Mathematisches Institut der LMU Prof. Dr. P. Müller, Dr. A. Michelangeli

Handout: 29.04.2009 Due: Tuesday 5.05.2009 by 10,15 a.m. in the "Funktionalanalysis II" box Questions and infos: Dr. A. Michelangeli, office B-334, michel@math.lmu.de Grader: Ms. S. Sonner – Übungen on Wednesdays, 4-6 p.m., room C-111

Exercise 1. Let P be a projection acting on a Hilbert space \mathcal{H} , that is, $P \in BL(\mathcal{H})$ and $P^2 = P$. (a) Prove that the range of P is a closed subspace of \mathcal{H} . (b) Prove that the following properties are equivalent:

(*) Ker
$$P = (\operatorname{Ran} P)^{\perp}$$

(**) $P^* P = P = PP^*$.

When (*) or (**) holds, P is said to be an *orthogonal* projection.

Exercise 2. With the notation of the proof of Theorem 1.4 discussed in the last lecture, prove that if the map Φ_0 : Poly(spec(A)) $\rightarrow BL(\mathcal{H})$ is a *-algebraic homomorphism (that is, it satisfies the property (b) of the statement of Theorem 1.4) then the same holds for its extension $\Phi: C(\operatorname{spec}(A)) \rightarrow BL(\mathcal{H})$.

Exercise 3. Let A be a bounded self-adjoint operator on a Hilbert space \mathcal{H} . Prove that $\lambda \in \operatorname{spec}(A)$ if and only if there exists one sequence $\{\varphi_n\}_n$ in \mathcal{H} of normalised vectors $(\|\varphi_n\| = 1)$ such that $\|(A - \lambda)\varphi_n\| \to 0$ as $n \to \infty$. This characterisation of the spectrum of A usually goes under the name of Weyl's criterion: it says that the points of $\operatorname{spec}(A)$ are "almost eigenvalues" of A (i.e., $A\varphi_n \approx \lambda\varphi_n$) up to an error that is arbitrarily small in norm. In solving this problem, the φ_n 's need not to be taken orthogonal.