Mathematisches Institut der LMU – SS2009 Prof. Dr. P. Müller, Dr. A. Michelangeli

Handout: 19.05.2009 Due: Tuesday 26.05.2009 by 1 p.m. in the "Funktionalanalysis II" box Questions and infos: Dr. A. Michelangeli, office B-334, michel@math.lmu.de Grader: Ms. S. Sonner – Übungen on Wednesdays, 4,30 - 6 p.m., room C-111

Exercise 10. [Exponentiating a bounded self-adjoint operator] Let A be a bounded self-adjoint operator acting on the separable Hilbert space \mathcal{H} .

- 10.1) Prove that the operator series $\sum_{n=0}^{\infty} \frac{A^n}{n!}$ converges in the norm operator topology (it is understood that $A^0 := 1$). This is a possible way to give meaning to the operator e^A . Call it temporarily $(e^A)_{\text{series}}$.
- 10.2) Now define the operator e^A by means of the functional calculus, i.e., as the operator f(A)where $f : \operatorname{Spec}(A) \to \mathbb{R}$ is the function $f(\lambda) = e^{\lambda}$ (f is bounded and continuous so the definition is well-posed). Do the operators e^A and $(e^A)_{\text{series}}$ coincide? Why?
- 10.3) For any $t \in \mathbb{R}$ define analogously the operator e^{tA} . Prove that (independently of t) e^{tA} is self-adjoint and give an upper bound to its norm $||e^{tA}||$. Also, prove that $\forall t, s \in \mathbb{R}$ one has $e^{tA}e^{sA} = e^{(t+s)A}$. Prove that e^{tA} is invertible and determine its inverse.
- 10.4) Prove that the operator-valued function $\mathbb{R} \ni t \mapsto e^{tA}$ is norm-continuous on \mathbb{R} and Lipschitz norm-continuous on any bounded subset of \mathbb{R} . Recall that an operator-valued function $t \mapsto B_t$ is Lipschitz norm-continuous if $||B_t - B_s||_{BL(\mathcal{H})} \leq C|t-s|$ for some constant C > 0 independent of t, s. Estimate such a constant.
- 10.5) Prove that the operator-valued function $t \mapsto e^{tA}$ is differentiable in the norm operator topology and compute its derivative (which is an operator!) in t = 0.

Exercise 11. [*The Stone's formula*] Let A be a bounded self-adjoint operator acting on the separable Hilbert space \mathcal{H} .

11.1) Let $a, b \in \mathbb{R}$ (for simplicity assume a < b) and let $\varepsilon > 0$. Show that by the functional calculus the integral

$$\frac{1}{2\pi i} \int_{a}^{b} \left((A - \lambda - i\varepsilon)^{-1} - (A - \lambda + i\varepsilon)^{-1} \right) \mathrm{d}\lambda \tag{(*)}$$

is well defined and is a bounded self-adjoint operator on \mathcal{H} .

11.2) Let $\{P_{\Omega}\}_{\Omega}$ be the spectral measure associated with the operator A. Prove that

$$\frac{1}{2\pi i} \int_{a}^{b} \left((A - \lambda - i\varepsilon)^{-1} - (A - \lambda + i\varepsilon)^{-1} \right) \mathrm{d}\lambda \xrightarrow{\varepsilon \to 0} \frac{1}{\mathrm{strongly}} \frac{1}{2} \left(P_{[a,b]} + P_{(a,b)} \right).$$

This is the Stone's formula.

11.3) Does the above limit hold in norm?

Exercise 12. Consider the Hilbert space $L^2([0,1])$ and let M be the self-adjoint multiplication operator acting on every $\psi \in L^2([0,1])$ as $(M\psi)(x) := x\psi(x) \ \forall x \in [0,1]$. Let $f : [0,1] \to \mathbb{R}$ be a bounded Borel measurable function. Define the action of the operator f(M).