Mathematisches Institut der LMU – SS2009 Prof. Dr. P. Müller, Dr. A. Michelangeli

Handout: 14.07.2009 Due: Tuesday 21.07.2009 by 1 p.m. in the "Funktionalanalysis II" box Questions and infos: Dr. A. Michelangeli, office B-334, michel@math.lmu.de Grader: Ms. S. Sonner – Übungen on Wednesdays, 4,15 - 6 p.m., room C-111

Exercise 32. Let A be a symmetric operator on a (dense domain of a) Hilbert space \mathcal{H} . Prove that A is essentially self-adjoint *if and only if* A has one and only one self-adjoint extension.

NOTICE! MODIFIED EXERCISE! (16/07/2009) Since proving one of the implications requires tools that have not been discussed yet, the new version of Exercise 32 is: Prove that A is essentially self-adjoint *implies* that A has one and only one self-adjoint extension.

Exercise 33. Consider on the Hilbert space $L^2(\mathbb{R})$ the operator

$$D : H^1(\mathbb{R}) \to L^2(\mathbb{R})$$
$$\psi \longmapsto i\psi'$$

where ψ' is the *weak derivative* of ψ . Prove that D is self-adjoint.

Exercise 34. Consider the Laplacian operator $\Delta : H^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ (*d* positive integer). As a special case of the "Spectral Theorem in multiplication form" discussed in the class, prove that Δ is isomorphically equivalent to a multiplication operator. In other words, exhibit

- a new Hilbert space $L^2(\Omega, d\mu)$
- an isomorphism $U: L^2(\mathbb{R}^d, \mathrm{d} x) \xrightarrow{\cong} L^2(\Omega, \mathrm{d} \mu)$
- the action of $U^* \Delta U$ as a multiplication operator on $L^2(\Omega, d\mu)$
- the domain of $U^* \Delta U$.

(*Hint:* use the Fourier transform.)