Handout: 19.05.2009
Due: Tuesday 26.05 .2009 by 1 p.m. in the "Funktionalanalysis II" box
Questions and infos: Dr. A. Michelangeli, office B-334, michel@math.Imu.de
Grader: Ms. S. Sonner - Übungen on Wednesdays, 4,30-6 p.m., room C-111

Exercise 10. [Exponentiating a bounded self-adjoint operator] Let $A$ be a bounded self-adjoint operator acting on the separable Hilbert space $\mathcal{H}$.
10.1) Prove that the operator series $\sum_{n=0}^{\infty} \frac{A^{n}}{n!}$ converges in the norm operator topology (it is understood that $A^{0}:=\mathbb{1}$ ). This is a possible way to give meaning to the operator $e^{A}$. Call it temporarily $\left(e^{A}\right)_{\text {series }}$.
10.2) Now define the operator $e^{A}$ by means of the functional calculus, i.e., as the operator $f(A)$ where $f: \operatorname{Spec}(A) \rightarrow \mathbb{R}$ is the function $f(\lambda)=e^{\lambda}(f$ is bounded and continuous so the definition is well-posed). Do the operators $e^{A}$ and $\left(e^{A}\right)_{\text {series }}$ coincide? Why?
10.3) For any $t \in \mathbb{R}$ define analogously the operator $e^{t A}$. Prove that (independently of $t$ ) $e^{t A}$ is self-adjoint and give an upper bound to its norm $\left\|e^{t A}\right\|$. Also, prove that $\forall t, s \in \mathbb{R}$ one has $e^{t A} e^{s A}=e^{(t+s) A}$. Prove that $e^{t A}$ is invertible and determine its inverse.
10.4) Prove that the operator-valued function $\mathbb{R} \ni t \mapsto e^{t A}$ is norm-continuous on $\mathbb{R}$ and Lipschitz norm-continuous on any bounded subset of $\mathbb{R}$. Recall that an operator-valued function $t \mapsto B_{t}$ is Lipschitz norm-continuous if $\left\|B_{t}-B_{s}\right\|_{B L(\mathcal{H})} \leqslant C|t-s|$ for some constant $C>0$ independent of $t, s$. Estimate such a constant.
10.5) Prove that the operator-valued function $t \mapsto e^{t A}$ is differentiable in the norm operator topology and compute its derivative (which is an operator!) in $t=0$.

Exercise 11. [The Stone's formula] Let $A$ be a bounded self-adjoint operator acting on the separable Hilbert space $\mathcal{H}$.
11.1) Let $a, b \in \mathbb{R}$ (for simplicity assume $a<b$ ) and let $\varepsilon>0$. Show that by the functional calculus the integral

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{a}^{b}\left((A-\lambda-i \varepsilon)^{-1}-(A-\lambda+i \varepsilon)^{-1}\right) \mathrm{d} \lambda \tag{*}
\end{equation*}
$$

is well defined and is a bounded self-adjoint operator on $\mathcal{H}$.
11.2) Let $\left\{P_{\Omega}\right\}_{\Omega}$ be the spectral measure associated with the operator $A$. Prove that

$$
\frac{1}{2 \pi i} \int_{a}^{b}\left((A-\lambda-i \varepsilon)^{-1}-(A-\lambda+i \varepsilon)^{-1}\right) \mathrm{d} \lambda \xrightarrow[\text { strongly }]{\varepsilon \rightarrow 0} \frac{1}{2}\left(P_{[a, b]}+P_{(a, b)}\right) .
$$

This is the Stone's formula.
11.3) Does the above limit hold in norm?

Exercise 12. Consider the Hilbert space $L^{2}([0,1])$ and let $M$ be the self-adjoint multiplication operator acting on every $\psi \in L^{2}([0,1])$ as $(M \psi)(x):=x \psi(x) \forall x \in[0,1]$. Let $f:[0,1] \rightarrow \mathbb{R}$ be a bounded Borel measurable function. Define the action of the operator $f(M)$.

