Mathematisches Institut der LMU – SS2009 Prof. Dr. P. Müller, Dr. A. Michelangeli

Handout: 08.07.2009 Due: Tuesday 15.07.2009 by 1 p.m. in the "Funktionalanalysis II" box Questions and infos: Dr. A. Michelangeli, office B-334, michel@math.lmu.de Grader: Ms. S. Sonner – Übungen on Wednesdays, 4,30 - 6 p.m., room C-111

Exercise 29. Let T be a densely defined linear operator on a Hilbert space \mathcal{H} . Denote by $\mathcal{G}(T)$ the graph of T and by $\overline{\mathcal{G}(T)}$ its closure in $\mathcal{H} \times \mathcal{H}$. Assume that T is *closable*, i.e., T admits a closed extension, and denote by \overline{T} its closure. Prove that

$$\mathcal{G}(\overline{T}) = \overline{\mathcal{G}(T)}.$$

Exercise 30. Let T be a densely defined linear operator on a Hilbert space \mathcal{H} . Show that

 $\rho(T) \neq \emptyset \quad \Rightarrow \quad T \text{ is closed}.$

(*Hint*: apply the Closed Graph Theorem to the resolvent $(T - \lambda)^{-1}$.) Optional [freiwillig]: can you provide an example of a *non-closed* and densely defined T with empty resolvent?

Exercise 31. (This exercise proves Lemma 2.50 stated in the class.) Let $d \ge 1$, integer, and $s \in \mathbb{R}, s \ge 0$. Prove that

$$H^{-s}(\mathbb{R}^d) \cong H^s(\mathbb{R}^d)^*.$$