alpha-1 \mid-2 i \theta)\right] \Delta^{-1}=\Delta . \tag{4.3.15}
\end{equation*}
$$

The eigenvalues of $\Omega^{ \pm}$coincide with the eigenvalues of

$$
\begin{aligned}
\omega^{ \pm}: & =\Delta \Omega^{ \pm} \Delta^{-1} \\
& =\Delta \underbrace{\omega(1,2 n \mid \pm 2 i \beta \epsilon)\left[\prod_{\alpha=1}^{n-1} \omega(2 \alpha, 2 \alpha+1 \mid 2 i \beta \epsilon)\right]}_{=: \chi^{ \pm}} \Delta
\end{aligned}
$$

where in the second equation we have used $\omega(\mu \nu \mid \theta)=\omega(\nu \mu \mid-\theta)$. We express Δ and $\chi^{ \pm}$in matrix form. Consider $J, K \in \mathcal{M}_{2}(\mathbb{C})$ defined by:

$$
J:=\left(\begin{array}{cc}
\cosh \theta & i \sinh \theta \\
-i \sinh \theta & \cosh \theta
\end{array}\right), \quad \text { and } \quad K:=\left(\begin{array}{cc}
\cosh (2 \beta \epsilon) & i \sinh (2 \beta \epsilon) \\
-i \sinh (2 \beta \epsilon) & \cosh (2 \beta \epsilon)
\end{array}\right) .
$$

If $n=1$ we have $\omega(2,1 \mid i \theta)=J$ and for general $n \in \mathbb{N}$ the above definition show:

$$
\begin{aligned}
\Delta & =\left(\begin{array}{cccc}
J & \mathbf{0} & \ldots & \\
\mathbf{0} & J & & \\
\vdots & & \ddots & \\
\vdots & & & J
\end{array}\right) \in \mathcal{M}_{2 n}(\mathbb{C}), \quad \text { where } \quad \mathbf{0} \in \mathcal{M}_{2}(\mathbb{C}), \\
\chi^{ \pm} & =\left(\begin{array}{ccccc}
\cosh (2 \beta \epsilon) & 0 & \ldots & 0 & \pm i \sinh (2 \beta \epsilon) \\
0 & & & 0 \\
\vdots & & \mathbf{K} & \vdots \\
& 0 & & & \\
\mp i \sinh (2 \beta \epsilon) & 0 & \ldots & 0 & \cosh (2 \beta \epsilon)
\end{array}\right) \in \mathcal{M}_{2 n}(\mathbb{C}), \quad \text { where } \\
\mathbf{K}: & =\left(\begin{array}{cccc}
K & \mathbf{0} & \ldots & \\
\mathbf{0} & K & & \\
\vdots & & \ddots & \\
\vdots & & & K
\end{array}\right) \in \mathcal{M}_{2 n-2}(\mathbb{C})
\end{aligned}
$$

[^15]Lemma 4.3.5. The matrix $\omega^{ \pm}=\Delta \chi^{ \pm} \Delta$ has the form

$$
\omega^{ \pm}=\left(\begin{array}{ccccccc}
A & B & 0 & 0 & \ldots & 0 & \mp B^{*} \tag{4.3.16}\\
B^{*} & A & B & 0 & & 0 & 0 \\
0 & B^{*} & A & B & & & \vdots \\
\vdots & & & & & & \vdots \\
0 & 0 & & & & A & B \\
\mp B & 0 & & & & B^{*} & A
\end{array}\right) \in \mathcal{M}_{2 n}(\mathbb{C})
$$

where the matrices $A, B \in \mathcal{M}_{2}(\mathbb{C})$ are given by

$$
\begin{aligned}
& A:=\cosh (2 \beta \epsilon)\left(\begin{array}{cc}
\cosh (2 \theta) & -i \sinh (2 \theta) \\
i \sinh (2 \theta) & \cosh (2 \theta)
\end{array}\right) \\
& B:=\sinh (2 \beta \epsilon)\left(\begin{array}{cc}
-\frac{1}{2} \sinh (2 \theta) & -i \sinh ^{2} \theta \\
i \cosh ^{2} \theta & -\frac{1}{2} \sinh (2 \theta)
\end{array}\right) .
\end{aligned}
$$

Moreover, write $B^{*}=\bar{B}^{T}$ for the Hermitian adjoint matrix to B.
Proof. (Homework 8) From the above matrix representation one easily sees that $\chi^{ \pm}$has the form

$$
\chi^{ \pm}=\left(\begin{array}{ccccccc}
\tilde{A} & \tilde{B} & 0 & 0 & \ldots & 0 & \mp \tilde{B}^{*} \\
\tilde{B}^{*} & \tilde{A} & \tilde{B} & 0 & & 0 & 0 \\
0 & \tilde{B}^{*} & \tilde{A} & \tilde{B} & & & \vdots \\
\vdots & & & & & & \vdots \\
& & & & & \tilde{A} & \tilde{B} \\
0 & 0 & & & & \tilde{B}^{*} & \tilde{A} \\
\mp \tilde{B} & 0 & & & & \mathcal{M}_{2 n}(\mathbb{C}), \text {, }
\end{array}\right) \in\left(\begin{array}{ll}
\\
\end{array}\right)
$$

where $\tilde{A}, \tilde{B} \in \mathcal{M}_{2}(\mathbb{C})$ are defined by

$$
\tilde{A}:=\left(\begin{array}{cc}
\cosh (2 \beta \epsilon) & 0 \\
0 & \cosh (2 \beta \epsilon)
\end{array}\right), \quad \text { and } \quad \tilde{B}:=\left(\begin{array}{cc}
0 & 0 \\
i \sinh (2 \beta \epsilon) & 0
\end{array}\right)
$$

Now the assertion follows from $J \tilde{A} J=A$ and $J \tilde{B} J=B$ together with $J^{*}=J$.
We use the matrix representation of $\omega^{ \pm}$to determine the eigenvalues and make the following Ansatz for an eigenvector ψ of $\omega^{ \pm}$:

$$
\psi=\left(\begin{array}{c}
z u \\
z^{2} u \\
\vdots \\
z^{n} u
\end{array}\right) \in \mathbb{C}^{2 n}, \quad \text { where } \quad u=\binom{u_{1}}{u_{2}} \in \mathbb{C}^{2}, \quad z \in \mathbb{C}
$$

It follows from Lemma 4.3.5 that the equation $\omega^{ \pm} \psi=\lambda \psi$ is equivalent to the system of equations:

$$
(\mathbf{E}):\left\{\begin{array}{ll}
E_{1}:\left(z A+z^{2} B \mp z^{n} B^{*}\right) u & =z \lambda u \\
E_{j}:\left(z^{j} A+z^{j+1} B+z^{j-1} B^{*}\right) u & =z^{j} \lambda u, \\
E_{n}:\left(z^{n} A \mp z B+z^{n-1} B^{*}\right) u & =z^{n} \lambda u .
\end{array} \quad(j=2, \cdots, n-1)\right.
$$

Note that the equations E_{j} for $j=2, \cdots, n-1$ and $z \neq 0$ all are equivalent to

$$
\left(A+z B+z^{-1} B^{*}\right) u=\lambda u
$$

Hence the system (\mathbf{E}) of equations is equivalent to the three equations:

$$
(\widetilde{\mathbf{E}}): \begin{cases}\left(A+z B \mp z^{n-1} B^{*}\right) u & =\lambda u \\ \left(A+z B+z^{-1} B^{*}\right) u & =\lambda u \\ \left(A \mp z^{1-n} B+z^{-1} B^{*}\right) u & =\lambda u\end{cases}
$$

We look for solutions among all $z \in \mathbb{C}$ with $z^{n}= \pm 1$ where we choose the - -sign for ω^{+}and the + -sign for ω^{-}. Then $(\widetilde{\mathbf{E}})$ reduces to a single equation, namely

$$
\left(A+z B+z^{-1} B^{*}\right) u=\lambda u .
$$

Note that the matrix $A+z B+z^{-1} B^{*}$ is self-adjoint if $|z|=1$ and therefore has only real eigenvalues.

The case of ω^{+}: The n solutions to the equation $z^{n}=-1$ are given by

$$
S_{-}:=\left\{z_{k}:=e^{\frac{i \pi k}{n}}: k=1,3, \cdots, 2 n-1\right\} .
$$

A set $\left\{\lambda_{2 l-1,1}, \lambda_{2 l-1,2}: l=1, \cdots, n\right\}$ of $2 n$ eigenvalues for ω^{+}can be determined by the solutions of the n equations

$$
\begin{equation*}
\left(A+z_{k} B+\frac{1}{z_{k}} B^{*}\right) u=\lambda_{k, j} u \tag{4.3.17}
\end{equation*}
$$

where $k=1,3, \cdots, 2 n-1$ and $j=1,2$.
Lemma 4.3.6. With the previous notation we have for $k=1,3, \cdots, 2 n-1$:
(i) $\operatorname{det}\left(A+z_{k} B+z_{k}^{-1} B^{*}\right)=1$,
(ii) $C(\beta, \epsilon) \geq \operatorname{Trace}\left(A+z_{k} B+z_{k}^{-1} B^{*}\right) \geq 0$, where $C(\beta, \epsilon)$ is independent of k and n.

In particular, the eigenvalues of $\lambda_{k, 1}$ and $\lambda_{k, 2}$ of $A+z_{k} B+z_{k}^{-1} B^{*}$ are positive and $\lambda_{k, 1}=\lambda_{k, 2}^{-1}$. Proof. (Homework 08)
(i): From the explicit form of A and B in Lemma 4.3.5 one checks that for all k :

$$
\begin{aligned}
& \operatorname{det}\left(A+z_{k} B+z_{k}^{-1} B^{*}\right)=\left[\cosh (2 \beta \epsilon) \cosh (2 \theta)-\frac{z_{k}+z_{k}^{-1}}{2} \sinh (2 \beta \epsilon) \sinh (2 \theta)\right]^{2} \\
& -\left(\cosh (2 \beta \epsilon) \sinh (2 \theta)-z_{k} \sinh (2 \beta \epsilon) \sinh ^{2} \theta-z_{k}^{-1} \sinh (2 \beta \epsilon) \cosh ^{2} \theta\right) \times \\
& \quad \times\left(\cosh (2 \beta \epsilon) \sinh (2 \theta)-z_{k} \sinh (2 \beta \epsilon) \cosh ^{2} \theta-z_{k}^{-1} \sinh (2 \beta \epsilon) \sinh ^{2}(\theta)\right)=1 .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\operatorname{Trace}\left(A+z_{k} B+z_{k}^{-1} B^{*}\right) & =2 \cosh (2 \beta \epsilon) \cosh (2 \theta)-2 \cos \left(\frac{\pi k}{n}\right) \sinh (2 \beta \epsilon) \sinh (2 \theta) \\
& \geq 2 \cosh (2 \beta \epsilon-2 \theta) \geq 0
\end{aligned}
$$

This shows the second inequality in (ii). The first one follows from the uniform estimate $\left|\cos \left(\frac{\pi k}{n}\right)\right| \leq 1$.

Using the last lemma we define for $k=1,3, \cdots, 2 n-1$:

$$
\lambda_{k, 1}:=e^{\gamma_{k}} \quad \text { and } \quad \lambda_{k, 2}:=e^{-\gamma_{k}}, \quad\left(\gamma_{k} \geq 0\right)
$$

One obtains

$$
\begin{align*}
\cosh \left(\gamma_{k}\right)= & =\frac{1}{2}\left\{e^{\gamma_{k}}+e^{-\gamma_{k}}\right\} \tag{4.3.18}\\
& =\frac{1}{2} \operatorname{Trace}\left(A+z_{k} B+z_{k}^{-1} B^{*}\right) \\
& =\cosh (2 \beta \epsilon) \cosh (2 \theta)-\cos \left(\frac{\pi k}{n}\right) \sinh (2 \beta \epsilon) \sinh (2 \theta)
\end{align*}
$$

Lemma 4.3.7. The eigenvalues $E_{\omega^{+}}$of ω^{+}are given by:

$$
\begin{equation*}
E_{\omega^{+}}=\left\{e^{ \pm \gamma_{k}}: k=1,3, \cdots, 2 n-1 \text { and } \gamma_{k}>0 \text { is solution of }(4.3 .18)\right\} \tag{4.3.19}
\end{equation*}
$$

In particular, ω^{+}can be expressed as a product of n commuting rotations.
The case ω^{-}: The n solutions to the equation $z^{n}=1$ are given by

$$
S_{+}:=\left\{z_{k}:=e^{\frac{i \pi k}{n}}: k=0,2, \cdots, 2 n-2\right\} .
$$

Now we determine eigenvalues $\left\{\lambda_{2 \ell, 1}, \lambda_{2 \ell, 2}: \ell=0, \cdots, n-1\right\}$ of ω^{-}as the solutions of the n equations

$$
\left(A+z_{k} B+z_{k}^{-1} B^{*}\right) u=\lambda_{k, j} u
$$

where $k=0,2, \cdots, 2 n-2$ and $j=1,2$. In the same way as before we find $\lambda_{k, 1}=e^{\gamma_{k}}$ and $\lambda_{k, 2}=e^{-\gamma_{k}}$ with $\gamma_{k}>0$ which is a solution of (4.3.18).

Lemma 4.3.8. The eigenvalues $E_{\omega^{-}}$of ω^{-}are given by:

$$
\begin{equation*}
E_{\omega^{-}}=\left\{e^{ \pm \gamma_{k}}: k=0,2, \cdots, 2 n-2 \text { and } \gamma_{k}>0 \text { is solution of }(4.3 .18)\right\} \tag{4.3.20}
\end{equation*}
$$

In particular, ω^{-}can be expressed as a product of n commuting rotations.
Now we observe some relations between these eigenvalues:
Lemma 4.3.9. For $k=0, \cdots, 2 n$ let $\gamma_{k} \geq 0$ be the solution of (4.3.18), then it holds
(i) $\gamma_{k}=\gamma_{2 n-k}$,
(ii) $0<\gamma_{0}<\gamma_{1}<\cdots<\gamma_{n}$.

Proof. Property (i) follows from $\cos (\pi k / n)=\cos (\pi(2 n-k) / n)$. In order to see (ii) we take the derivative on both sides of (4.3.18) with respect to k :

$$
\frac{\partial \gamma_{k}}{\partial k}=\sin \left(\frac{\pi k}{n}\right) \frac{\pi \sinh (2 \beta \epsilon) \sinh (2 \theta)}{n \sinh \gamma_{k}}
$$

Since we assume that $\gamma_{k}>0$ it follows that the right hand side is positive if $0 \leq k \leq n$.
Since $V^{ \pm}=S\left(\Omega^{ \pm}\right)$and the matrix $\Omega^{ \pm}$has the same eigenvalues as $\omega^{ \pm}=\Delta \Omega^{ \pm} \Delta^{-1}$ it follows from Corollary 4.2 .7 together with (4.3.19) and (4.3.20)

Proposition 4.3.10. The eigenvalues of $V^{ \pm}$are given by

$$
\begin{align*}
& \text { eigenvalues of } V^{+}:=\left\{e^{\frac{1}{2}\left(\pm \gamma_{1} \pm \gamma_{3} \pm \cdots \pm \gamma_{2 n-1}\right)}: \gamma_{k} \text { solution of }(4.3 .18)\right\}, \tag{4.3.21}\\
& \text { eigenvalues of } V^{-}:=\left\{e^{\frac{1}{2}\left(\pm \gamma_{0} \pm \gamma_{2} \pm \cdots \pm \gamma_{2 n-2}\right)}: \gamma_{k} \text { solution of }(4.3 .18)\right\} . \tag{4.3.22}
\end{align*}
$$

All eigenvalues grow at most of order e^{n} as $n \rightarrow \infty .{ }^{5}$
Proof. The second statement follows from the trace estimate from above in Lemma 4.3.6, (ii) since

$$
\begin{aligned}
\left| \pm \gamma_{1} \pm \gamma_{3} \pm \cdots \pm \gamma_{2 n-1}\right| & \leq \gamma_{1}+\gamma_{3}+\cdots+\gamma_{2 n-1} \\
& \leq \sum_{l=1}^{n} \log \lambda_{2 l-1,1} \\
& \leq \sum_{l=1}^{n} \lambda_{2 l-1,1} \\
& \leq \sum_{l=1}^{n} \operatorname{Trace}\left(A+z_{l} B+z_{l}^{-1} B^{*}\right) \leq n \cdot C(\epsilon, \beta)
\end{aligned}
$$

The right hand side growth linearly in $n \in \mathbb{N}$.
We return to the task of studying the eigenvalues of V. Recall that

$$
\{\text { eigenvalues of } V\} \subset\left\{\text { eigenvalues of } V^{+}\right\} \cup\left\{\text { eigenvalues of } V^{-}\right\}
$$

Moreover, with the notation in (4.3.11) and (4.3.12) we had

$$
\frac{1}{2}(I+\widetilde{U}) \widetilde{V}^{+}=\left(\begin{array}{cc}
\widetilde{V}_{11}^{+} & 0 \\
0 & 0
\end{array}\right), \quad \text { and } \quad \frac{1}{2}(I-\widetilde{U}) \widetilde{V}^{-}=\left(\begin{array}{cc}
0 & 0 \\
0 & \widetilde{V}_{22}^{-}
\end{array}\right)
$$

[^16]Let $R=o g \in \mathcal{M}_{2^{n}}(\mathbb{C})$ be the orthogonal matrix defined in (4.3.10) and consider the following system of anti-commuting matrices

$$
\boldsymbol{\Gamma}:=\left\{\widetilde{\Gamma}_{\nu}:=R \Gamma_{\nu} R^{-1}: \nu=1, \cdots, 2 n\right\} .
$$

Let $\omega \in \mathcal{M}_{2 n}(\mathbb{R})$ be orthogonal, then we write $\widetilde{S}(\omega)$ for the spin representation of ω with respect to the system $\boldsymbol{\Gamma}$. If $\omega=\omega(\alpha \beta \mid \theta)$, then we have:

$$
\widetilde{S}(\omega(\alpha \beta \mid \theta))=e^{-\frac{\theta}{2} \widetilde{\Gamma}_{\alpha} \widetilde{\Gamma}_{\beta}} .
$$

Note that for $j=1, \cdots, n$:

$$
\begin{align*}
\widetilde{\Gamma}_{2 j-1} \widetilde{\Gamma}_{2 j}=o g \Gamma_{2 j-1} \Gamma_{2 j}(o g)^{-1} & =(o g) Z_{j} Y_{j}(o g)^{-1} \tag{4.3.23}\\
& =i o g\left[I \otimes \cdots \otimes\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \otimes \cdots \otimes I\right] g o^{-1} \tag{4.3.24}\\
& =-i o Z_{j} o^{-1} . \tag{4.3.25}
\end{align*}
$$

Lemma 4.3.11. There are orthogonal matrices $T_{ \pm} \in \mathcal{M}_{2 n}(\mathbb{R})$ such that

$$
\begin{align*}
& T_{+} \Omega^{+} T_{+}^{-1}=\omega\left(1,2 \mid i \gamma_{1}\right) \omega\left(3,4 \mid i \gamma_{3}\right) \cdots \omega\left(2 n-1,2 n \mid i \gamma_{2 n-1}\right) \tag{4.3.26}\\
& T_{-} \Omega^{-} T_{-}^{-1}=\omega\left(1,2 \mid i \gamma_{0}\right) \omega\left(3,4 \mid i \gamma_{2}\right) \cdots \omega\left(2 n-1,2 n \mid i \gamma_{2 n-2}\right) . \tag{4.3.27}
\end{align*}
$$

Proof. Follows from Lemma 4.3.7 and Lemma 4.3.8.
We now shown that spin representations $\widetilde{S}\left(T_{ \pm}\right)$bring $(I-\widetilde{U}) \widetilde{V}^{ \pm}$into diagonal form. Since V^{+}and V^{-}are treated in the same way, we only give the arguments in the case of V^{+}. We know from Lemma 4.3.2, (v) that

$$
\widetilde{S}\left(T_{+}\right) \tilde{U} \widetilde{S}\left(T_{+}\right)^{-1}=\operatorname{det}\left(T_{+}\right) \tilde{U}= \pm \tilde{U}
$$

With $\widetilde{V}^{+}=R V^{+} R^{-1}=R S\left(\Omega^{+}\right) R^{-1}=\widetilde{S}\left(\Omega^{+}\right)$it follows that

$$
\begin{align*}
\widetilde{S}\left(T_{+}\right)\left\{\frac{1}{2}(I+\widetilde{U}) \widetilde{V}^{+}\right\} \widetilde{S}\left(T_{+}\right)^{-1} & =\frac{1}{2}(I \pm \widetilde{U}) \widetilde{S}\left(T_{+}\right) \widetilde{V}^{+} \widetilde{S}\left(T_{+}\right)^{-1} \tag{4.3.28}\\
& =\frac{1}{2}(I \pm \tilde{U}) \widetilde{S}\left(T_{+} \Omega^{+} T_{+}^{-1}\right)=(*)
\end{align*}
$$

Since by Lemma 4.3 .11 conjugation by T_{+}transforms Ω^{+}to a product of commuting rotations we obtain from Lemma 4.2.5 that

$$
(*)=\frac{1}{2}(I \pm \tilde{U}) \prod_{j=1}^{n} e^{-i \frac{\gamma_{2 j-1}}{2} \widetilde{\Gamma}_{2 j-1} \widetilde{\Gamma}_{2 j}}=\frac{1}{2} o\left(I \pm Z_{1} Z_{2} \cdots Z_{n}\right)\left\{\prod_{j=1}^{n} e^{-\frac{1}{2} \gamma_{2 j-1} Z_{j}}\right\} o^{-1}=V_{D}
$$

Here we have used (4.3.9) and (4.3.23). The matrices V_{D} and $o^{-1} V_{D} o^{6}$ are diagonal and so we have diagonalized

$$
\frac{1}{2}(I+\tilde{U}) \tilde{V}^{+}=\left(\begin{array}{cc}
\tilde{V}_{11}^{+} & 0 \\
0 & 0
\end{array}\right)
$$

[^17]Clearly the eigenvalues of \widetilde{V}_{11}^{+}coincide with the non-zero eigenvalues of

$$
\begin{equation*}
o^{-1} V_{D} O=\frac{1}{2}\left(I \pm Z_{1} Z_{2} \cdots Z_{n}\right) \prod_{j=1}^{n} e^{-\frac{1}{2} \gamma_{2 j-1} Z_{j}} \tag{4.3.29}
\end{equation*}
$$

Let $\left(s_{1}, \cdots, s_{n}\right)$ be an eigenvector of the right hand side of (4.3.29) and assume that the plussign appears in front of the product $Z_{1} Z_{2} \cdots Z_{n}$. Then the corresponding eigenvalue of $o^{-1} V_{D} o$ is non-zero if the equation

$$
\begin{equation*}
Z_{j}\left(s_{1}, \cdots, s_{n}\right)=-1 \tag{4.3.30}
\end{equation*}
$$

only holds for an even number of $j \in\{1, \cdots, n\}$. If the minus sign appears in front of $Z_{1} Z_{2} \cdots Z_{n}$, then the eigenvalues is non-zero if (4.3.30) only holds for an odd number of j :
Corollary 4.3.12. The largest eigenvalue $\Lambda_{n}(A)$ of $A \in\left\{\widetilde{V}_{11}^{+}, \widetilde{V}_{22}^{-}\right\}$fulfills

$$
\Lambda_{n}\left(\widetilde{V}_{11}^{+}\right)=e^{\frac{1}{2}\left(\pm \gamma_{1}+\gamma_{3}+\cdots+\gamma_{2 n-1}\right)} \quad \text { and } \quad \Lambda_{n}\left(\widetilde{V}_{22}^{-}\right)=e^{\frac{1}{2}\left(\pm \gamma_{0}+\gamma_{2}+\cdots+\gamma_{2 n-2}\right)}
$$

Proof. We only treat $A=\widetilde{V}_{11}^{+}$. Then the lemma directly follows from the last observation and Lemma 4.3 .9 which implies that $\gamma_{1}=\min \left\{\gamma_{2 j-1} j=1, \cdots n\right\}$.

Since we have the asymptotic equalities

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{-\gamma_{1}+\gamma_{3}+\gamma_{5}+\cdots}{2}=\lim _{n \rightarrow \infty} \frac{\gamma_{1}+\gamma_{3}+\gamma_{5}+\cdots}{2}=: \ell_{+} \\
& \lim _{n \rightarrow \infty} \frac{-\gamma_{0}+\gamma_{2}+\gamma_{4}+\cdots}{2}=\lim _{n \rightarrow \infty} \frac{\gamma_{0}+\gamma_{2}+\gamma_{4}+\cdots}{2}=: \ell_{-},
\end{aligned}
$$

and since $\ell_{+} \geq \ell_{-}$(again by Lemma 4.3.9) we finally obtain that

$$
\mathcal{L}:=\lim _{n \rightarrow \infty} \frac{1}{n} \log \Lambda(n)=\lim _{n \rightarrow \infty} \frac{1}{2 n}\left(\gamma_{1}+\gamma_{3}+\cdots+\gamma_{2 n-1}\right)
$$

where $\Lambda(n)$ denotes the largest eigenvalue of $V=Q_{2} Q_{1}$.

The limit $\lim _{n \rightarrow \infty} \frac{1}{n} \log \Lambda(n)$

Recall that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log Q_{I}(0, T)=\frac{1}{2} \log [2 \sinh (2 \epsilon \beta)]+\mathcal{L}
$$

Next step: We determine an integral representation of \mathcal{L}.
We define a function $\gamma:[0,2 \pi] \rightarrow \mathbb{R}$ as the positive solution of the equation

$$
\begin{equation*}
\cosh \gamma(x)=\cosh (2 \beta \epsilon) \cosh (2 \theta)-\cos (x) \sinh (2 \beta \epsilon) \sinh (2 \theta) \tag{4.3.31}
\end{equation*}
$$

In particular it follows from the definition of γ_{ℓ} in (4.3.18) that

$$
\gamma\left(\frac{\pi}{n}(2 k-1)\right)=\gamma_{2 k-1}
$$

Approximation of the integral of $\gamma(x)$ by Riemann sums gives the relation

$$
\int_{0}^{2 \pi} \gamma(x) d x=\lim _{n \rightarrow \infty} \frac{2 \pi}{n} \sum_{k=1}^{n} \gamma_{2 k-1}
$$

Hence we can express the above limit \mathcal{L} in form of an integral:

$$
\begin{equation*}
\mathcal{L}=\frac{1}{4 \pi} \int_{0}^{2 \pi} \gamma(x) d x=\frac{1}{2 \pi} \int_{0}^{\pi} \gamma(x) d x \tag{4.3.32}
\end{equation*}
$$

In the last equality we have used $\gamma(x)=\gamma(2 \pi-x)$ for $x \in[0, \pi]$.
Remove the parameter θ from the definition of $\gamma(x)$:
Recall that $\theta>0$ was defined through the relation $\tanh \theta=e^{-2 \beta \epsilon}$ which shows that

$$
\begin{align*}
\frac{1}{\sinh (2 \beta \epsilon)} & =\frac{2}{e^{2 \beta \epsilon}-e^{-2 \beta \epsilon}}=\frac{2 e^{-2 \beta \epsilon}}{1-e^{-4 \beta \epsilon}} \tag{4.3.33}\\
& =\frac{2 \tanh \theta}{1-\tanh ^{2} \theta}=2 \sinh \theta \cosh \theta=\sinh (2 \theta)
\end{align*}
$$

where we use $\left(1-\tanh ^{2} \theta\right)^{-1}=\cosh ^{2}$ and from (4.3.33):

$$
\begin{align*}
\cosh (2 \theta) & =\sqrt{\sinh ^{2}(2 \theta)+1}=\sqrt{\frac{1}{\sinh ^{2}(2 \beta \epsilon)}+1} \tag{4.3.34}\\
& =\frac{1}{\sinh (2 \beta \epsilon)} \sqrt{1+\sinh ^{2}(2 \beta \epsilon)}=\frac{\cosh (2 \beta \epsilon)}{\sinh (2 \beta \epsilon)}=\operatorname{coth}(2 \beta \epsilon)
\end{align*}
$$

We insert the identities (4.3.33) and (4.3.34) into the equation (4.3.31):

$$
\begin{equation*}
\cosh \gamma(x)=\cosh (2 \beta \epsilon) \operatorname{coth}(2 \beta \epsilon)-\cos x \tag{4.3.35}
\end{equation*}
$$

In the following calculation we need the identity ${ }^{7}$
Lemma 4.3.13. Let $z \in \mathbb{R}$, then:

$$
\begin{equation*}
|z|=\frac{1}{\pi} \int_{0}^{\pi} \log (2 \cosh z-2 \cos t) d t \tag{4.3.36}
\end{equation*}
$$

Combining (4.3.35) and (4.3.36) leads to an integral representation of $\gamma(x)$:

$$
\begin{aligned}
\gamma(x) & =\frac{1}{\pi} \int_{0}^{\pi} \log (2 \cosh \gamma(x)-2 \cos t) d t \\
& =\frac{1}{\pi} \int_{0}^{\pi} \log (2 \cosh (2 \beta \epsilon) \operatorname{coth}(2 \beta \epsilon)-2 \cos x-2 \cos t) d t
\end{aligned}
$$

From the last identity and (4.3.32) we obtain

$$
\mathcal{L}=\frac{1}{2 \pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} \log (2 \cosh (2 \beta \epsilon) \operatorname{coth}(2 \beta \epsilon)-2(\cos x+\cos t)) d t d x
$$

[^18]The above integration is taken over the square $[0, \pi] \times[0, \pi]$ however, we can as well integrate over the dotted rectangle in the picture in Exercise 30, Homework assignment 08 without changing the value of the integral. In fact, consider the two maps $F_{1}, F_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
F_{1}(x, t):=(t,-x)^{T} \quad \text { and } \quad F_{2}(x, t):=(2 \pi-t, x)^{T} .
$$

Then F_{j} maps the triangles D and F to complementary parts of the triangle A (notation with respect to the picture in Exercise 30) and both transformation leave the above integrand unchanged because of

$$
\cos (x)+\cos (t)=\cos (t)+\cos (-x)=\cos (2 \pi-t)+\cos (x)
$$

The square $[0, \pi] \times[0, \pi]$ is mapped to the dotted rectangle \mathcal{R} by the linear transformation

$$
A:=\left(\begin{array}{cc}
1 & -\frac{1}{2} \\
1 & \frac{1}{2}
\end{array}\right), \quad \text { with } \quad \operatorname{det} A=1
$$

We put $D:=\cosh (2 \beta \epsilon) \operatorname{coth}(2 \beta \epsilon)$, then it follows from the transformation rule of the integral and the above observation that

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2 \pi^{2}} \int_{\mathcal{R}} \log [2 D-2(\cos x+\cos t)] d t d x \\
& =\frac{1}{2 \pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} \log \left[2 D-2 \cos \left(x-\frac{t}{2}\right)-2 \cos \left(x+\frac{t}{2}\right)\right] d t d x \\
& =\frac{1}{2 \pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} \log \left[2 D-4 \cos (x) \cos \left(\frac{t}{2}\right)\right] d t d x
\end{aligned}
$$

Next, we decompose the integrand as

$$
\log \left[2 D-4 \cos (x) \cos \left(\frac{t}{2}\right)\right]=\log \left[2 \cos \left(\frac{t}{2}\right)\right]+\log \left[\frac{D}{\cos \left(\frac{t}{2}\right)}-2 \cos (x)\right]
$$

and then use the identity (4.3.36) again:

$$
\frac{1}{\pi} \int_{0}^{\pi} \log \left[\frac{D}{\cos \left(\frac{t}{2}\right)}-2 \cos (x)\right] d x=\cosh ^{-1}\left(\frac{D}{2 \cosh \left(\frac{t}{2}\right)}\right) .
$$

Thus we obtain

$$
\mathcal{L}=\frac{1}{2 \pi} \int_{0}^{\pi} \log \left[2 \cos \left(\frac{t}{2}\right)\right] d t+\frac{1}{2 \pi} \int_{0}^{\pi} \cosh ^{-1}\left(\frac{D}{2 \cosh \left(\frac{t}{2}\right)}\right) d t .
$$

Applying the relation $\cosh ^{-1} x=\log \left(x+\sqrt{x^{2}+1}\right)$ and using the abbreviation

$$
\kappa:=\frac{2}{D}=\frac{2 \sinh (2 \beta \epsilon)}{\cosh ^{2}(2 \beta \epsilon)}=4 \frac{e^{2 \beta \epsilon}-e^{-2 \beta \epsilon}}{\left(e^{2 \beta \epsilon}+e^{-2 \beta \epsilon}\right)^{2}}
$$

we can therefore write

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2 \pi} \int_{0}^{\pi} \log \left[D+\sqrt{D^{2}+4 \cos ^{2}\left(\frac{t}{2}\right)}\right] d t \\
& =\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \log \left[D\left(1+\sqrt{1-\kappa^{2} \cos ^{2} s}\right)\right] d s \\
& =\frac{1}{2 \pi} \int_{0}^{\pi} \log \left[D\left(1+\sqrt{\left.1-\kappa^{2} \sin ^{2} s\right)}\right] d s\right. \\
& =\frac{1}{2} \log (\underbrace{\frac{2 \cosh ^{2}(2 \beta \epsilon)}{\sinh (2 \beta \epsilon)}}_{=2 D})+\frac{1}{2 \pi} \int_{0}^{\pi} \log \frac{1}{2}\left(1+\sqrt{1-\kappa^{2} \sin ^{2} s}\right) d s .
\end{aligned}
$$

Lemma 4.3.14. The limit \mathcal{L} has the integral representation

$$
\mathcal{L}=\frac{1}{2} \log \left(\frac{2 \cosh ^{2}(2 \beta \epsilon)}{\sinh (2 \beta \epsilon)}\right)+\frac{1}{2 \pi} \int_{0}^{\pi} \log \frac{1}{2}\left(1+\sqrt{1-\kappa^{2} \sin ^{2} s}\right) d s
$$

where

$$
\kappa=4 \frac{e^{2 \beta \epsilon}-e^{-2 \beta \epsilon}}{\left(e^{2 \beta \epsilon}+e^{-2 \beta \epsilon}\right)^{2}}
$$

Proof. Homework.
We summarize our results
Theorem 4.3.15. Let $T>0$ and $\beta=1 /(k T)$, then we have the limit

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{N} \log Q_{I}(0, T) & =\frac{1}{2} \log [2 \sinh (2 \epsilon \beta)]+\mathcal{L} \\
& =\log [2 \cosh (2 \beta \epsilon)]+\frac{1}{2 \pi} \int_{0}^{\pi} \log \frac{1}{2}\left(1+\sqrt{1-\kappa^{2} \sin ^{2} s}\right) d s
\end{aligned}
$$

where

$$
\kappa=4 \frac{e^{2 \beta \epsilon}-e^{-2 \beta \epsilon}}{\left(e^{2 \beta \epsilon}+e^{-2 \beta \epsilon}\right)^{2}}
$$

4.4 Thermodynamical functions and physical interpretation

In order to write down the thermodynamical functions we use the notion of elliptic integrals.
Definition 4.4.1. The complete elliptic integral $K_{1}(\kappa)$ of the first kind and $E_{1}(\kappa)$ of the second type are defined by:

$$
\begin{aligned}
& K_{1}(\kappa)=\int_{0}^{\frac{\pi}{2}} \frac{d s}{\sqrt{1-\kappa^{2} \sin ^{2} s}}=\frac{1}{2} \int_{0}^{\pi} \frac{d s}{\Delta}, \text { where } \Delta:=\sqrt{1-\kappa^{2} \sin ^{2} s} \\
& E_{1}(\kappa)=\int_{0}^{\frac{\pi}{2}} \sqrt{1-\kappa^{2} \sin ^{2} s} d s
\end{aligned}
$$

Lemma 4.4.2. One has the following asymptotic behaviour if $\kappa \rightarrow 1$:
(i) $\lim _{\kappa \rightarrow 1}\left\{K_{1}(\kappa)-\log \frac{4}{\sqrt{1-\kappa^{2}}}\right\}=0$,
(ii) $\lim _{\kappa \rightarrow 1} E_{1}(\kappa)=1$,

Proof. Homework 09.
Together they fullfil the differential equation

$$
\begin{equation*}
\frac{d K_{1}}{d \kappa}(\kappa)=\frac{E_{1}(\kappa)}{\kappa\left(1-\kappa^{2}\right)}-\frac{K_{1}(\kappa)}{\kappa} . \tag{4.4.1}
\end{equation*}
$$

From Theorem 4.3.15 and in the case where $B=0$ we obtain the thermodynamical functions:

Helmholtz free energy per spin:

$$
\begin{aligned}
a_{I}(0, T) & =-\lim _{N \rightarrow \infty} \frac{1}{\beta N} \log Q_{I}(0, T) \\
& =-\beta^{-1} \log (2 \cosh (2 \beta \epsilon))-\frac{1}{2 \pi \beta} \int_{0}^{\pi} \log \frac{1}{2}\left(1+\sqrt{1-\kappa^{2} \sin ^{2} s}\right) d s
\end{aligned}
$$

Internal energy per spin: is obtained by

$$
\begin{align*}
u_{I}(0, T) & =\frac{d}{d \beta}\left[\beta a_{I}(0, T)\right] \tag{4.4.2}\\
& =-2 \epsilon \tanh (2 \beta \epsilon)+\frac{\kappa}{2 \pi} \frac{d \kappa}{d \beta} \int_{0}^{\pi} \frac{\sin ^{2} s}{(1+\Delta) \Delta} d s
\end{align*}
$$

where $\Delta:=\sqrt{1-\kappa^{2} \sin ^{2} s}$. We can rewrite the integral on the right hand side. Consider the relation

$$
\begin{aligned}
\frac{\kappa^{2} \sin ^{2} s}{(1+\Delta) \Delta} & =-\frac{1-\kappa^{2} \sin ^{2} s}{\left(1+\sqrt{1-\kappa^{2} \sin ^{2}}\right) \sqrt{1-\kappa^{2} \sin ^{2} s}}+\frac{1}{\left(1+\sqrt{1-\kappa^{2} \sin ^{2} s}\right) \sqrt{1-\kappa^{2} \sin ^{2} s}} \\
& =-\frac{\Delta}{1+\Delta}-\frac{1}{1+\Delta}+\frac{1}{\Delta}=-1+\frac{1}{\Delta}
\end{aligned}
$$

Therefore we have

$$
\int_{0}^{\pi} \frac{\sin ^{2} s}{(1+\Delta) \Delta} d s=-\frac{\pi}{\kappa^{2}}+\frac{1}{\kappa^{2}} \int_{0}^{\pi} \frac{d s}{\Delta}=-\frac{\pi}{\kappa^{2}}+\frac{2}{\kappa^{2}} K_{1}(\kappa) .
$$

Here we have used the notation of elliptic integrals. We also calculate the expression $\kappa^{-1} d \kappa / d \beta$:

$$
\frac{1}{\kappa} \frac{d \kappa}{d \beta}=\frac{\cosh ^{2}(2 \beta \epsilon)}{\sinh (2 \beta \epsilon)} \frac{d}{d \beta}\left(\frac{\sinh (2 \beta \epsilon)}{\cosh ^{2}(2 \beta \epsilon)}\right)=2 \epsilon \operatorname{coth}(2 \beta \epsilon)-4 \epsilon \tanh (2 \beta \epsilon) .
$$

Plugging this relations into (4.4.2) gives

$$
\begin{aligned}
u_{I}(0, T) & =-2 \epsilon \tanh (2 \beta \epsilon)+\frac{1}{2 \pi}\left(\frac{1}{\kappa} \frac{d \kappa}{d \beta}\right)\left[-\pi+2 K_{1}(\kappa)\right] \\
& =-2 \epsilon \tanh (2 \beta \epsilon)+\left[\epsilon \operatorname{coth}(2 \beta \epsilon)-2 \epsilon \tanh (2 \beta \epsilon)\left[-1+\frac{2}{\pi} K_{1}(\kappa)\right]\right. \\
& =-\epsilon \operatorname{coth}(2 \beta \epsilon)+\frac{2 \epsilon}{\pi} K_{1}(\kappa)[\operatorname{coth}(2 \beta \epsilon)-2 \tanh (2 \beta \epsilon)] \\
& =-\epsilon \operatorname{coth}(2 \beta \epsilon)\left[1-\frac{2}{\pi} K_{1}(\kappa)+\frac{4}{\pi} \tanh ^{2}(2 \beta \epsilon) K_{1}(\kappa)\right] .
\end{aligned}
$$

If we define the function

$$
\kappa^{\prime}=\kappa^{\prime}(\epsilon \beta):=2 \tanh ^{2}(2 \beta \epsilon)-1
$$

then we have
Lemma 4.4.3. The inner energy per spin is given by

$$
\begin{equation*}
u_{I}(0, T)=-\epsilon \operatorname{coth}(2 \beta \epsilon)\left[1+\kappa^{\prime} \frac{2}{\pi} K_{1}(\kappa)\right] . \tag{4.4.3}
\end{equation*}
$$

where

$$
\kappa=\frac{2 \sinh (2 \beta \epsilon)}{\cosh ^{2}(2 \beta \epsilon)} \quad \text { and } \quad \kappa^{\prime}=\kappa^{\prime}(\epsilon \beta):=2 \tanh ^{2}(2 \beta \epsilon)-1
$$

The functions κ and κ^{\prime} are related by

$$
\begin{equation*}
\kappa^{2}+\kappa^{\prime 2}=1 \tag{4.4.4}
\end{equation*}
$$

Moreover, $u_{I}(0, T)$ considered as a function of κ does not extend analytically around $\kappa=1$.
Proof. (4.4.4) follows by a direct calculation. We show that

$$
F(\kappa):=\kappa^{\prime} K_{1}(\kappa)=\sqrt{1-\kappa^{2}} K_{1}(\kappa)
$$

is not analytic in $\kappa=1$. According to the DGL (4.4.1) we have

$$
K_{1}^{\prime}(\kappa) \sqrt{1-\kappa^{2}}=\frac{E_{1}(\kappa)}{\kappa \sqrt{1-\kappa^{2}}}-\frac{\sqrt{1-\kappa^{2}} K_{1}(\kappa)}{\kappa}
$$

Therefore

$$
\begin{aligned}
F^{\prime}(\kappa) & =-\frac{\kappa}{\sqrt{1-\kappa^{2}}} K_{1}(\kappa)+K_{1}^{\prime}(\kappa) \sqrt{1-\kappa^{2}} \\
& =-\frac{\kappa}{\sqrt{1-\kappa^{2}}} K_{1}(\kappa)+\frac{E_{1}(\kappa)}{\kappa \sqrt{1-\kappa^{2}}}-\frac{\sqrt{1-\kappa^{2}} K_{1}(\kappa)}{\kappa} .
\end{aligned}
$$

Now it follows from the asymptotic behaviour of $K_{1}(\kappa) \sim \log \left(4 / \sqrt{1-\kappa^{2}}\right)$ and $E_{1}(\kappa) \sim 1$ as $\kappa \rightarrow 1$ in Lemma 4.4.2 that $\left|F^{\prime}(\kappa)\right| \rightarrow \infty$ as $\kappa \rightarrow 1$.

We call the temperature T_{c} corresponding to $\kappa\left(\beta_{c} \epsilon\right)=1$ where $\beta_{c}=1 /\left(k T_{c}\right)$ the critical temperature. This means that $\kappa^{\prime}\left(\beta_{c} \epsilon\right)=0$, or equivalently

$$
\begin{equation*}
\tanh \left(2 \beta_{c} \epsilon\right)=\tanh \frac{2 \epsilon}{k T_{c}}=\frac{1}{\sqrt{2}}, \quad \text { and } \quad \frac{\epsilon}{k T_{c}}=0,4406868 \cdots \tag{4.4.5}
\end{equation*}
$$

In particular, it holds

$$
\cosh ^{2}\left(2 \beta_{c} \epsilon\right)=\frac{\sinh ^{2}\left(2 \beta_{c} \epsilon\right)}{\tanh ^{2}\left(2 \beta_{c} \epsilon\right)}=2 \sqrt{\cosh ^{2}\left(2 \beta_{c} \epsilon\right)-1}
$$

which gives

$$
\begin{aligned}
\cosh \left(2 \beta_{c} \epsilon\right) & =\sqrt{2} \\
\sinh \left(2 \beta_{c} \epsilon\right) & =\tanh (2 \beta \epsilon) \cosh (2 \beta \epsilon)=1
\end{aligned}
$$

Heat capacity per spin: By using (4.4.3) and (4.4.1) one obtains

$$
\begin{aligned}
c_{I}(0, T) & =\frac{\partial u_{I}}{\partial T}(0, T) \\
& =\frac{2 \kappa}{\pi}\left(\beta \epsilon \operatorname{coth}^{2}(2 \beta \epsilon)\right)^{2}\left[2 K_{1}(\kappa)-2 E_{1}(\kappa)-\left(1-\kappa^{\prime}\right)\left(\frac{\pi}{2}+\kappa^{\prime} K_{1}(\kappa)\right)\right]
\end{aligned}
$$

The "heat capacity per spin" has a logarithmic singularity as $\left|T-T_{c}\right| \rightarrow 0$:

$$
c_{I}(0, T) \sim C(\epsilon) \log \left|\frac{T-T_{c}}{T_{c}}\right| \quad \text { as } \quad T \rightarrow T_{c}
$$

Magnetization per spin: In order to calculate $m_{I}(0, T)$ we need an expression for the inner energy $a_{I}(B, T)$ for $B \neq 0$. Since we have assumed $B=0$ in our calculations we cannot use the above formulas and present an expression of the magnetization/spin without a proof (for details see [9]):

$$
m_{I}(B, T)=-\frac{\partial}{\partial B}\left(\beta a_{I}(B, T)\right)_{\left.\right|_{B=0}}= \begin{cases}0 & \text { if } T>T_{c} \\ \frac{\left(1+z^{2}\right)^{\frac{1}{4}}\left(1-6 z^{2}+z^{4}\right)^{\frac{1}{8}}}{\sqrt{1-z^{2}}}, & \text { if } T<T_{c}\end{cases}
$$

Here we put $z=e^{-2 \beta \epsilon}$.

Chapter 5

The renormalization group

(Robert Helling)

Chapter 6

Ideal gases

Within the mathematical framework of the CCR and CAR algebras we study thermodynamical models describing non-interacting particles in some bounded set $\Lambda \subset \mathbb{R}^{n}$. These are the so-called free gases. The simplifying assumption of non-interacting particles is a good approximation for a gas at high temperature and low pressure where the intermolecular forces become negligible.

6.1 The ideal Fermi gas

Let $(\mathfrak{h},\langle\cdot, \cdot\rangle)$ be a "one-particle-Hilbert-space" over \mathbb{C} and recall that the Fermi-Fock space was defined by

$$
\mathfrak{F}_{-}(\mathfrak{h}):=P_{-} \mathfrak{F}(\mathfrak{h}) .
$$

Here we have:

- $\mathfrak{F}(\mathfrak{h})=\bigoplus_{n \geq 0} \mathfrak{h}^{n}$ where $\mathfrak{h}^{n}=\mathfrak{h} \otimes \cdots \otimes \mathfrak{h}$ with $n \in \mathbb{N}$ and $\mathfrak{h}^{0}=\mathbb{C}$. (Fock space over \mathfrak{h}).
- $P_{-}=$projection onto the "anti-symmetric part" of $\mathfrak{F}(\mathfrak{h})$.

Let H be a self-adjoint Hamiltonian operator on \mathfrak{h} with second quantization $d \Gamma(H)$ on $\mathfrak{F}(\mathfrak{h}-)$

$$
\begin{array}{r}
d \Gamma(H):=\overline{\bigoplus_{n \geq 0} H_{n}}=\text { self-adjoint closure, } \quad H_{0}=0, \\
H_{n}\left(P_{-}\left(f_{1} \otimes \cdots \otimes f_{n}\right)\right):=P_{-}\left(\sum_{i=1}^{n} f_{1} \otimes f_{2} \otimes \cdots \otimes H f_{i} \otimes \cdots \otimes f_{n}\right) .
\end{array}
$$

Put $\hbar=1$ such that the Schrödinger equation for an arbitrary number of fermions moving independently is given by

$$
i \frac{\Psi_{t}}{d t}=d \Gamma(H) \Psi_{t}
$$

1
We consider the Gibbs grand canonical ensemble. Let $\mu \in \mathbb{R}$ (chemical potential) and $\beta \in \mathbb{R}$ (inverse temperature) and consider the modified Hamiltonian

$$
K_{\mu}:=d \Gamma(H-\mu I) .
$$

[^19]The Gibbs equilibrium state on the CAR-algebra $\mathcal{A}_{\mathrm{CAR}}(\mathfrak{h})$ over \mathfrak{h} takes the form

$$
\omega(A):=\frac{\operatorname{trace}\left(e^{-\beta K_{\mu}} A\right)}{\operatorname{trace}\left(e^{-\beta K_{\mu}}\right)}, \quad \text { where } \quad A \in \mathcal{A}(\mathfrak{h})
$$

Recall that $\mathcal{A}_{\mathrm{CAR}}(\mathfrak{h})$ is the algebra generated by the identity I and $a(f)$ with $f \in \mathfrak{h}$ such that
(1) $\mathfrak{h} \ni f \mapsto a(f)$ is anti-linear,
(2) $\{a(f), a(g)\}=0$
(3) $\left\{a(f), a(g)^{*}\right\}=\langle f, g\rangle I$.

Question: Is the Gibbs state ω well-defined? More precisely: when is $e^{-\beta K_{\mu}}$ trace class?
Lemma 6.1.1. Let $\beta \in \mathbb{R}$, then (a) and (b) are equivalent:
(a) $e^{-\beta H}$ is trace class on \mathfrak{h},
(b) $e^{-\beta d \Gamma(H-\mu I)}$ is trace class on $\mathfrak{F}_{-}(\mathfrak{h})$ for all $\mu \in \mathbb{R}$.

Proof. Proposition 5.2.22 in Bratteli/Robinson.
Remark 6.1.2. If the Gibbs state is not defined for all or some β (e.g. β negative) we can replace it by a τ-KMS state $\tilde{\omega}$ with respect to the following evolution

$$
\begin{equation*}
\mathcal{A}_{\mathrm{CAR}}(\mathfrak{h}) \ni A \mapsto \tau_{t}(A)=e^{i t K_{\mu}} A e^{-i t K_{\mu}} \in \mathcal{A}_{\mathrm{CAR}}(\mathfrak{h}) . \tag{6.1.1}
\end{equation*}
$$

Recall that the KMS-condition (which would be used in the following arguments) has the form:

$$
\tilde{\omega}\left(A \tau_{t}(B)\right)_{\left.\right|_{t=i \beta}}=\tilde{\omega}(B A)
$$

If the Gibbs state exists, then it is the unique τ-KMS state.
We consider the evolution (6.1.1) on generators $a^{*}(f)$ of $\mathcal{A}_{\mathrm{CAR}}(\mathfrak{h})$.
Lemma 6.1.3. Let $a(f) \in \mathcal{A}_{\mathrm{CAR}}(\mathfrak{h})$ with $f \in \mathfrak{h}$, then we have for all t
(i) $e^{i t d \Gamma(H)} a^{*}(f) e^{-i t d \Gamma(H)}=a^{*}\left(e^{i t H} f\right)$,
(ii) $e^{i t d \Gamma(H)} a(f) e^{-i t d \Gamma(H)}=a\left(e^{i t H} f\right)$.

Proof. We only show (i). Put $U_{t}:=e^{i t H}$ and recall that the second quantization relates the unitary one-parameter groups U_{t} corresponding to H and $d \Gamma(H)$ in the following way

$$
e^{i t d \Gamma(H)}=\Gamma\left(U_{t}\right):=\bigoplus_{n \geq 0} U_{n, t}
$$

where $U_{0, t}=I$ and with $n \in \mathbb{N}$:

$$
U_{n, t}\left(P_{-}\left(f_{1} \otimes f_{2} \otimes \cdots \otimes f_{n}\right)\right):=P_{-}\left[U_{t} f_{1} \otimes U_{t} f_{2} \otimes \cdots \otimes U_{t} f_{n}\right]
$$

From this it follows:

$$
\begin{aligned}
e^{i t d \Gamma(H)} a^{*}(f) e^{-i t d \Gamma(H)} & P_{-}\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\Gamma\left(U_{t}\right) a^{*}(f) P_{-}\left(U_{-t} f_{1} \otimes \cdots \otimes U_{-t} f_{n}\right) \\
& =\frac{\sqrt{n+1}}{n!} \Gamma\left(U_{t}\right) P_{-}\left(\sum_{\pi} \epsilon_{\pi} f \otimes U_{-t} f_{\pi_{1}} \otimes \cdots \otimes U_{-t} f_{\pi_{n}}\right) \\
& =\frac{\sqrt{n+1}}{n!} P_{-}\left(\sum_{\pi} \epsilon_{\pi} U_{t} f \otimes f_{\pi_{1}} \otimes \cdots \otimes f_{\pi_{n}}\right) \\
& =P_{-} a^{*}\left(U_{t} f\right) P_{-}\left(f_{1} \otimes \cdots \otimes f_{n}\right) .
\end{aligned}
$$

Since $=P_{-} a^{*}\left(U_{t} f\right) P_{-}=a^{*}\left(U_{t} f\right)$ this finishes the proof.
Write $z=e^{\beta \mu}>0$ for the activity. Using the previous lemma we can calculate the so-called two-point functions of the Gibbs state ω.

Corollary 6.1.4. Let $f, g \in \mathfrak{h}$, then we have

$$
\begin{equation*}
\omega\left(a^{*}(f) a(g)\right)=\left\langle g, z e^{-\beta H}\left(I+z e^{-\beta H}\right)^{-1} f\right\rangle . \tag{6.1.2}
\end{equation*}
$$

Proof. In Lemma 6.1 .3 we replace t by $i \beta$ and H by $H-\mu I$. Then

$$
\begin{aligned}
\operatorname{trace}\left\{e^{-\beta K_{\mu}} a^{*}(f) a(g)\right\} & =\operatorname{trace}\left\{e^{-\beta K_{\mu}} a^{*}(f) e^{\beta K_{\mu}} e^{-\beta K_{\mu}} a(g)\right\} \\
& =\operatorname{trace}\left\{a^{*}\left(e^{-\beta(H-\mu I)} f\right) e^{-\beta K_{\mu}} a(g)\right\} \\
& =z \operatorname{trace}\left\{e^{-\beta K_{\mu}} a(g) a^{*}\left(e^{-\beta H} f\right)\right\}=(*) .
\end{aligned}
$$

Now we use the anti-commutation relations to switch $a^{*}\left(e^{-\beta H} f\right)$ back to the left:

$$
(*)=-z \operatorname{trace}\left\{e^{-\beta K_{\mu}} a^{*}\left(e^{-\beta H} f\right) a(g)\right\}+z\left\langle g, e^{-\beta H} f\right\rangle \operatorname{trace}\left(e^{-\beta K_{\mu}}\right)
$$

Dividing both sides by trace $\left(e^{-\beta K_{\mu}}\right)$ gives

$$
\omega\left(a^{*}(f) a(g)\right)=-z \omega\left(a^{*}\left(e^{-\beta H} f\right) a(g)\right)+z\left\langle g, e^{-\beta H} f\right\rangle
$$

or equivalently

$$
\omega\left(a^{*}\left(\left[I+z e^{-\beta H}\right] f\right) a(g)\right)=z\left\langle g, e^{-\beta H} f\right\rangle
$$

Finally, (6.1.2) follows by replacing f with $\left(I+z e^{-\beta H}\right)^{-1} f$.
Definition 6.1.5. Consider the group of Bogoliubov transformations of $\mathcal{A}_{\mathrm{CAR}}(\mathfrak{h})$ induced by

$$
\tau_{\theta}[a(f)]:=a\left(e^{i \theta} f\right), \quad \text { where } \quad \theta \in[0,2 \pi)
$$

These are the so-called gauge transformations. A state on $\mathcal{A}_{\mathrm{CAR}}(\mathfrak{h})$ is called gauge-invariant if it is invariant under gauge transformations.

Remark 6.1.6. By a very similar argument one checks that the formula (6.1.2) generalizes to

$$
\begin{aligned}
& \omega\left(\prod_{i=1}^{n} a^{*}\left(f_{i}\right) \prod_{j=1}^{m} a\left(g_{j}\right)\right)= \\
&= \begin{cases}0 & \text { if } n \neq m, \\
\sum_{\ell=1}^{n}(-1)^{n-\ell} \omega\left(a^{*}\left(f_{1}\right) a\left(g_{\ell}\right)\right) \omega\left(\prod_{i=2}^{n} a^{*}\left(f_{i}\right) \prod_{\substack{j=1 \\
j \neq \ell}}^{m} a\left(g_{j}\right)\right), & \text { else. }\end{cases}
\end{aligned}
$$

In particular,
(I) By iteration of this process it follows that the Gibbs state ω only depends on the values of all the two-point functions

$$
\omega\left(a^{*}(f) a(g)\right)=\left\langle g, z e^{-\beta H}\left(I+z e^{-\beta H}\right)^{-1} f\right\rangle .
$$

The state ω is called quasi-free. ${ }^{2}$
(II) Remark (I) implies that the Gibbs state ω on $\mathcal{A}_{\mathrm{CAR}}(\mathfrak{h})$ is gauge-invariant and quasi free.

Now we specify the discussion to the following case. Let $\Lambda \subset \mathbb{R}^{n}$ be a bounded and open subset and put

$$
\begin{aligned}
\mathfrak{h}_{\Lambda}: & =L^{2}(\Lambda), \quad \text { and } \quad \mathfrak{h}:=L^{2}\left(\mathbb{R}^{n}\right), \\
C_{0}^{\infty}(\Omega) & =\left\{f \in C^{\infty}(\Omega): \operatorname{supp}(f) \subset \Omega \text { is compact }\right\}, \quad \Omega \in\left\{\Lambda, \mathbb{R}^{n}\right\} .
\end{aligned}
$$

Consider the (positive) Laplacian $-\Delta$ on $C_{0}^{\infty}(\Lambda)$. With respect to suitable units we define the Hamiltonians

$$
\begin{aligned}
H_{\Lambda} & =\text { some self-adjoint extension of }-\Delta \text { on } C_{0}^{\infty}(\Lambda) \\
H & =\text { self-adjoint extension of }-\Delta \text { on } C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

There are various self-adjoint extensions H_{Λ} of $-\Delta$ on $L^{2}(\Lambda)$ according to the choice of boundary conditions. However, the Laplacian on \mathbb{R}^{n} has a unique self-adjoint extension. The operators H_{Λ} typically have discrete spectrum with eigenvalue asymptotic (Weyl-asymptotic)

$$
\lambda_{\ell} \sim \ell^{\frac{\operatorname{dim} \Lambda}{2}}, \quad \text { as } \quad \ell \rightarrow \infty
$$

and therefore $e^{-\beta H_{\Lambda}}$ is trace class if $\beta>0$. However, H has no discrete spectrum and $e^{-\beta H}$ is not of trace class for any $\beta \in \mathbb{R}$.

Remark 6.1.7 (classical boundary conditions). Let $\Lambda \subset \mathbb{R}^{n}$ be bounded and open with piecewise differentiable boundary $\partial \Lambda$. Recall Green's formula

$$
\langle\Delta \psi, \varphi\rangle-\langle\psi, \Delta \varphi\rangle=\int_{\partial \Lambda}\left\{\bar{\psi} \frac{\partial \varphi}{\partial n}-\frac{\partial \bar{\psi}}{\partial n} \varphi\right\} d \sigma
$$

In order to make Δ symmetric on its domain of definition we must make sure that the integrand vanishes for all $\varphi, \psi \in \mathcal{D}(\Delta)$. We may choose

[^20](i) $\frac{\partial \varphi}{\partial n}=0$ on $\partial \Lambda,($ Neumann boundary conditions),
(ii) $\varphi=0$ on $\partial \Lambda$, (Dirichlet boundary conditions),
(iii) $\frac{\partial \varphi}{\partial n}=h \varphi$ where $h \in C^{1}(\partial \Lambda)$ is real-valued.

First we comment on the thermodynamical limit. In the following the limit $\Lambda \underset{\sim}{\Lambda} \rightarrow \infty$ means that Λ is a sequence of open bounded sets that eventually contains all bounded $\widetilde{\Lambda} \subset \mathbb{R}^{n}$.

We write ω_{Λ} for the Gibbs equilibrium state over $\mathcal{A}_{\mathrm{CAR}}\left(\mathfrak{h}_{\Lambda}\right)$. Let ω be the gauge-invariant quasi-free state over $\mathcal{A}_{\mathrm{CAR}}(\mathfrak{h})$ with two point functions (c.f. Corollary 6.1.4):

$$
\omega\left(a^{*}(f) a(g)\right)=\left\langle g, z e^{-\beta H}\left(I+z e^{-\beta H}\right)^{-1} f\right\rangle_{\mathfrak{h}} .
$$

Proposition 6.1.8. For all $A \in \mathcal{A}_{\mathrm{CAR}}\left(\mathfrak{h}_{\Lambda}\right)$ it holds $\lim _{\Lambda \rightarrow \infty} \omega_{\Lambda}(A)=\omega(A)$.
Proof. Bratteli/Robinson II.
In particular, the thermodynamical limit of the "finite-volume equilibrium states" is uniquely defined and independent of the particular boundary conditions (unique thermodynamic phase).

6.2 Equilibrium phenomena

The explicit expression of the two point functions for the infinite idealized Fermi gas allows us to study some equilibrium phenomena.

Definition 6.2.1. Consider the number functional \widehat{N} which measures the number of particles in a given state:

$$
\begin{equation*}
\widehat{N}: E_{\mathcal{A}_{\mathrm{CAR}}(\mathfrak{h})} \longrightarrow[0, \infty]: \widehat{N}(\tilde{\omega}):=\sup _{F} \sum_{\left\{f_{i}\right\} \subset F} \tilde{\omega}\left(a^{*}\left(f_{i}\right) a\left(f_{i}\right)\right) . \tag{6.2.1}
\end{equation*}
$$

F runs through finite dimensional subspaces of \mathfrak{h} and $\left\{f_{i}\right\}$ through the ONBs of F.
Exercise 6.2.2. Let $\left[e_{i}: i \in \mathbb{N}_{0}\right]$ and $\left[f_{j}: j \in \mathbb{N}_{0}\right]$ be orthonormal bases of \mathfrak{h} and put

$$
\psi^{(m)}=P_{-}\left[e_{j_{1}} \otimes \cdots \otimes e_{j_{m}}\right]
$$

where $m \in \mathbb{N}_{0}$ and the entries of $\left(j_{1}, \cdots, j_{m}\right) \in \mathbb{N}_{0}^{n}$ are pairwise distinct (otherwise $\Psi^{(m)}=0$). With the number operator N on $\mathcal{F}_{-}(\mathfrak{h})$ show that

$$
m=\left\langle\psi^{(m)}, N \psi^{(m)}\right\rangle=\sum_{n \geq 0}\left\langle\psi^{(m)}, a^{*}\left(f_{n}\right) a\left(f_{n}\right) \psi^{(m)}\right\rangle
$$

Consider the quasi-local CAR algebras

$$
\mathcal{A}_{\Lambda}=\mathcal{A}_{\mathrm{CAR}}\left(\mathfrak{h}_{\Lambda}\right), \quad \text { such that } \quad \mathcal{A}_{\mathrm{CAR}}(\mathfrak{h})=\overline{\bigcup_{\Lambda} \mathcal{A}_{\Lambda}} .
$$

By choosing the sub-spaces F in (6.2.1) only in \mathfrak{h}_{Λ} we obtain local number functionals

$$
\widehat{N}_{\Lambda}: E_{\mathcal{A}_{\Lambda}} \rightarrow[0, \infty]
$$

We calculate the following density for the Gibbs equilibrium state ω (=number of particles per unit volume in Λ):

Let $\left\{f_{n}\right\}_{n}$ be an orthonormal basis of $L^{2}(\Lambda)$, then we find from Corollary 6.1.4:

$$
\begin{aligned}
\rho(\beta, z): & =\frac{\widehat{N}_{\Lambda}(\omega)}{|\Lambda|^{-1}}, \quad \text { with } \quad|\Lambda|:=\text { volume of } \Lambda \\
& =|\Lambda|^{-1} \sum_{n \geq 0} \omega\left(a^{*}\left(f_{n}\right) a\left(f_{n}\right)\right) \\
& =|\Lambda|^{-1} \sum_{n \geq 0}\left\langle f_{n}, z e^{\beta \Delta}\left(I+z e^{\beta \Delta}\right)^{-1} f_{n}\right\rangle_{L^{2}(\Lambda)}=(*) .
\end{aligned}
$$

Via continuation by zero we can embed $L^{2}(\Lambda)$ into $L^{2}\left(\mathbb{R}^{n}\right)$. Let \widehat{f} be the Fourier transform of $f \in L^{2}\left(\mathbb{R}^{n}\right)$, then:

$$
\begin{aligned}
\left\langle f_{n}, z e^{\beta \Delta}\left(I+z e^{\beta \Delta}\right)^{-1} f_{n}\right\rangle_{L^{2}(\Lambda)} & =\left\langle\widehat{f_{n}}, z e^{-\beta p^{2}}\left(1+z e^{-\beta p^{2}}\right)^{-1} \widehat{f}_{n}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} \\
& \left.=\left.\langle | \widehat{f}_{n}\right|^{2}, z e^{-\beta p^{2}}\left(1+z e^{-\beta p^{2}}\right)^{-1}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

With $p, x \in \mathbb{R}^{n}$ put $e_{p}(x):=(2 \pi)^{-\frac{n}{2}} e^{i x p}$, then we have

$$
\sum_{n \geq 0}\left|\widehat{f}_{n}\right|^{2}(p)=\sum_{n \geq 0}\left|\left\langle f_{n}, e_{p}\right\rangle\right|^{2}=\left\|e_{p}\right\|_{L^{2}(\Lambda)}^{2}=\frac{|\Lambda|}{(2 \pi)^{n}}
$$

Inserting this above gives
Lemma 6.2.3. For each bounded open set $\Lambda \subset \mathbb{R}^{n}$ the density function $\rho(\beta, z)$ has the form

$$
\rho(\beta, z)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} z e^{-\beta p^{2}}\left(1+z e^{-\beta p^{2}}\right)^{-1} d p=\lambda^{-n} I(z)<\infty
$$

where $\lambda:=\sqrt{4 \pi \beta}$ ("thermal wave lenght of the individual particle") and the function $I(z)$ is given by

$$
I(z):=\pi^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} z e^{-x^{2}}\left(1+z e^{-x^{2}}\right)^{-1} d x
$$

In particular, $\rho(\beta, z)$ is independent of Λ (which is expected since the equilibrium state is invariant under space translations).
Next: Calculate the local energy per unit volume.
Let $\left\{f_{n}\right\} \subset C^{1}(\Lambda)$ be an orthonormal basis of $L^{2}(\Lambda)$. The local energy per unit volume of the state ω is given by

$$
\begin{aligned}
\varepsilon(\beta, z) & =|\Lambda|^{-1} \sum_{n \geq 0} \omega\left(a^{*}\left(\sqrt{-\Delta} f_{n}\right) a\left(\sqrt{-\Delta} f_{n}\right)\right) \\
& =|\Lambda|^{-1} \sum_{n \geq 0}\left\langle f_{n}, z e^{\beta \Delta}\left(I+z e^{\beta \Delta}\right)^{-1}(-\Delta) f_{n}\right\rangle_{L^{2}(\Lambda)}
\end{aligned}
$$

Exercise 6.2.4. With the notation of Exercise 6.2.2 it holds

$$
\sum_{n \geq 0}\left\langle\psi^{(m)}, a^{*}\left(\sqrt{-\Delta} f_{n}\right) a\left(\sqrt{-\Delta} f_{n}\right) \psi^{(m)}\right\rangle_{\mathfrak{h}_{\Lambda}}=\left\langle\psi^{(m)}, T_{\Lambda} \psi^{(m)}\right\rangle_{\mathfrak{h}_{\Lambda}},
$$

where $\left\{f_{n}\right\}_{n}$ is a (suitable) orthonormal basis of \mathfrak{h}_{Λ} and T_{Λ} is a self-adjoint extension of the second quantization $\Gamma(-\Delta)$ of $-\Delta$ w.r.t Neumann boundary conditions. ${ }^{3}$.

By a similar argument like the one we used for the density function $\rho(z, \beta)$ we obtain

$$
\varepsilon(\beta, z)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} p^{2} z e^{-\beta p^{2}}\left(1+z e^{-\beta p^{2}}\right)^{-1} d p=(*) .
$$

Note that

$$
\frac{z p_{j}^{2} e^{-\beta p^{2}}}{1+z e^{-\beta p^{2}}}=-\frac{p_{j}}{2 \beta} \frac{\partial}{\partial p_{j}} \log \left(1+z e^{-\beta p^{2}}\right)
$$

and therefore one obtains via partial integration

$$
\begin{aligned}
(*) & =-\frac{1}{2 \beta}(2 \pi)^{-n} \sum_{j=1}^{n} \int_{\mathbb{R}^{n}} p_{j} \frac{\partial}{\partial p_{j}} \log \left(1+z e^{-\beta p^{2}}\right) d p \\
& =\frac{1}{2 \beta}(2 \pi)^{-n} \sum_{j=1}^{n} \int_{\mathbb{R}^{n}} \log \left(1+z e^{-\beta p^{2}}\right) d p \\
& =\frac{n}{2 \beta}(2 \pi)^{-n} \int_{\mathbb{R}^{n}} \log \left(1+z e^{-\beta p^{2}}\right) d p
\end{aligned}
$$

Lemma 6.2.5. For each bounded and open $\Lambda \subset \mathbb{R}^{n}$ the local energy per unit volume fulfills

$$
\varepsilon(\beta, z)=\frac{n}{2 \beta}(2 \pi)^{-n} \int_{\mathbb{R}^{n}} \log \left(1+z e^{-\beta p^{2}}\right) d p=\beta^{-1} \lambda^{-n} J(z)<\infty
$$

where $\lambda:=\sqrt{4 \pi \beta}$ and the function $J(z)$ is given by

$$
J(z):=\pi^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} z x^{2} e^{-x^{2}}\left(1+z e^{-x^{2}}\right)^{-1} d x
$$

In particular, $\varepsilon(\beta, z)$ is independent of Λ.
Fermi sea: Consider the idealization of zero temperature: if we take $\beta \rightarrow \infty$, then the integrand in the expression of $\rho(\beta, z)$ behaves as follows (recall that $\left.z=e^{\beta \mu}\right)$:

$$
\lim _{\beta \rightarrow \infty} z e^{-\beta p^{2}}\left(1+z e^{-\beta p^{2}}\right)^{-1}=\lim _{\beta \rightarrow \infty} e^{-\beta\left(p^{2}-\mu\right)}\left(1+e^{-\beta\left(p^{2}-\mu\right)}\right)^{-1}= \begin{cases}1, & \text { if } p^{2}<\mu \\ 0, & \text { if } p^{2}>\mu\end{cases}
$$

All states with energy $<\mu$ are occupied and states with energy greater than μ are empty. The critical value $\mu=p^{2}$ is called Fermi surface.

[^21]
6.3 The ideal Bose gas

Consider the Bose Fock space $\mathcal{F}_{+}(\mathfrak{h})$ over the one-particle Hilbert space \mathfrak{h} with one-particle Hamiltonian H, i.e.

$$
\mathcal{F}_{+}(\mathfrak{h}):=P_{+} \mathcal{F}(\mathfrak{h})
$$

where P_{+}is the projection onto the symmetric part of $\mathcal{F}(\mathfrak{h})$. The Hamiltonian for a noninteracting system of Bosons is given as the second quantization $d \Gamma(H)$ of H.

The corresponding time evolution of observables $A \in \mathcal{L}\left(\mathcal{F}_{+}(\mathfrak{h})\right)$ has the form

$$
\begin{equation*}
A \mapsto \tau_{t}(A):=e^{i t d \Gamma(H)} A e^{-i t d \Gamma(H)}=\Gamma\left(e^{i t H}\right) A \Gamma\left(e^{-i t H}\right) . \tag{6.3.1}
\end{equation*}
$$

Let $a_{+}(f)$ and $a_{+}^{*}(f)$ be the annihilation and creation operator on $\mathcal{F}_{+}(\mathfrak{h})$, respectively, which fulfill the canonical commutation relations (CCR) for all $f, g \in \mathfrak{h}$
(a) $\left[a_{+}(f), a_{+}(g)\right]=0=\left[a_{+}^{*}(f), a_{+}^{*}(g)\right]=0$,
(b) $\left[a_{+}(f), a_{+}^{*}(g)\right]=\langle f, g\rangle I$.

The operators $a_{+}(f)$ and $a_{+}^{*}(f)$ with $f \in \mathfrak{h}$ are densely defined and unbounded in general. We pass to the family of Weyl operators $\mathcal{W}:=\{W(f): f \in \mathfrak{h}\}$ which are unitary

$$
W(f):=e^{\frac{i}{\sqrt{2}}\left[\overline{\left.a_{+}(f)+a_{+}^{*}(f)\right]}\right.} \in \mathcal{L}\left(\mathcal{F}_{+}(\mathfrak{h})\right)
$$

and satisfy
(a) $W(-f)=W(f)^{*}$ for all $f \in \mathfrak{h}$,
(b) $W(f) W(g)=e^{-\frac{i}{2} \operatorname{Im}\langle f, g\rangle} W(f+g)$ for all $f, g \in \mathfrak{h}$.

Definition 6.3.1. The C^{*}-algebra $\mathcal{A}_{\mathrm{CCR}}(\mathfrak{h})$ in $\mathcal{L}\left(\mathcal{F}_{+}(\mathfrak{h})\right)$ generated by \mathcal{W} is called $C C R$-algebra
We consider the action of τ_{t} on generators of the CCR algebra:
Lemma 6.3.2. For all $t \in \mathbb{R}$ and $f \in \mathfrak{h}$ the $*$-automorphism τ_{t} acts on Weyl-operators as

$$
\begin{equation*}
\tau_{t}(W(f))=W\left(e^{i t H} f\right) \tag{6.3.2}
\end{equation*}
$$

In particular, $\left\{\tau_{t}\right\}_{t}$ defines a group of automorphisms on $\mathcal{A}_{\mathrm{CCR}}(\mathfrak{h})$.
Proof. Homework
Remark 6.3.3. Recall that the one-parameter group of operators (6.3.2) is not strongly continuous.

With $\mu \in \mathbb{R}$ consider the generalize Hamiltonian $K_{\mu}:=d \Gamma(H-\mu I)$ and assume that $e^{-\beta K_{\mu}}$ with $\beta \in \mathbb{R}$ is of trace class

Definition 6.3.4. The Gibbs equilibrium state on the $C C R$-algebra $\mathcal{A}_{\mathrm{CCR}}(\mathfrak{h})$ takes the form

$$
\omega(A):=\frac{\operatorname{trace}\left(e^{-\beta K_{\mu}} A\right)}{\operatorname{trace}\left(e^{-\beta K_{\mu}}\right)}, \quad \text { where } \quad A \in \mathcal{A}_{\mathrm{CCR}}(\mathfrak{h})
$$

Next step: We extend the Gibbs state from $\mathcal{A}_{\mathrm{CCR}}(\mathfrak{h})$ to polynomials in $a_{+}(f)$ and $a_{+}(g)$.
Now, fix $n \in \mathbb{N}_{0}$ and put $f:=\left(f_{1}, \cdots, f_{n}\right)$ with $f_{j} \in \mathfrak{h}$. Consider the operator

$$
\begin{equation*}
A_{f}:=a\left(f_{1}\right) a\left(f_{2}\right) \cdots a\left(f_{n}\right) e^{-\frac{\beta}{2} K_{\mu}} . \tag{6.3.3}
\end{equation*}
$$

The following result essentially distinguishes the existence of traces in case of the ideal Fermi and the ideal Bose gas, respectively, (c.f. Lemma 6.1.1).
Proposition 6.3.5. Let $\mu, \beta \in \mathbb{R}$ and assume that $e^{-\beta H}$ is a trace class operator on \mathfrak{h}. Let $z:=e^{\beta \mu}$ denote the "activity". Assume that $\beta(H-\mu I)>0$, then
(a) The operator $e^{-\beta K_{\mu}}$ is of trace class.
(b) The operator $A_{f}^{*} A_{f}$ is of trace class.
(c) The two point functions $\omega\left(a^{*}(f) a(g)\right)$ with $f, g \in \mathfrak{h}$ are well-defined and there is a constant $C(z, \beta)$ depending on z and β such that

$$
\begin{equation*}
\left|\omega\left(a^{*}(f) a(g)\right)\right| \leq C(z, \beta)\|f\| \cdot\|g\| \tag{6.3.4}
\end{equation*}
$$

Proof. (a): Let $\left\{\lambda_{n}\right\}_{n \geq 0}$ be the sequence of eigenvalues of H repeated according to the multiplicity and increasing (decreasing) if $\beta>0$ (if $\beta<0$). Let $\left\{e_{n}\right\} \subset \mathfrak{h}$ be an orthonormal basis of eigenvectors of H, i.e. $H e_{n}=\lambda_{n} e_{n}$. With

$$
0 \leq j_{1}<j_{2}<\cdots<j_{m}
$$

where $m \in \mathbb{N}$ and occupation numbers $\left(n_{j_{1}}, \cdots, n_{j_{m}}\right) \in \mathbb{N}^{m}$ consider $E_{n_{j_{1}} \cdots, n_{j_{m}}} \in \mathcal{F}_{+}(\mathfrak{h})$ defined by:

$$
E_{n_{j_{1}} \cdots, n_{j_{m}}}:=P_{+}(\underbrace{e_{j_{1}} \otimes \cdots \otimes e_{j_{1}}}_{n_{j_{1}} \text { times }} \otimes \underbrace{e_{j_{2}} \otimes \cdots \otimes e_{j_{2}}}_{n_{j_{2}} \text { times }} \otimes \cdots \otimes \underbrace{e_{j_{m}} \otimes \cdots \otimes e_{j_{m}}}_{n_{j_{m}} \text { times }}) .
$$

Note that $E_{n_{1}, \cdots, n_{m}}$ is an eigenvector of $e^{-\beta K_{\mu}}$. Put $N:=n_{j_{1}}+n_{j_{2}}+\cdots+n_{j_{m}}$, then

$$
\begin{aligned}
e^{-\beta K_{\mu}} E_{n_{1}, \cdots, n_{m}} & =\Gamma\left(e^{-\beta(H-\mu I)}\right) P_{+}\left(e_{j_{1}} \otimes \cdots \otimes e_{j_{1}} \otimes \cdots \otimes e_{j_{m}} \otimes \cdots \otimes e_{j_{m}}\right) \\
& =z^{N} P_{+}\left(e^{-\beta H} e_{j_{1}} \otimes \cdots \otimes e^{-\beta H} e_{j_{1}} \otimes \cdots \otimes e^{-\beta H} e_{j_{m}} \otimes \cdots \otimes e^{-\beta H} e_{j_{m}}\right) \\
& =z^{N} e^{-\beta\left(n_{j_{1}} \lambda_{j_{1}}+\cdots+n_{j_{m}} \lambda_{j_{m}}\right)} E_{n_{1}, \cdots, n_{m}} .
\end{aligned}
$$

According to our assumption $\beta(H-\mu I)>0$ we have $z e^{-\beta \lambda_{j}}=e^{-\beta\left(\lambda_{j}-\mu\right)}<1$. Hence, we can estimate the trace of $e^{-\beta K_{\mu}}$ as follows:

$$
\begin{aligned}
\operatorname{trace}\left(e^{-\beta K_{\mu}}\right) & \leq \prod_{j=0}^{\infty}\left(1+z e^{-\beta \lambda_{j}}+z^{2} e^{-2 \beta \lambda_{j}}+z^{3} e^{-3 \beta \lambda_{j}}+\cdots\right) \\
& =\prod_{j=0}^{\infty}\left(1-z e^{-\beta \lambda_{j}}\right)^{-1} \\
& =\exp \circ \log \left\{\prod_{j=0}^{\infty}\left(1+z e^{-\beta \lambda_{j}}\left(1-z e^{-\beta \lambda_{j}}\right)^{-1}\right)\right\} \\
& =\exp \left\{\sum_{j=0}^{\infty} \log \left(1+z e^{-\beta \lambda_{j}}\left(1-z e^{-\beta \lambda_{j}}\right)^{-1}\right)\right\}=(*)
\end{aligned}
$$

On the right hand side we apply the estimate $\log (1+x) \leq x$ whenever $x>0$ and find

$$
(*) \leq \exp \left\{\sum_{j=0}^{\infty} z e^{-\beta \lambda_{j}}\left(1-z e^{-\beta \lambda_{j}}\right)^{-1}\right\}=(* *)
$$

We only consider the case $\beta>0$ in which we chose the eigenvalue sequence $\left\{\lambda_{j}\right\}_{j}$ to be increasing. Then we can estimate

$$
\sup _{j \in \mathbb{N}_{0}}\left(1-z e^{-\beta \lambda_{j}}\right)^{-1} \leq\left(1-z e^{-\beta \lambda_{0}}\right)^{-1}
$$

and therefore

$$
(* *) \leq \exp \left\{z\left(1-z e^{-\beta \lambda_{0}}\right) \sum_{j=0}^{\infty} e^{-\beta \lambda_{j}}\right\}=\exp \left\{z\left(1-z e^{-\beta \lambda_{0}}\right) \operatorname{trace}\left(e^{-\beta H}\right)\right\}<\infty .
$$

(b): The trace of $A_{f}^{*} A_{f}$ can be estimated in a similar way

$$
\begin{align*}
\operatorname{trace}\left(A_{f}^{*} A_{f}\right) & \leq \sum_{m=0}^{\infty} \sum_{\left(n_{j_{1}}, \cdots, n_{j_{m}}\right) \in \mathbb{N}^{m}}\left\|a\left(f_{1}\right) \cdots a\left(f_{n}\right) e^{-\frac{\beta}{2} K_{\mu}} E_{n_{1}, \cdots, n_{m}}\right\|^{2} \tag{6.3.5}\\
& =\sum_{m=0}^{\infty} \sum_{\left(n_{j_{1}}, \cdots, n_{j_{m}}\right) \in \mathbb{N}^{m}} z^{N} e^{-\beta\left(n_{j_{1}} \lambda_{j_{1}}+\cdots+n_{j_{m}} \lambda_{j_{m}}\right)}\left\|a\left(f_{1}\right) \cdots a\left(f_{n}\right) E_{n_{1}, \cdots, n_{m}}\right\|^{2}
\end{align*}
$$

Now, we use the estimate

$$
\left\|a\left(f_{1}\right) \cdots a\left(f_{n}\right) E_{n_{1}, \cdots, n_{m}}\right\| \leq N^{\frac{n}{2}}\left\|f_{1}\right\| \cdots\left\|f_{n}\right\| \cdot \underbrace{\left\|E_{n_{1}, \cdots, n_{m}}\right\|}_{=1}
$$

which together with (6.3.5) gives

$$
\begin{align*}
\operatorname{trace}\left(A_{f}^{*} A_{f}\right) & \leq\left\|f_{1}\right\|^{2} \cdots\left\|f_{n}\right\|^{2} \sum_{m=0}^{\infty} \sum_{\left(n_{j_{1}}, \cdots, n_{j_{m}}\right) \in \mathbb{N}^{m}} N^{n} z^{N} e^{-\beta\left(n_{j_{1}} \lambda_{j_{1}}+\cdots+n_{j_{m}} \lambda_{j_{m}}\right)} \\
& =\left\|f_{1}\right\|^{2} \cdots\left\|f_{n}\right\|^{2}\left(z \frac{d}{d z}\right)^{n} \sum_{m=0}^{\infty} \sum_{\left(n_{j_{1}}, \cdots, n_{j_{m}}\right) \in \mathbb{N}^{m}} z^{N} e^{-\beta\left(n_{j_{1}} \lambda_{j_{1}}+\cdots+n_{j_{m}} \lambda_{j_{m}}\right)} \\
& =\left\|f_{1}\right\|^{2} \cdots\left\|f_{n}\right\|^{2}\left(z \frac{d}{d z}\right)^{n} \prod_{j=0}^{\infty}\left(1-z e^{-\beta \lambda_{j}}\right)^{-1}=(* * *) \tag{6.3.6}
\end{align*}
$$

We have seen in (a) that the infinite product on the right hand side converges under the condition $\beta(H-\mu I)>0$ and it defines an analytic function in z. Therefore $(* * *)$ is finite which proves (b).
(c): Follows from the estimate (6.3.6) together with the Cauchy-Schwarz inequality:

$$
\left|\omega\left(a^{*}(f) a(g)\right)\right|^{2} \leq\left|\omega\left(a^{*}(f) a(f)\right)\right| \cdot\left|\omega\left(a^{*}(g) a(g)\right)\right|=\frac{\operatorname{trace}\left(A_{f}^{*} A_{f}\right) \operatorname{trace}\left(A_{g}^{*} A_{g}\right)}{\operatorname{trace}\left(e^{-\beta K_{\mu}}\right)^{2}},
$$

where $A_{f}=a(f) e^{-\frac{\beta K_{\mu}}{2}}$ and $A_{g}=a(g) e^{-\frac{\beta K_{\mu}}{2}}$.

Under the condition of the previous lemma it follows that the two-point functions $\omega\left(a^{*}(f) a(g)\right)$ are well-defined. We calculate their value

$$
\begin{aligned}
\operatorname{trace}\left\{e^{-\beta K_{\mu}} a^{*}(f) a(g)\right\} & =\operatorname{trace}\left\{e^{-\frac{\beta}{2} K_{\mu}} a^{*}(f) e^{\frac{\beta}{2} K_{\mu}} e^{-\beta K_{\mu}} e^{\frac{\beta}{2} K_{\mu}} a(g) e^{-\frac{\beta}{2} K_{\mu}}\right\} \\
& =\operatorname{trace}\left\{a^{*}\left(e^{-\frac{\beta}{2}(H-\mu I)} f\right) e^{-\beta K_{\mu}} a\left(e^{-\frac{\beta}{2}(H-\mu I)} g\right)\right\} \\
& =\operatorname{trace}\left\{e^{-\beta K_{\mu}} a\left(e^{-\frac{\beta}{2}(H-\mu I)} g\right) a^{*}\left(e^{-\frac{\beta}{2}(H-\mu I)} f\right)\right\}=(*) .
\end{aligned}
$$

Now, we use the CCR-relations to switch $a^{*}(\cdots)$ back to the left:

$$
(*)=\operatorname{trace}\left\{e^{-\beta K_{\mu}} a^{*}\left(e^{-\frac{\beta}{2}(H-\mu I)} f\right) a\left(e^{-\frac{\beta}{2}(H-\mu I)} g\right)\right\}+\left\langle g, e^{-\beta(H-\mu I)} f\right\rangle \operatorname{trace}\left(e^{-\beta K_{\mu}}\right) .
$$

Dividing by trace $\left(e^{-\beta K_{\mu}}\right)$ gives

$$
\omega\left(a^{*}(f) a(g)\right)=\omega\left(a^{*}\left(e^{-\frac{\beta}{2}(H-\mu I)} f\right) a\left(e^{-\frac{\beta}{2}(H-\mu I)} g\right)\right)+\left\langle g, e^{-\beta(H-\mu I)} f\right\rangle
$$

If we iterate this algorithm N times we obtain:

$$
\begin{equation*}
\omega\left(a^{*}(f) a(g)\right)=\omega\left(a^{*}\left(e^{-\frac{N \beta}{2}(H-\mu I)} f\right) a\left(e^{-\frac{N \beta}{2}(H-\mu I)} g\right)\right)+\sum_{m=1}^{N}\left\langle g, e^{-\beta m(H-\mu I)} f\right\rangle . \tag{6.3.7}
\end{equation*}
$$

Under the assumptions of Proposition 6.3 .5 we have $\beta(H-\mu I)>0$ and therefore

$$
\lim _{N \rightarrow \infty}\left\|e^{-\frac{N \beta}{2}(H-\mu I)} f\right\|=0
$$

Taking the limit $N \rightarrow \infty$ on the right of (6.3.7) and using the estimate in Proposition 6.3.5, (c)

$$
\left|\omega\left(a^{*}(f) a(g)\right)\right| \leq C(z, \beta)\|f\| \cdot\|g\|
$$

we obtain:

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \omega\left(a^{*}\left(e^{-\frac{N \beta}{2}(H-\mu I)} f\right) a\left(e^{-\frac{N \beta}{2}(H-\mu I)} g\right)\right)=0 . \tag{6.3.8}
\end{equation*}
$$

Hence we end up with the following two-point functions for the Bose gas.
Proposition 6.3.6. Let $\mu, \beta \in \mathbb{R}$ and assume that $e^{-\beta H}$ is a trace class operator on \mathfrak{h}. If $\beta(H-\mu I)>0$, then the two-point functions of the Gibbs-state ω are given by

$$
\begin{equation*}
\omega\left(a^{*}(f) a(g)\right)=\left\langle g, z e^{-\beta H}\left(I-z e^{-\beta H}\right)^{-1} f\right\rangle . \tag{6.3.9}
\end{equation*}
$$

Moreover, on the Weyl operator ω acts as

$$
\omega(W(f))=\exp \left\{-\frac{1}{4}\left\langle f,\left(I+z e^{-\beta H}\right)\left(I-z e^{-\beta H}\right)^{-1} f\right\rangle\right\} .
$$

Proof. We only show the first statement: note that

$$
\sum_{m=1}^{\infty} e^{-\beta m(H-\mu I)}=\sum_{m=1}^{\infty}\left(z e^{-\beta H}\right)^{m}=\left(I-z e^{-\beta H}\right)^{-1}-I=z e^{-\beta H}\left(I-z e^{-\beta H}\right)^{-1}
$$

Hence the assertion follows from (6.3.8) and (6.3.7).

6.4 Equilibrium phenomena

Assume that the operator $z e^{-\beta H}\left(I-z e^{-\beta H}\right)^{-1}$ is positive self-adjoint (not necessarily bounded or with discrete spectrum). Then the associated sesquilinear form on the right of (6.3.9) determines a quasi-free state.

Let ω be the gauge-invariant quasi-free state over $\mathcal{A}_{\mathrm{CCR}}(\mathfrak{h})$ with $\mathfrak{h}:=L^{2}\left(\mathbb{R}^{n}\right)$ and two point functions

$$
\omega\left(a^{*}(f) a(g)\right)=\left\langle g, z e^{-\beta H}\left(I-z e^{-\beta H}\right)^{-1} f\right\rangle_{\mathfrak{h}}
$$

where H is the self-adjoint extension of $-\Delta$ on $L^{2}\left(\mathbb{R}^{n}\right)$. Put $\mathfrak{h}_{\Lambda}:=L^{2}(\Lambda)$

$$
\mathcal{A}_{\Lambda}:=\mathcal{A}_{\mathrm{CCR}}\left(\mathfrak{h}_{\Lambda}\right) \quad \text { and } \quad \mathcal{A}:=\mathcal{A}_{\mathrm{CCR}}(\tilde{\mathfrak{h}}) \quad \text { where } \quad \tilde{\mathfrak{h}}:=\bigcup_{\Lambda \subset \mathbb{R}^{n}} L^{2}(\Lambda)
$$

If ω_{Λ} denotes the Gibbs state on $\mathcal{A}_{\mathrm{CCR}}\left(\mathfrak{h}_{\Lambda}\right)$ with respect to a self-adjoint extension H_{Λ} of the Laplacian $-\Delta$ on $L^{2}(\Lambda)\left(\Lambda \subset \mathbb{R}^{n}\right.$ bounded and open) and parameters β and μ, then we have the following result on the thermodynamical limit:

Proposition 6.4.1. If there is $c>0$ with $H_{\Lambda}-\mu I \geq c I$ for all Λ, then it follows

$$
\lim _{\tilde{\Lambda} \rightarrow \infty} \omega_{\tilde{\Lambda}}(A)=\omega(A), \quad A \in \mathcal{A}_{\Lambda}
$$

Proof. Bratteli/Robinson II.
Now we specify the discussion to an open square box Λ_{L} with edges of length $L>0$

$$
\Lambda_{L}:=\left(-\frac{L}{2}, \frac{L}{2}\right) \times \cdots \times\left(-\frac{L}{2}, \frac{L}{2}\right) \subset \mathbb{R}^{n}
$$

and we assume Dirichlet boundary conditions for the Laplacian $-\Delta$ on Λ_{L}. Consider the local density

$$
\rho_{\Lambda_{L}}(\beta, z):=\frac{1}{\left|\Lambda_{L}\right|} \sum_{n \geq 0} \omega_{\Lambda_{L}}\left(a^{*}\left(f_{n}\right) a\left(f_{n}\right)\right)=(*)
$$

where $\left\{f_{n}\right\}$ is an orthonormal basis of eigenfunctions $-\Delta$ in $\mathcal{D}(-\Delta)$. Assuming that $\beta(H-\mu I)>$ 0 we find from the definition of the two point functions of $\omega_{\Lambda_{L}}$ in Proposition 6.3.6 that

$$
\begin{aligned}
(*) & =L^{-n} \sum_{n \geq 0}\left\langle f_{n}, z e^{\beta \Delta}\left(I-z e^{\beta \Delta}\right)^{-1} f_{n}\right\rangle_{L^{2}\left(\Lambda_{L}\right)} \\
& =L^{-n} \sum_{\alpha \in \mathbb{N}^{n}} z e^{-\beta \gamma_{\alpha}(L)}\left(1-z e^{-\beta \gamma_{\alpha}(L)}\right)^{-1} .
\end{aligned}
$$

Note that the eigenvalues of $-\Delta$ on Λ_{L} are given by the numbers

$$
E_{\Delta}(L):=\left\{\gamma_{\alpha}(L):=\frac{\pi^{2}}{L^{2}}\left(\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}\right): \alpha \in \mathbb{N}^{n}\right\}
$$

with corresponding eigenfunctions

$$
F_{\alpha}^{L}\left(x_{1}, \cdots, x_{n}\right):=\prod_{j=1}^{n} \sin \left(\frac{\pi \alpha_{j}}{L}\left[x_{j}-\frac{L}{2}\right]\right)
$$

Since $H_{\Lambda_{L}} \geq \gamma_{(1,1 \cdots, 1)}(L) I$ it follows that the condition $H_{\Lambda_{L}}-\mu I \geq c I$ for all $L>0$ which appears in Proposition 6.4.1 can be fulfilled if

$$
0<c \leq\left(\gamma_{(1,1 \cdots, 1)}(L)-\mu\right)=\frac{n \pi^{2}}{L^{2}}-\mu, \quad \text { for all } \quad L>0
$$

and therefore we need $\mu<0$. Since $\beta>0$ we have

$$
0<z=e^{\mu \beta}<1
$$

In this region (single phase region) we have the thermodynamical limit in Proposition 6.4.1 and a unique thermodynamical phase of the infinitely extended Bose gas. However, note that $\rho_{\Lambda_{L}}(\beta, z)$ has a pole with respect to the activity z as z approaches

$$
e^{\beta \gamma_{(1,1, \ldots, 1)}(L)}=e^{\beta \frac{n \pi^{2}}{L^{2}}} \longrightarrow 1 \quad \text { as } \quad L \rightarrow \infty .
$$

If we choose von Neumann boundary conditions, then the Laplacian in Λ has a zeroeigenvalue and the same unboundedness of the local density happens for $z \rightarrow 1$ independently of the choice of box size L. This phenomenon is called Bose-Einstein-condensation.

Remark 6.4.2. We may also look at the local density with respect to the equilibrium state ω of the infinite extended Bose gas in Proposition 6.4.1. Let $\emptyset \neq \Lambda \subset \mathbb{R}^{n}$ be bounded and open and $\left\{f_{n}\right\}_{n \geq 0}$ and orthonormal basis of $L^{2}(\Lambda)$. Then

$$
\begin{aligned}
\rho(z, \beta) & =\frac{1}{|\Lambda|} \sum_{n \geq 0} \omega\left(a^{*}\left(f_{n}\right) a\left(f_{n}\right)\right) \\
& =\frac{1}{|\Lambda|} \sum_{n \geq 0}\left\langle\widehat{f}_{n}, z e^{-\beta p^{2}}\left(1-z^{-\beta p^{2}}\right)^{-1} \widehat{f}_{n}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} \\
& =\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} z e^{-\beta p^{2}}\left(1-z e^{-\beta p^{2}}\right)^{-1} d p \\
& =\lambda^{-n} \pi^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} z e^{-x^{2}}\left(1-z e^{-x^{2}}\right)^{-1} d x,
\end{aligned}
$$

where $\lambda:=\sqrt{4 \pi \beta}$. Note that for all $x \in \mathbb{R}^{n}$ the map

$$
[0,1] \ni z \mapsto z e^{-x^{2}}\left(1-z e^{-x^{2}}\right)^{-1}
$$

is monotonely increasing. Therefore, $z \mapsto \rho(\beta, z)$ is strictly increasing and we see that

$$
\rho(z, \beta) \leq \lambda^{-n} \pi^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} e^{-x^{2}}\left(1-e^{-x^{2}}\right)^{-1} d x
$$

Moreover, we have for the integral

$$
\int_{\mathbb{R}^{n}} e^{-x^{2}}\left(1-e^{-x^{2}}\right)^{-1} d x \begin{cases}=\infty, & \text { if } n=1,2 \\ <\infty, & \text { if } n \geq 3\end{cases}
$$

Thus, we see that $\rho(z, \beta)$ remains bounded for $z \in[0,1]$ in dimensions $n \geq 3$. This does not reflect the unboundedness effect that arises for a finite box as was discussed above. However, for all $0<z \leq 1$ one has

$$
\lim _{L \rightarrow \infty} \rho_{\Lambda_{L}}(\beta, z)=\rho(\beta, z) .
$$

Next: Analyse the "Bose-Einstein-condensation" appearing when $z=1$. We look at the thermodynamical limit as $L \rightarrow \infty$ for fixed densities $\rho_{\Lambda_{L}}(\beta, z)$.

Let $n \geq 3$ and fix $\beta, \tilde{\rho}>0$. Since $\rho_{\Lambda_{L}}(\beta, \cdot)$ is monotonely increasing to $+\infty$ as $z \uparrow e^{\beta \frac{n \pi^{2}}{L^{2}}}$ we can uniquely solve

$$
\begin{equation*}
\rho_{\Lambda_{L}}\left(\beta, z_{L}\right)=\tilde{\rho} \quad \text { where } \quad 0<z_{L}<e^{\beta \frac{n \pi^{2}}{L^{2}}} \tag{6.4.1}
\end{equation*}
$$

One always has $\rho_{\Lambda_{L}}(\beta, z) \leq \rho(\beta, z)$ whenever $0<z \leq 1$ and $L>0$. Moreover, both functions are monotonely increasing in z. Two cases are possible
I. Assume that $0<\tilde{\rho} \leq \rho(\beta, 1)$. Then we can also uniquely solve the equation $\rho(\beta, \tilde{z})=\tilde{\rho}$ where $\tilde{z} \in(0,1]$ and from

$$
\rho_{\Lambda_{L}}(\beta, \tilde{z}) \leq \rho(\beta, \tilde{z})=\tilde{\rho}=\rho_{\Lambda_{L}}\left(\beta, z_{L}\right)
$$

we find that $0<\tilde{z} \leq z_{L}$. It can be shown that

$$
\begin{equation*}
\lim _{L \rightarrow \infty} z_{L}=\tilde{z} \tag{6.4.2}
\end{equation*}
$$

II. Assume that $\rho(\beta, 1)<\tilde{\rho}$. We have $z_{L}>1$ since otherwise we would arrive at the contradiction

$$
\rho(\beta, 1)<\tilde{\rho}=\rho_{\Lambda_{L}}\left(\beta, z_{L}\right) \leq \rho\left(\beta, z_{L}\right) \leq \rho(\beta, 1) .
$$

In this case it can be shown that $\lim _{L \rightarrow \infty} z_{L}=1$ and

$$
\begin{equation*}
\lim _{L \rightarrow \infty} \frac{1}{\left|\Lambda_{L}\right|} z_{L} e^{-\beta \gamma_{(1, \cdots, 1)}(L)}\left(1-z_{L} e^{-\beta \gamma_{(1, \cdots, 1)}(L)}\right)^{-1}=\tilde{\rho}-\rho(\beta, 1)>0 . \tag{6.4.3}
\end{equation*}
$$

Recall that

$$
\gamma_{(1, \cdots, 1)}(L)=\frac{n \pi^{2}}{L^{2}}
$$

is the smallest eigenvalue of the Laplacian $-\Delta$ on Λ_{L} with respect to Dirichlet boundary conditions and $\left|\Lambda_{L}\right|=L^{n}$ is the volume of the box.

Moreover, if $\alpha \in \mathbb{N}^{n}$ with $\alpha \neq(1, \cdots, 1)$, then we have

$$
\begin{equation*}
\lim _{L \rightarrow \infty} \frac{1}{\left|\Lambda_{L}\right|} z_{L} e^{-\beta \gamma_{\alpha}(L)}\left(1-z_{L} e^{-\beta \gamma_{\alpha}(L)}\right)^{-1}=0 \tag{6.4.4}
\end{equation*}
$$

Now we state the main result:
Theorem 6.4.3. Let $n \geq 3$ and fix $\tilde{\rho}, \beta>0$. With $L>0$ consider the "square boxes" Λ_{L} having side-length L as above. Moreover, put
(a) $H_{\Lambda_{L}}$:=self-adjoint extension of $-\Delta$ on Λ_{L} w.r.t. Dirichlet boundary conditions and H the selfadjoint extension of $-\Delta$ on \mathbb{R}^{n}.
(b) $\omega_{\Lambda_{L}}$ the Gibbs state on $\mathcal{A}_{\mathrm{CCR}}\left(L^{2}\left(\Lambda_{L}\right)\right)$ with respect to β and the activity z_{L} which is chosen as the unique solution of

$$
\rho_{\Lambda_{L}}\left(\beta, z_{L}\right)=\tilde{\rho}, \quad \text { where } \quad \tilde{\rho}>0 .
$$

Here, $\rho_{\Lambda_{L}}(\beta, z)$ means the local density with respect to $\omega_{\Lambda_{L}}$.
(c) $\rho(\beta, z)$, the local density of the infinite extended Bose gas, i.e.

$$
\rho(\beta, z)=\lim _{L \rightarrow \infty} \rho_{\Lambda_{L}}(\beta, z)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} z e^{-\beta p^{2}}\left(1-z e^{-\beta p^{2}}\right)^{-1} d p, \quad 0<z \leq 1
$$

Then the following limit exists

$$
\omega_{\tilde{\rho}}(A)=\lim _{L \rightarrow \infty} \omega_{\Lambda_{L}}(A), \quad \text { where } \quad A \in \overline{\bigcup_{\Lambda} \mathcal{A}_{\mathrm{CCR}}\left(L^{2}(\Lambda)\right)} .
$$

Moreover, $\omega_{\tilde{\rho}}$ acts as follows on generators of the CCR-algebra
(A) If $\tilde{\rho} \leq \rho(\beta, 1)$ and $\tilde{z}=\lim _{L \rightarrow \infty} z_{L}$ is the unique solution to $\tilde{\rho}=\rho(\beta, \tilde{z})$, then

$$
\omega_{\tilde{\rho}}(W(f))=\exp \left\{-\frac{1}{4}\left\langle f,\left(I+\tilde{z} e^{-\beta H}\right)\left(I-\tilde{z} e^{-\beta H}\right)^{-1} f\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}\right\}
$$

(B) If $\tilde{\rho}>\rho(\beta, 1)$, then $\lim _{L \rightarrow \infty} z_{L}=1$ and

$$
\left.\begin{aligned}
\omega_{\tilde{\rho}}(W(f))=\exp \left\{-2^{n-1}(\tilde{\rho}-\rho(\beta, 1)) \mid\right. & \int_{\mathbb{R}^{n}}
\end{aligned} \quad f(x) d x\right|^{2}-\quad .
$$

Proof. We only comment on (B): Let $f \in L^{2}\left(\Lambda_{L}\right)$ and recall from Proposition 6.3.6 that

$$
\omega_{\Lambda_{L}}(W(f))=\exp \{-\frac{1}{4} \underbrace{\left\langle f,\left(I+z_{L} e^{-\beta H_{\Lambda_{L}}}\right)\left(I-z e^{-\beta H_{\Lambda_{L}}}\right)^{-1} f\right\rangle}_{=: I_{L}(f)}\}
$$

With the eigenvalues $\gamma_{\alpha}(L), \alpha \in \mathbb{N}^{n}$ of H_{Λ} and the orthogonal projections $P_{k(\alpha)}(L)$ where $k(\alpha)=\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}$ onto the corresponding eigenspace we can write

$$
I_{L}(f)=\sum_{\alpha \in \mathbb{N}^{n}} \frac{1+z_{L} e^{-\beta \gamma_{\alpha}(L)}}{1-z_{L} e^{-\beta \gamma_{\alpha}(L)}}\left\langle f, P_{k(\alpha)}(L) f\right\rangle
$$

Recall that the family of normalized eigenfunction of $H_{\Lambda_{L}}$ with respect to Dirichlet boundary conditions and corresponding eigenvalues $\gamma_{\alpha}(L)$ was given by

$$
\Psi_{\alpha}^{L}\left(x_{1}, \cdots, x_{n}\right)=\frac{F_{\alpha}^{L}\left(x_{1}, \cdots, x_{n}\right)}{\left\|F_{\alpha}^{L}\right\|}=\left\|F_{\alpha}^{L}\right\|^{-1} \prod_{j=1}^{n} \sin \left(\frac{\pi \alpha_{j}}{L}\left[x_{j}-\frac{L}{2}\right]\right), \quad \text { where } \quad \alpha \in \mathbb{N}^{n}
$$

Note that $\left\|F_{\alpha}^{L}\right\|^{-1}=\sqrt{\frac{2^{n}}{L^{n}}}$ is independent of α. In particular, if $\alpha=(1, \cdots, 1)$, then the above expression simplifies to

$$
\Psi_{(1, \cdots, 1)}^{L}\left(x_{1}, \cdots, x_{n}\right)=\frac{(-1)^{n} 2^{\frac{n}{2}}}{L^{\frac{n}{2}}} \prod_{j=1}^{n} \cos \left(\frac{\pi x_{j}}{L}\right)
$$

Then we have

$$
\begin{aligned}
\left\langle f, P_{k(1, \cdots, 1)}(L) f\right\rangle & =\left\|P_{k(1, \cdots, 1)}(L) f\right\|^{2} \\
& =\left|\left\langle f, \Psi_{(1, \cdots, 1)}^{L}\right\rangle\right|^{2}=\frac{2^{n}}{L^{n}}\left|\int_{\Lambda_{L}} f(x) \prod_{j=1}^{n} \cos \left(\frac{\pi x_{j}}{L}\right) d x\right|^{2}
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\lim _{L \rightarrow \infty} L^{n}\left\langle f, P_{k(1, \cdots, 1)}(L) f\right\rangle=2^{n}\left|\int_{\mathbb{R}^{n}} f(x) d x\right|^{2} \tag{6.4.5}
\end{equation*}
$$

Moreover, we find from (6.4.3) that

$$
\begin{equation*}
\lim _{L \rightarrow \infty} L^{-n} \frac{1+z_{L} e^{-\beta \gamma_{(1, \cdots, 1)}(L)}}{1-z_{L} e^{-\beta \gamma_{(1, \cdots, 1)}(L)}}=2(\tilde{\rho}-\rho(\beta, 1)) \tag{6.4.6}
\end{equation*}
$$

Combining (6.4.5) and (6.4.6) gives

$$
\lim _{L \rightarrow \infty} \frac{1+z_{L} e^{-\beta \gamma_{(1, \cdots, 1)}(L)}}{1-z_{L} e^{-\beta \gamma_{(1, \cdots, 1)}(L)}}\left\langle f, P_{k(1, \cdots, 1)}(L) f\right\rangle=2^{n+1}\left|\int_{\mathbb{R}^{n}} f(x) d x\right|^{2}(\tilde{\rho}-\rho(\beta, 1)) .
$$

The higher energy states give no contribution to the density. Indeed, if we choose $\alpha \in \mathbb{N}^{n}$ with $\alpha \neq(1, \cdots, 1)$, then

$$
\begin{aligned}
\left|\left\langle f, P_{k(\alpha)} f\right\rangle\right|^{2} & =\sum_{k(\beta)=k(\alpha)}\left|\left\langle f, \Psi_{\beta}^{L}\right\rangle\right|^{2} \\
& =\frac{1}{\left\|F_{\alpha}^{L}\right\|^{2}} \sum_{k(\beta)=k(\alpha)}\left|\int_{\Lambda_{L}} f(x) F_{\beta}^{L}(x) d x\right|^{2} \\
& \leq \frac{2^{n}}{L^{n}} \sum_{k(\beta)=k(\alpha)}\left\{\int_{\mathbb{R}^{n}}|f(x)| d x\right\}^{2} .
\end{aligned}
$$

Therefore, we conclude that there is a constant $C_{\alpha}>0$ independent of L such that

$$
\begin{equation*}
L^{n}\left|\left\langle f, P_{k(\alpha)} f\right\rangle\right|^{2} \leq C_{\alpha}\left\{\int_{\mathbb{R}^{n}}|f(x)| d x\right\}^{2} . \tag{6.4.7}
\end{equation*}
$$

From (6.4.4) recall that

$$
\begin{equation*}
\lim _{L \rightarrow \infty} L^{-n} z_{L} e^{-\beta \gamma_{\alpha}(L)}\left(1-z_{L} e^{-\beta \gamma_{\alpha}(L)}\right)^{-1}=0 \tag{6.4.8}
\end{equation*}
$$

By combining (6.4.7) and (6.4.8) one finds for all $m \in \mathbb{N}$ with $m \geq n$ that

$$
\lim _{L \rightarrow \infty} \sum_{\substack{\alpha \neq(1, \ldots, 1) \\ k(\alpha) \leq m}} \frac{1+z_{L} e^{-\beta \gamma_{\alpha}(L)}}{1-z_{L} e^{-\beta \gamma_{\alpha}(L)}}\left\langle f, P_{k(\alpha)}(L) f\right\rangle=0
$$

and therefore

$$
\begin{equation*}
\lim _{L \rightarrow \infty}\{I_{L}(f)-\underbrace{\sum_{k(\alpha)>m} \frac{1+z_{L} e^{-\beta \gamma_{\alpha}(L)}}{1-z_{L} e^{-\beta \gamma_{\alpha}(L)}}\left\langle f, P_{k(\alpha)}(L) f\right\rangle}_{=: I_{L}^{m}(f)}\}=2^{n+1}\left|\int_{\mathbb{R}^{n}} f(x) d x\right|^{2}(\tilde{\rho}-\rho(\beta, 1)) \tag{6.4.9}
\end{equation*}
$$

Finally, one shows that

$$
\lim _{m \rightarrow \infty} \lim _{L \rightarrow \infty}\left\{I_{L}^{m}(f)-\left\langle f,\left(I+e^{-\beta H}\right)\left(I-e^{-\beta H}\right)^{-1} f\right\rangle\right\}=0
$$

Let $\varepsilon>0$ and choose $m>0$ such that

$$
\begin{aligned}
\mid \lim _{L \rightarrow \infty} I_{L}(f)-\lim _{L \rightarrow \infty}\left\{I_{L}(f)-I_{L}^{m}(f)\right\} & -\left\langle f,\left(I+e^{-\beta H}\right)\left(I-e^{-\beta H}\right)^{-1} f\right\rangle \mid= \\
& =\left|\lim _{L \rightarrow \infty}\left\{I_{L}^{m}(f)-\left\langle f,\left(I+e^{-\beta H}\right)\left(I-e^{-\beta H}\right)^{-1} f\right\rangle\right\}\right|<\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ was chosen arbitrarily and the left hand side does not depend on m we find from (6.4.9) that

$$
\lim _{L \rightarrow \infty} I_{L}(f)=2^{n+1}\left|\int_{\mathbb{R}^{n}} f(x) d x\right|^{2}(\tilde{\rho}-\rho(\beta, 1))+\left\langle f,\left(I+e^{-\beta H}\right)\left(I-e^{-\beta H}\right)^{-1} f\right\rangle
$$

which finishes the proof of (B).
Remark 6.4.4. We give some comments on the phenomenon of Bose-Einstein-condensation.
(a) In the high density region we have $z=1$ and Bose-Einstein condensation takes place, i.e. a finite proportion of particles are in the lowest energy state. This effect corresponds to a phase transition of the system of non-interacting Bosons.
(b) In the region $z=1$ there is a family of equilibrium states at the same temperature and parametrized by their particle densities $\tilde{\rho} \in[\rho(\beta, 1), \infty)$.
(c) The equilibrium states corresponding to $z=1$ have less ergodic properties than the states in the single phase region.
(d) Consider the equilibrium state $\omega_{\tilde{\rho}}$ corresponding to $\tilde{\rho} \in[\rho(\beta, 1), \infty)$. The calculation in the proof of Theorem 6.4.3 shows that the two-point-functions of $\omega_{\tilde{\rho}}$ are given by

$$
\begin{aligned}
\omega_{\tilde{\rho}}\left(a^{*}(f) a(g)\right)=2^{n}[\tilde{\rho}-\rho(\beta, 1)] \int_{\mathbb{R}^{n}} \overline{g(x)} d x & \int_{\mathbb{R}^{n}} f(x) d x+ \\
& +\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \widehat{f}(p) \overline{\widehat{g}(p)} e^{-\beta p^{2}}\left(1-e^{-\beta p^{2}}\right)^{-1} d p
\end{aligned}
$$

The local densities take the form

$$
\tilde{\rho}(\beta, 1)=\left|\Lambda_{L}\right|^{-1} \sum_{\left\{f_{n}\right\}} \omega_{\tilde{\rho}}\left(a^{*}\left(f_{n}\right) a\left(f_{n}\right)\right)=2^{n}[\tilde{\rho}-\rho(\beta, 1)]+\rho(\beta, 1) .
$$

Recall that the factor " 2^{n} " on the right appeared in the proof of Theorem 6.4.3 when we took the limit

$$
\lim _{L \rightarrow \infty} L^{n}\left|\left\langle f, \Psi_{(1, \cdots, 1)}^{L}\right\rangle\right|^{2}=\lim _{L \rightarrow \infty} L^{n}\left|\Psi_{(1, \cdots, 1)}^{L}(0)\right|^{2}\left|\int_{\mathbb{R}^{n}} f(x) d x\right|^{2}
$$

More precisely, in the case of Dirichlet boundary conditions and with the lowest energy eigenfunction $\Psi_{(1, \cdots, 1)}^{L}$ of the Dirichlet Laplacian $H_{\Lambda_{L}}$ we had

$$
2^{n}=\lim _{L \rightarrow \infty} L^{n}\left|\Psi_{(1, \cdots, 1)}^{L}(0)\right|^{2}
$$

Note that this value, which is interpreted as the relative proportion of the condensate at the origin, is sensitive under the particular choice of boundary conditions.

Bibliography

[1] B. Blackadar Operator algebras: theory of C^{*}-algebras and von Neumann algebras, Encyclopaedia of Mathematical Sciences, vol. 122, Springer 2006.
[2] O. Bratteli, D.-W. Robinson Operator algebras and quantum statistical mechanics 1 and 2, Springer, Texts and Monographs in Physics second edition 1987/1996.
[3] I.N. Bronstein, K.A. Semendjajew, G. Musiol, H. Mühlig, Taschenbuch der Mathematik, Verlag Harri Deutsch, 2nd Edition, 1995.
[4] J. Dixmier, C*-algebras, North-Holland 1977.
[5] K. Huang, Statistische Mechanik, I-III, BI Mannheim, Hochschultaschenbücher 68-70, 1964.
[6] E. H. Lieb, R. Seiringer, J. P. Solovej, J. Yngvason, The mathematics of the Bose Gas and its Condensation, Birkhuser, Oberwolfach Seminars 2005.
[7] D. Ruelle, Statistical Mechanics, Rigorous results, W. A. Benjamin, INC; New York, Amsterdam, 1969.
[8] M. Takesaki, Theory of operator algebra I, Encyclopedia of Mathematical Sciences 124, Springer, second Edition, 1979.
[9] C.N. Yang, … Phys. Rev. 85, 809 (1952).

[^0]: ${ }^{1}$ this ensemble is called microcanonical ensemble
 ${ }^{2}$ Stirling's formula: $\log (n!)=n \log n-n+O(\log n)$ as $n \rightarrow \infty$

[^1]: ${ }^{1}$ we write $C_{b}(\Gamma)$ for the space of bounded continuous functions on Γ
 ${ }^{2}$ cf. the Gelfand-Naimark theorem (GN-theorem) below.

[^2]: ${ }^{3} \mathrm{~A}$ connection between the spectrum of elements in A and $M(\mathcal{A})$ will be given in Theorem 2.1.13 below.

[^3]: ${ }^{4}$ roughly speaking, it contains fewer open sets

[^4]: ${ }^{5}$ In the literature also the notation \widehat{A} is used instead of $\Gamma(A)$
 ${ }^{6}$ If π is an injective $*$-homomorphism with $\pi(I)=I$, then π already is isometric.

[^5]: ${ }^{7}$ More precisely, Δ is a homeomorphism, i.e. a continuous bijective map with continuous inverse.

[^6]: 8 "directed" means that the binary relation " \prec " is reflexive and transitive. In addition to each pair $\alpha, \beta \in I$ there is an "upper bound" $\gamma \in I$, i.e. $\alpha, \beta \prec \gamma$.

[^7]: ${ }^{9}$ symplectic form means:
 (i) skew-symmetric: $b(u, v)=-b(v, u)$ for all $u, v \in H$
 (ii) totally isotropic: $b(v, v)=0$ for all $v \in H$
 (iii) non-degenerate: $b(u, \cdot) \equiv 0$ implies that $u=0$

[^8]: ${ }^{10}$ UHF means "uniformly hyper-finite"

[^9]: ${ }^{11}$ we change the notation to \mathcal{A}^{*} since \mathcal{A}^{\prime} usually means the commutant of \mathcal{A}

[^10]: ${ }^{12}$ The positive elements of a C^{*}-algebra form a closed convex cone.

[^11]: ${ }^{13}$ Mark Krein (1907-1989) russian mathematician, David Milman (1912-1982) russian/israeli mathematician

[^12]: ${ }^{1}$ This is the only non-trivial example of a model, in which the phase transition can be calculated mathematically exact.

[^13]: ${ }^{2}$ We can put the tuples $\left(i_{1}, \cdots i_{k}\right)$ in lexicographical order

[^14]: ${ }^{3}$ Recall that all matrices $e^{\beta \epsilon Z_{\alpha} Z_{\alpha+1}}$ are diagonal and hence commute

[^15]: ${ }^{4}$ Recall that $\omega(\mu \nu \mid \theta)$ is the rotation in the $\mu-\nu$-plane around the angle θ.

[^16]: ${ }^{5}$ This last statement was necessary to justify the previous relation

 $$
 \lim _{N \rightarrow \infty} \log Q_{I}(B, T)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \lambda_{\max }(n), \quad N=n^{2}
 $$

[^17]: ${ }^{6}$ the matrix $o^{-1} V_{D} o$ arises from V_{D} by permuting the elements in the diagonal

[^18]: ${ }^{7}$ this identity follows immediately from an integral formula in [3], p. 942;

 $$
 \int_{0}^{\pi} \log (a \pm b \cos x) d x=\pi \log \left(\frac{a+\sqrt{a^{2}-b^{2}}}{2}\right), \quad(a \geq b) .
 $$

[^19]: ${ }^{1}$ With solution $\Psi_{t}=e^{-i t d \Gamma(H)}=\Gamma\left(e^{-i t H}\right) \Psi$ and the evolution $\tau_{t}(A)=\Gamma\left(e^{i t H}\right) A \Gamma\left(e^{i t H}\right)$.

[^20]: ${ }^{2}$ We do not give the exact definition of a quasi-free state here which requires the notion of truncation functions. As for details see Bratteli/Robinson II, page 43.

[^21]: ${ }^{3}$ If $\psi \in C_{0}^{\infty}(\Lambda) \subset \mathfrak{h}_{\Lambda} \subset \mathfrak{F}_{-}\left(\mathfrak{h}_{\Lambda}\right)$, then we have $T_{\Lambda}(\psi)=-\langle\psi, \Delta \psi\rangle_{\mathfrak{h}_{\Lambda}}$

