Handout: 23.06.2009

Due: Tuesday 30.06 .2009 by 1 p.m. in the "Funktionalanalysis II" box
Questions and infos: Dr. A. Michelangeli, office B-334, michel@math.Imu.de
Grader: Ms. S. Sonner - Übungen on Wednesdays, 4,30-6 p.m., room C-111

Exercise 24. Let $\varphi, \psi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, the Schwartz space of smooth functions with rapid decrease in dimension $d \geqslant 1$, and let \mathcal{F} be the Fourier transform ${ }^{1}$ on $\mathcal{S}\left(\mathbb{R}^{d}\right)$. Prove Theorem 2.13, part (g), stated in the class. I.e., prove that $\mathcal{F}(\varphi \psi)=(2 \pi)^{-d / 2} \mathcal{F}(\varphi) * \mathcal{F}(\psi)$, that is, the Fourier transform of the (pointwise) product of two Schwartz functions is, up to a pre-factor, the convolution of the Fourier transform of each function. (Compare this statement with the discussion of Exercise 22.)

Exercise 25. Let $\varphi \in C_{0}^{\infty}(\mathbb{R}), \varphi \not \equiv 0$. i.e., a non-zero compactly supported smooth function. Prove that $\mathcal{F} \varphi$, its Fourier transform, cannot have compact support. (Hint: assume by contradiction that $\xi \mapsto(\mathcal{F} \varphi)(\xi)$ is compactly supported, extend it from $\xi \in \mathbb{R}$ to $\xi \in \mathbb{C}$ and show that you get an holomorphic function. Then...)

Exercise 26. Let $a>0$. Say in which sense (i.e., as elements of which space) the $\mathbb{R} \rightarrow \mathbb{R}$ functions

- $x \mapsto e^{-a|x|}$
- $x \mapsto \sqrt{\frac{2}{\pi}} \frac{a}{a^{2}+x^{2}}$
admit Fourier transform and compute it. Verify the Fourier inversion formula in this cases.

[^0]
[^0]: ${ }^{1}$ remember that the convention adopted in the class is $(\mathcal{F} f)(\xi)=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f(x) e^{-i x \xi} \mathrm{~d} x$

