
Mathematical Statistical Physics
TMP Programme Munich – spring term 2013

HOMEWORK ASSIGNMENT 06
Hand-in deadline: Tuesday 4 June 2013 by 4 p.m. in the “MSP” drop box.
Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be
justified. You can hand in your solutions in German or in English.
Info: www.math.lmu.de/~michel/SS13_MSP.html

Exercise 21. LetA be a unital C∗-algebra, let {αt}t∈R be a one-parameter strongly continuous
group of ∗-automorphisms of A (i.e., for any A ∈ A, t→ 0 ⇒ ‖αt(A)−A‖ → 0), and let ω be
an αt-invariant state (i.e., ω(αt(A)) = ω(A) ∀A ∈ A ∀t ∈ R). Assume further

(1) αt is asymptotically abelian, i.e., lim
t→∞

‖[A,αt(B)]‖ = 0 ∀A,B ∈ A,

(2) ω has the “cluster property”

ω(Aαt(B))
t→∞−−−→ ω(A)ω(B) ∀A,B ∈ A .

(This is the typical property shown by KMS states with respect to an asymptotically
abelian dynamics, although proving this fact is laborious.)

Consider an arbitrary pure state in the GNS representation (Hω, πω,Ωω) of A associated with
ω, i.e., an arbitrary vector ψ ∈ Hω with ‖ψ‖ = 1. Prove that the system prepared in the state
ψ exhibit the behaviour of “return to equilibrium” in the following sense

〈ψ, πω(αt(A))ψ〉
t→∞−−−−→ ω(A) ∀A ∈ A .

The purpose of the next exercise is to construct a KMS state out of a sequence of KMS
states within a scheme that will be then applicable to the construction of an equilibrium state
over a quasi-local algebra as a thermodynamic limit of Gibbs states over the local algebras.
To this aim you will need the following classical theorem by Paley and Wiener:

A measurable function F on R is the inverse Fourier transform of a function F̂ ∈ C∞
0 (R) with

support in [−R,R] (R > 0) if and only if the continuation of F to the complex plane is entire

analytic and for each n ∈ N there exists a constant Cn such that |F (z)| 6 Cn
eR|Imz|

(1 + |z|)n
.

Exercise 22. Let A be a unital C∗-algebra and let {αt}t∈R be a one-parameter strongly
continuous group of ∗-automorphisms of A. Let β ∈ R.

(i) Prove that the following conditions are equivalent:
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(1) ω satisfies the (αt, β)-KMS condition,

(2) the relation ∫ +∞

−∞
dt f(t)ω(Aαt(B)) =

∫ +∞

−∞
dt f(t+ iβ)ω(αt(B)A)

is valid for all A,B ∈ A and all f with Fourier transform f̂ ∈ C∞
0 (R).

(ii) Assume in addition that, for each n ∈ N, {α(n)
t }t∈R is a one-parameter strongly continuous

group of ∗-automorphisms of A such that ‖α(n)
t (A)−αt(A)‖

n→∞−−−→ 0 ∀A ∈ A and ∀t ∈ R,
and that {ωn}∞n=1 is a sequence of (α

(n)
t , β)-KMS states on A which converges in the

weak-∗ topology to a state ω. Prove that ω is a (αt, β)-KMS state on A.

The purpose of the next exercise is to recapitulate the exact solution of the 1D Ising model.
In the lecture we will discuss Onsager’s exact solution of the 2D Ising model by applying the
transfer matrix method. Here we review this method for the 1D Ising model. The crucial
outcome of this calculation is that the Ising model in one dimension does not exhibit a phase
transition for non-zero temperature as opposed to the two-dimensional case.

Exercise 23. (1D Ising ferromagnet)

Consider the lattice Λ = {1, 2, . . . , N}. Assign to each p ∈ Λ a spin variable sp ∈ {−1,+1}
(spin up / spin down). Define the energy E(S) associated with a generic configuration S =
{sp | p ∈ Λ} of the system by

E(S) := −ε
N∑
p=1

spsp+1 −B

N∑
p=1

sp

(with the convention of taking the boundary condition sN+1 = s1), where ε > 0 denotes the
interaction energy between neighbouring spins (“ferromagnetic coupling”) and B ∈ R denotes
the external magnetic field.

(i) Compute the partition function QN(B, T ) :=
∑

S e
−βE(S), with β := 1/(kBT ), T > 0.

(Hint: “transfer matrix method”, namely, factorise each exponential in QN(B, T ) into
terms involving only two neighbouring spins, each of which has the form P (sp, sp+1) =
exp(βεspsp+1 +

1
2
βB(sp + sp+1).)

(ii) Compute the free energy density in the thermodynamic limit, namely compute the limit
a(B, T ) := lim

N→∞
aN(B, T ) where aN(B, T ) := − 1

βN
logQN(B, T ).

(iii) Is a(B, T ) analytic in B and T?

(iv) Compute the mean magnetization m(B, T ) := lim
N→∞

〈 1

N

N∑
p=1

sp
〉
, where 〈·〉 denotes the

average over all possible configurations.

(v) PlotB 7→ m(B, T ) for fixed T > 0 and T = 0 (it is convenient to use the re-scaled variable βB).

(Remark: you should argue from this plot that the system is not ferromagnetic for T > 0.)
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Exercise 24. (Tensor product of matrices)

Notation: Mm(C) is the algebra of m × m complex matrices, {|j〉 | j = 1, . . . ,m} is the
canonical basis of Cm, 〈i|A|j〉 is the (ij)-entry of A ∈ Mm(C). Given A1, . . . , Ak ∈ Mm(C)
define their tensor product A1 ⊗ · · · ⊗ Ak ∈ Mmk(C) by

〈
i1, . . . , ik|A1 ⊗ · · · ⊗ Ak|j1, . . . , jk

〉
:=

k∏
l=1

〈
il|Al|jl

〉
,

where |i1, . . . , ik〉 = |i1〉 ⊗ · · · ⊗ |ik〉 ∈ Cmk
and each ip, jp ∈ {1, . . . ,m}.

(i) Prove that (A1 ⊗ · · · ⊗ Ak)(B1 ⊗ · · · ⊗Bk) = (A1B1)⊗ (A2B2)⊗ · · · ⊗ (AkBk).

(ii) LetX =
(
0 1
1 0

)
and t ∈ R. Define etX :=

∞∑
n=0

tn

n!
Xn. Prove that etX = (cosh t)1+ (sinh t)X.

(iii) Let t ∈ R. Define A(t) := et1 + e−tX =

(
et e−t

e−t et

)
. Find two real-valued functions θ(t)

and f(t) such that A(t) = f(t)eθ(t)X .

(iv) Set Xα := 1 ⊗ · · · ⊗ X ⊗ · · · ⊗ 1 ∈ M2n(C), the tensor product consisting of n factors
with X as the α-th factor. Prove that eX ⊗ · · · ⊗ eX = e(X1+X2+···+Xn).
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Hints

Recommendation: try first to solve the exercises with the only amount of information provided
in their formulation. I.e., try to understand the question, to identify what the involved no-
tions from class are, to structure a potentially successful solving strategy. Go through these
additional hints only if you get completely stuck in your first attempts.

Hints for Exercise 21. A density argument to replace ψ with πω(B)Ωω in 〈ψ, πω(αt(A))ψ〉,
for some B ∈ A. Then a straightforward application of assumptions (1) and (2).

Hints for Exercise 22. (i) Apply Paley-Wiener to F (z) := f(z)ω(αz(B)A), z ∈ C. (ii)
Establish property (2) for the limiting state ω. Writing (2) for each ωn and exploiting the

convergence of the ωn’s and the α
(n)
t ’s, yields the result by dominated convergence.

Hints for Exercise 23. (i) Each exponential in Q(B, T ) can be factorised into terms involving
only two neighbouring spins, each of the form P (sp, sp+1) = exp(βεspsp+1 +

1
2
βB(sp + sp+1).

Since sp, sp+1 ∈ {−1,+1}, P can be regarded as a 2×2 matrix and Q(B, T ) reads as the trace
over the N -th power of P . Note that P is symmetric and express the partition function in
terms of the eigenvalues of P .

Hints for Exercise 24. (Straightforward computations.)
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