Mathematisches Institut der LMU – SS2009 Prof. Dr. P. Müller, Dr. A. Michelangeli

Handout: 27.05.2009 Due: Wednesday 3.06.2009 by 1 p.m. in the "Funktionalanalysis II" box Questions and infos: Dr. A. Michelangeli, office B-334, michel@math.lmu.de Grader: Ms. S. Sonner – Übungen on Wednesdays, 4,30 - 6 p.m., room C-111

**Exercise 13.** Let A be a bounded self-adjoint operator on the Hilbert space  $\mathcal{H}$ . Prove that

 $\lambda \in \operatorname{Spec}_{\operatorname{dis}}(A) \quad \Leftrightarrow \quad \begin{cases} \lambda \text{ is an isolated point of } \operatorname{Spec}(A) \\ \lambda \text{ is an eigevalue with finite multiplicity} \end{cases}$ 

Recall that  $\lambda$  being isolated means that, for some  $\varepsilon > 0$ ,  $(\lambda - \varepsilon, \lambda + \varepsilon) \cap \text{Spec}(A) = \{\lambda\}$ . By multiplicity of the eigenvalue  $\lambda$  one means the dimension of the corresponding eigenspace, so that *finite multiplicity* means that  $\dim\{\psi \in \mathcal{H} \mid A\psi = \lambda\psi\} < \infty$ . Can you provide concrete counterexamples when one of the two conditions on the right is relaxed?

**Exercise 14.** [The Weyl's criterion for the essential spectrum] Let A be a bounded self-adjoint operator acting on the Hilbert space  $\mathcal{H}$ . Show that  $\lambda \in \operatorname{Spec}_{ess}(A)$  if and only if there exists a sequence  $\{\psi_n\}_{n=1}^{\infty}$  of orthonormal vectors (i.e.,  $\langle \psi_n, \psi_m \rangle = \delta_{m,n}$ ) such that  $||A\psi_n - \lambda\psi_n||_{\mathcal{H}} \to 0$  as  $n \to \infty$ . Compare this result to the general statement of the Weyl's criterion ( $\to \operatorname{Exercise} 3$ ): actually that statement does not exclude that the whole  $\operatorname{Spec}(A)$ , not only  $\operatorname{Spec}_{ess}(A)$ , might be characterised by orthonormal Weyl's sequences (and the proof given there, being a proof by contradiction and not constructive, does not give any evidence on how the Weyl's sequence has to be). Can you exclude that? In other words, are there points in  $\operatorname{Spec}(A)$  for which it is not possible to find an orthonormal Weyl's sequence?