
Mathematical Statistical Physics
TMP Programme Munich – spring term 2013

HOMEWORK ASSIGNMENT 09
Hand-in deadline: Tuesday 25 June 2013 by 4 p.m. in the “MSP” drop box.
Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be
justified. You can hand in your solutions in German or in English.
Info: www.math.lmu.de/~michel/SS13_MSP.html

Exercise 33. (Asymptotics of the elliptic integral K1)

In this exercise it will be shown that the complete elliptic integral of the first kind K1(κ) has
a logarithmic divergence as κ → 1. This mathematical property results in the divergence of
thermodynamic response functions such as the specific heat capacity in the 2D Ising model
(Exercise 34).

Consider the complete elliptic integral of the first kind,

K1(κ) :=

∫ π/2

0

ds
1√

1− κ2 sin2 s
, κ ∈ [0, 1] .

(i) Prove that

K1(κ) =

∫ 1

0

dt
1√

1− κ2t2
√
1− t2

(the so-called “Jacobi form” of the elliptic integral).

(ii) Let κ′ ∈ [0, 1] be such that κ2+κ′2 = 1 (the “complementary modulus” of κ). Prove that

K1(κ) =

∫ 1

κ′
du

1√
u2 − κ′2

√
1− u2

.

(iii) Prove that

K1(κ) =
1√

1− κ′θ(κ′)
f(κ′)

where θ(κ′) ∈ [0, 1] and f(κ′) :=

∫ √
κ′

κ′
du

1√
u2 − κ′2

+

∫ 1

√
κ′
du

1

u
√
1− u2

.

(iv) Prove that lim
κ→1

(
K1(κ)− log

(
4

κ′

))
= 0.

Exercise 34. (Computation of thermodynamic quantities)

In class the free energy density for the 2D Ising model at vanishing magnetic field was proved
to be

a(B = 0, T ) = − 1

β
log(2 cosh(2βε))− 1

2πβ

∫ π

0

ds log

(
1

2
(1 +

√
1− κ2 sin2 s)

)
,

where β := 1/(kBT ) > 0, ε > 0, and κ := 2 sinh(2βε)

cosh2(2βε)
.
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(i) Consider the internal energy density u(B = 0, T ) :=
∂

∂β
(βa(B = 0, T )). Prove that

u(B = 0, T ) = −ε coth(2βε)

(
1 +

2

π
κ′K1(κ)

)
,

where κ′ := 2 tanh2(2βε) − 1 and K1(κ) is the complete elliptic integral of the first kind
as defined in Exercise 33.

(ii) In class it was shown that the internal energy density has no analytic extensions around
κ = 1. Compute the corresponding critical temperature Tc at which this non-analyticity
occurs.

(iii) Consider the specific heat capacity per spin, namely c(B = 0, T ) :=
∂u

∂T
. Prove that

c(B = 0, T ) =
2

π
ε2kBβ

2 coth2(2εβ)
(
2K1(κ)− 2E1(κ)− (1− κ′)(

π

2
+ κ′K1(κ))

)
,

where E1(κ) :=

∫ π/2

0

ds
√

1− κ2 sin2 s (the complete elliptic integral of the 2nd kind).

Exercise 35 & 36. (RG analysis of the Sierpinski gasket)

This exercise presents one of the few examples where the renormalisation group analysis of
the Ising model can be carried out exactly, namely the Ising model on the Sierpinski gasket,
a fractal geometry with Hausdorff dimension dH = log 3/ log 2 ≈ 1.585. Interactions are
restricted to be explicitly part of the fractal geometry such that the decimation procedure of
the real-space RG is exact. In this example criticality occurs at zero temperature, as for the
1D Ising model.

Consider the 2D Sierpinski gasket (SG) Λ, as in Fig. 1. Let N be the total number of lattice
sites.

Figure 1: Construction of the Sierpinski gasket. The SG is implemented via repeated construction of the basic
shape which is an equilateral triangle with a base parallel to the horizontal axis. It is a union of three copies
of itself, each scaled with a factor of 1/2. In the right frame you may see the convention for labelling the spins
at the vertices.

Assign to each vertex p ∈ Λ of the SG a spin variable sp ∈ {−1,+1}. Define the energy of
an Ising ferromagnet E(S) (= Hamiltonian) associated with a configuration S : p 7→ sp of the
system by

E(S|ε, B,K3) := −ε
∑
〈p,q〉

spsq −B

N∑
p=1

sp −K3

∑
〈p,q,r〉

spsqsr ,
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where
∑

〈p,q〉 denotes the sum over all distinct nearest neighbour pairs and ε > 0 denotes the
ferromagnetic interaction energy. In addition to the “standard” symmetry-breaking external
magnetic field B ∈ R, consider further a 3-spin couplingK3 ∈ R among the spins at the vertices
of each elementary “up-triangle” of the SG (such higher-order interaction would appear in any
case in the renormalisation procedure and is imposed here from the very beginning; because
of the fractal structure, however, no further higher-order interactions occur during the RG
procedure). The parameters ε, B, and K3 are measured in units of kBT .

The Hamiltonian can be rewritten as a sum over non-interacting elementary SGs which form
the basic coarse-graining cells. For example, the Hamiltonian of the top unit cell in Fig. 1 is
given as

Ecell(s1, . . . , s6|ε, B,K3) = − ε(s1(s4 + s5) + s2(s4 + s6) + (s3 + s4)(s5 + s6) + s5s6)

−B/2(s1 + s2 + s3)−B(s4 + s5 + s6)

−K3(s1s4s5 + s2s4s6 + s3s5s6) .

Note that a term like −K3s4s5s6 is not included as an interaction term in this sum because it
is not an “up-triangle”.

(i) Perform the decimation for one non-interacting Hamiltonian on one SG’s unit cell as
depicted in Figure 1, i.e., compute the partial partition sum

Q(s1, s2, s3|ε, B,K3) :=
∑

(s4,s5,s6)

e−βE(s1,...,s6|ε,B,K3)

by summing over all possible configurations of spins (s4, s5, s6).

(Hint: your result can be written as follows:

Q(s1, s2, s3|ε, B,K3) = eB/2(s1+s2+s3)
[
eK3(s1+s2+s3)+3ε · 2 cosh(2ε(s1 + s2 + s3) + 3B)

+ eK3(s1−s2−s3)−ε · 2 cosh(2εs1 +B)

+ eK3(−s1+s2−s3)−ε · 2 cosh(2εs2 +B)

+ eK3(−s1−s2+s3)−ε · 2 cosh(2εs3 +B)
]
.)

In this decimation step, we have reduced the degrees of freedom of spins on the unit cell from
S = (s1, . . . , s6) to S

′ = (s1, s2, s3) in the decimated cell. We now want to relate the parameters
(ε, B,K3) of the unit cell to the corresponding parameters (ε′, B′, K ′

3, C
′) of the renormalized

lattice such that

Q(s1, s2, s3|ε, B,K3) = e−βE(s1,s2,s3|ε′,B′,K′
3,C

′) =: Q(s1, s2, s3|ε′, B′, K ′
3, C

′) .

Here C ′ denotes an additive constant in E [S ′] that appears as a contribution to the free energy
from tracing out the degrees of freedom in the decimation step.

(ii) Compute Q(s1, s2, s3|ε, B,K3) and Q(s1, s2, s3|ε′, B′, K ′
3, C

′) for all possible spin configu-
rations (s1, s2, s3).

(Hint: you will obtain four different relations fi = f ′
i , i = 1, . . . , 4, from the eight different

spin configurations. For example:

f1 := Q((+1,+1,+1)|ε, B,K3) = e
3
2
B{2e3K3+3ε cosh(6ε+ 3B) + 6e−K3−ε cosh(2ε+B)}

f ′
1 := Q((+1,+1,+1)|ε′, B′, K ′

3, C
′) = e3ε

′+ 3
2
B′+K′

3+C′
.

The other three relations are obtained similarly.)
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(iii) Derive the RG map for one RG step as R : (ε, B,K3) 7→ (ε′, B′, K ′
3, C

′). It suffices to
express ε′, B′, K ′

3, and C ′ in terms of f1, f2, f3, and f4, the functions found in (ii), which
only depend on ε, B,K3.

(Hint: Check that e8ε
′
=

f ′
1f

′
4

f ′
2f

′
3
, e4B

′
=

f ′
1f

′
2

f ′
3f

′
4
, e8K

′
3 =

f ′
1

f ′
4

(
f ′
3

f ′
2

)3

, and e8C
′
= f ′

1f
′
4(f

′
2f

′
3)

3.)

Steps (i)-(iii) complete one RG step from one SG unit cell to a renormalized cell (e.g., from
SG2 to SG1 in Fig. 1). Starting from a Sierpinski gasket SGm that is constructed in m steps
as depicted in Fig. 1, we can iterate this procedure to obtain the nonlinear RG flow in the
space of parameters (ε, B,K3) that characterise the Hamiltonian. The nonlinear properties of
the RG flow give an insight on the physical behaviour of the system on large length scales.

(iv) Set B = K3 = 0. Prove that in this case the recursion relation for ε′ can be written as

e4ε
′
= e4ε

1− e−4ε + 4e−8ε

1 + 3e−4ε
.

(v) Prove that ε → ∞ yields a fixed point of this RG map, the so-called Ising fixed point
(since it corresponds to the zero temperature fixed point from the 1D Ising model).

(Hint: Note that cosh(6ε)/ cosh(2ε) = 2 cosh(4ε)− 1.)

(vi) In the limit of large ε, the recursion relations for the other two couplings simplify consid-
erably in the vicinity of the Ising fixed point (ε → ∞, B = 0, K3 = 0), and are given to
linear order by

ε′ = ε ,

B′ = 4B + 2K3 ,

K ′
3 = −3

2
B ,

as ε → ∞. Determine the eigenvalues of this linear RG map and discuss its values from
a physical point of view.
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Hints

Recommendation: try first to solve the exercises with the only amount of information provided
in their formulation. I.e., try to understand the question, to identify what the involved no-
tions from class are, to structure a potentially successful solving strategy. Go through these
additional hints only if you get completely stuck in your first attempts.

Hints for Exercise 33.
(i) Apply the substitution t := sin s.

(ii) Obtain first K1(κ) =

∫ 1/κ′

1

dr (1 − κ′2r2)−1/2(r2 − 1)−1/2 by applying the substitution

r := (1− κ2t2)−1/2. Apply another substitution u := 1/r to arrive at the final result.
(iii) Divide and conquer: Split the region of integration over the interval [κ′, 1] into the two
parts I1 := [κ′,

√
κ′] and I2 := [

√
κ′, 1]. Deduce that (1 − u2) lies between 1 − κ′ and 1 in

I1 and that u−2(u2 − κ′2) lies between 1 − κ′ and 1 in I2. Use these estimates to further
estimate the integral from (ii) in the region I1 and I2 separately. Show that one obtains
f(κ′) ≤ K1(κ) ≤ (1− κ′)−1/2f(κ′) from which the final result can be derived.

(iv) Use that f(κ′) = log

√
κ′ +

√
κ′ − κ′2

κ′ −log

√
κ′

1 +
√
1− κ′

= · · · = 2 log (1 +
√
1− κ′)−log κ′.

Check that lim
κ′→0

(
K1(κ)− log

(
4

κ′

))
= 0.

Hints for Exercise 34.
(i) Introduce ∆ :=

√
1− κ2 sin2 s for short-hand notation. Compute u(B = 0, T ) = −2ε tanh(2βε)+

1

2πκ

∂κ

∂β

∫ π

0

ds
κ2 sin2 s

∆(1 + ∆)
. Show that

κ2 sin2 s

∆(1 + ∆)
= −1 + 1/∆ and apply the definition of K1

from Exercise 33 to arrive at the intermediate expression u(B = 0, T ) = −2ε tanh(2εβ) +
1

2πκ

∂κ

∂β
(−π + 2K1(κ)) = · · · = −ε coth(2εβ)

(
1− 2

π
K1(κ) +

4

π
tanh2(2εβ)K1(κ)

)
. Introduce

κ′ as given in the exercise, note that κ′2 + κ2 = 1, and derive the final result.
(ii) -

(iii) Better start out from
∂u

∂T
=

∂β

∂T

∂u

∂β
. Show that

∂

∂κ
(κ′K1(κ)) = − κ

κ′K1(κ) +
E1(κ)

κκ′ −

κ′

κ
K1(κ) by making use of the equality

∂K1(κ)

∂κ
=

E1(κ)

κ(1− κ2)
−K1(κ)

κ
which is known from the

lecture. Make use of κ′ = 2 tanh2(2βε)− 1 to obtain the final result.

Hints for Exercise 35.

Hints for Exercise 36.
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