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Abstract. These are lecture notes for a master-level course with the primary aim of
proving the stability of matter from first principles using modern mathematical methods in
many-body quantum mechanics. General quantitative formulations of the uncertainty and
the exclusion principles of quantum mechanics are introduced, such as the Hardy, Sobolev
and Poincaré functional inequalities as well as the powerful Lieb–Thirring inequality that
combines these two principles. The notes are aimed to be both fairly self-contained and
at the same time complementary to existing literature, also covering recent developments
to prove Lieb–Thirring inequalities and stability from general, weaker formulations of the
exclusion principle.
— LAST REVISION: July 27, 2019

Contents

1. Introduction 2
2. Some preliminaries and notation 5
2.1. Hilbert spaces 5
2.2. Lebesgue spaces 6
2.3. Fourier transform 9
2.4. Sobolev spaces 9
2.5. Forms and operators 10
3. A very brief mathematical formulation of classical and quantum mechanics 16
3.1. Some classical mechanics 16
3.2. The instability of classical matter 20
3.3. Some quantum mechanics 21
3.4. The one-body problem 26
3.5. The two-body problem and the hydrogenic atom 29
3.6. The N -body problem 31
3.7. Identical particles and quantum statistics 37
4. Uncertainty principles 46
4.1. Heisenberg 46
4.2. Hardy 47
4.3. Sobolev 52
4.4. Gagliardo–Nirenberg–Sobolev 55
4.5. Applications to stability 57
4.6. Poincaré 61
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1. Introduction

Most of us take the stability of the world around us — as observed to consist of atoms,
molecules, and even larger lumps of matter such as rocks, biological beings and entire planets
— for granted every day. There is nothing strange about it. However, proving mathemat-
ically from first principles of mechanics that this is indeed so turns out to be surprisingly
challenging and subtle. It was considered to be one of the great triumphs of mathematical
physics when this problem was solved, first by Dyson and Lenard in 1967 [DL67], then in
a better understood approach by Lieb and Thirring in 1975 [LT75]. Subsequently further
details have been worked out over several decades by numerous other mathematicians and
physicists [LS10]. Its resolution turns out to rest fundamentally on the two basic principles
of quantum mechanics: the uncertainty principle and the (Pauli) exclusion principle.
Namely, without these two concepts, i.e. relying strictly on the (indeed very well-founded)
framework for mechanics which was available at the end of the 19th century and nowadays
called classical mechanics, matter turns out to be unstable because the orbit of an electron
around the nucleus of an atom can be made arbitrarily small and the electron may thus
crash into the nucleus. Quantum mechanics came in to resolve this puzzle by introducing
the idea that electron orbits are quantized into a discrete set of spatial probability dis-
tributions, with a smallest approximate radius called the Bohr radius. This prevents the
electron from falling further into the attractive and infinitely deep potential well caused
by the nucleus, and seemingly leads to the stability of matter. Indeed, most physicists are
content with this answer even today, and the typical quantum mechanics textbook digs no
further into the issue. However, a more careful mathematical analysis of the usual argument
invoked (known as Heisenberg’s formulation of the uncertainty principle) leads to the real-
ization that it remains insufficient to rigorously prove stability. Stronger formulations of
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the uncertainty principle, such as the functional inequalities known as Hardy’s or Sobolev’s
inequality, may instead be used to prove that an atom is indeed stable.

This is not the end of the story, however, because evidently the world consists of many
more particles than just one single atom, with a mix of attractive and repulsive electro-
magnetic forces between them, and it turns out to be a very subtle issue to understand
why in fact taking two similar lumps of matter and putting them together produces just
twice the amount of matter when it comes to volume and energy, and why not some new
state forms which is more favorable energetically and takes much less space. Here the Pauli
exclusion principle comes into play, which tells us that particles such as electrons (and gen-
erally known as fermions) cannot all occupy the same quantum state, but must rather move
into different configurations, such as different atom orbitals. This is what gives rise to the
periodic table of the elements along with their chemical properties, and effectively produces
larger and larger atoms and molecules, and in general, matter whose energy and volume
scales linearly with the number of particles. The effect makes its presence all the way up
to the size of stars, and explains for example why certain astronomical objects known as
white dwarfs do not collapse under their own extreme gravitation to form black holes.

The story of the problem of stability of matter, from the invention of quantum mechanics
to present times, is told as it should — in the rigorous language of mathematics — in the one
textbook on the subject, namely [LS10], to which we refer the reader for a more complete
account of its background and subsequent developments in various directions. The aim of
these lecture notes is to provide an as concise as possible, and at the same time rigorous and
self-contained, path to stability via a powerful functional inequality introduced by Lieb and
Thirring which elegantly combines the uncertainty and exclusion principles. However, we
will in contrast to [LS10] take a recently developed route to proving this inequality, which
actually lies closer in spirit to the original Dyson–Lenard approach. In particular, the way
we incorporate the exclusion principle will make transparent its role in the proof of stability
as an effective repulsion between particles, and furthermore clarifies that it also extends to
other particles than those obeying the usual Pauli principle, as long as they experience a
strong enough repulsive interaction. For completeness and in order to further complement
[LS10], these notes also contain some mathematical preliminaries and some background ma-
terial on classical and quantum mechanics aimed for mathematicians, including a general
discussion on identical particles and quantum statistics. In parallel with our general treat-
ment of exclusion principles we also discuss a wide variety of formulations of the uncertainty
principle, both global and local with respect to the configuration space, though we typically
focus on their conceptual content rather than the most precise formulation or the optimal
constants.

This version of the lecture notes, dated May 2018, still lacks some of the intended topics
and corrections, however they will hopefully anyway find use in a wider audience.

A brief note concerning the notation: In the many-body context we usually write x ∈ R
for scalars, x ∈ Rd for one-body vectors, and x ∈ Rn for general or many-body vectors,
such as x = (x1,x2, . . . ,xN ) ∈ (Rd)N = RdN . The letter C will generally denote a constant
whose exact value is unimportant and which may vary from one expression to another.
Remarks with * signify that some more background (in math or physics) is required.

Acknowledgments. I would like to thank Ari Laptev for originally introducing me to
Hardy and Lieb–Thirring inequalities during my PhD studies, and Jens Hoppe for bridging
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my gap to spectral theory at that time. Furthermore, I thank my collaborators on some of
the topics briefly touched upon in these notes: Michele Correggi, Romain Duboscq, Simon
Larson, Phan Thành Nam, Fabian Portmann, Viktor Qvarfordt, Nicolas Rougerie, Robert
Seiringer and Jan Philip Solovej. I have very much enjoyed discussing the contents of these
lecture notes with the participants of courses held at KTH in Stockholm in 2017 and at LMU
in Munich in 2019, who also greatly helped to improve the quality. Financial support from
the Swedish Research Council (grant no. 2013-4734) and the Göran Gustafsson Foundation
(grant no. 1804) is gratefully acknowledged.
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2. Some preliminaries and notation

We assume that the reader is familiar with basic notions in real analysis and has already
encountered for example Hilbert spaces, Lebesgue integrals, as well as Fourier transforms.
However, for convenience and for setting our notation we give here a very brief overview of
these and a few other important concepts. See [LL01, RS72, RS75, Tes14, Thi02] for more.

2.1. Hilbert spaces. We let V denote a vector space of arbitrary dimension over the
scalars F = R or C, and z 7→ z̄ complex conjugation.

Definition 2.1. A sesquilinear form on V is a map V × V → F, (u, v) 7→ 〈u, v〉 such
that for all α, β ∈ F, u, v, w ∈ V :

(i) 〈u, αv + βw〉 = α 〈u, v〉+ β 〈u,w〉 (linear in the second (1) argument),
(ii) 〈αu+ βv,w〉 = ᾱ 〈u,w〉+ β̄ 〈v, w〉 (conjugate linear in the first argument).

A hermitian form on V is a sesquilinear form 〈·, ·〉 satisfying, in addition:

(iii) 〈u, v〉 = 〈v, u〉 (symmetry).

An inner product or scalar product on V is a hermitian form 〈·, ·〉 satisfying, in addition:

(iv) 〈v, v〉 > 0 for v 6= 0 (positive definite).

A (sesqui-)quadratic form on V is a map q : V → F such that for α ∈ F, u, v ∈ V :

(i) q(αv) = ᾱαq(v) (scaling quadratically),
(ii) 〈u, v〉q := 1

4

(
q(u+ v)− q(u− v) + iq(u− iv)− iq(u+ iv)

)
is sesquilinear in u, v.

A norm on V is a map V → R+ := [0,∞), v 7→ ‖v‖, such that for all α ∈ F, u, v ∈ V :

(i) ‖αv‖ = |α| ‖v‖ (scaling linearly),
(ii) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (triangle inequality),
(iii) ‖v‖ = 0 if and only if v = 0 (positive definite).

The pair (V, ‖·‖) is called a normed linear space, the pair (V, q) a (sesqui-)quadratic
space, and the pair (V, 〈·, ·〉) an inner product space or a pre-Hilbert space.

Example 2.2. The space Cn of n-tuples z = (z1, . . . , zn) with the standard inner product

〈z,w〉 =
∑n

j=1 z̄jwj and norm ‖z‖ =
√
〈z, z〉 is a normed, quadratic and pre-Hilbert space.

Example 2.3. Any normed linear space (V, ‖·‖) satisfying the parallelogram identity

‖u+ v‖2 + ‖u− v‖2 = 2 ‖u‖2 + 2 ‖v‖2

is a quadratic space with q(v) := ‖v‖2, and an inner product space with

〈u, v〉 := 〈u, v〉q =
1

4

(
‖u+ v‖2 − ‖u− v‖2 + i ‖u− iv‖2 − i ‖u+ iv‖2

)
(this nontrivial implication is known as the Jordan–von Neumann theorem). Conversely,
any inner product space is also a normed space, as follows:

Proposition 2.4 (Cauchy–Schwarz inequality). Let V be an inner product space. Then
for every u, v ∈ V we have

|〈u, v〉| ≤ ‖u‖ ‖v‖ (2.1)

with equality iff u and v are parallel.

(1)Note that this convention varies in the literature; the one here is used in almost every physics text.
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Because of the Cauchy-Schwarz inequality, the square root of the induced quadratic form
‖u‖ :=

√
〈u, u〉 satisfies the triangle inequality, by means of

‖u+ v‖2 = ‖u‖2 + 2 Re 〈u, v〉+ ‖v‖2 ≤ (‖u‖+ ‖v‖)2,

and hence becomes a norm on V . The norm induces a metric d(u, v) := ‖u− v‖ and
therefore a topology on V , with the open sets generated by balls defined using the metric,

Br(x) := {u ∈ V : d(x, u) < r}.
Recall that a Cauchy sequence is a sequence (vn)∞n=1 ⊂ V such that

∀ε > 0 ∃N ∈ N : n,m > N ⇒ ‖vn − vm‖ < ε,

and a topological space is called complete if every Cauchy sequence converges. Also recall
that a topological space is called separable if it contains a countable dense subset.

Definition 2.5. A complete normed linear space is called a Banach space. A complete
inner product (i.e. pre-Hilbert) space is called a Hilbert space.

Lemma 2.6 (Riesz lemma; see e.g. [Tes14, Theorem 1.8]). Suppose ` : V → F is a bounded
linear functional on a Hilbert space V . Then there is a unique vector u ∈ V s.t. `(v) = 〈u, v〉
for all v ∈ V .

Exercise 2.1. Prove (2.1) and Proposition 2.4, for example by considering the expression
〈u− αv, u− αv〉 with α = 〈v, u〉/〈v, v〉.

Exercise 2.2. Let V be a vector space, s(u, v) a sesquilinear form on V , and q(v) = s(v, v)
the associated quadratic form. Prove that it satisfies the parallelogram identity

q(u+ v) + q(u− v) = 2q(u) + 2q(v)

and the polarization identity s(u, v) = 〈u, v〉q for all u, v ∈ V . Show that s(u, v) is
hermitian if and only if q is real-valued, i.e. q : V → R, and that if q is non-negative, i.e.
q : V → R+, then it also satisfies the Cauchy-Schwarz inequality |s(u, v)| ≤ q(u)1/2q(v)1/2.

Exercise 2.3. Let V be an inner product space and {uj}nj=1 an orthonormal set in V ,

i.e. 〈uj , uk〉 = δjk. Prove Bessel’s inequality

n∑
j=1

|〈uj , v〉|2 ≤ ‖v‖2 (2.2)

for all v ∈ V , with equality iff v ∈ Span{uj}nj=1.

2.2. Lebesgue spaces. The typical example of a Hilbert space encountered in quantum
mechanics is either the finite-dimensional space Cn, or the infinite-dimensional Lebesgue
space of square-integrable functions L2(Ω). Recall that for Ω ⊆ Rn (which could be replaced
by some measure space (X,µ) in general) and for a measurable function f : Ω→ F, we define
the Lp-norms as

‖f‖Lp(Ω;F) :=

(∫
Ω
|f(x)|p dx

)1/p

, 1 ≤ p <∞,

and

‖f‖L∞(Ω;F) := ess supx∈Ω |f(x)| := inf
{
K ∈ [0,∞] : |f(x)| ≤ K for a.e. x ∈ Ω

}
.
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Then the Lebesgue spaces are defined as

Lp(Ω;F) :=
{
f : Ω→ F : f is measurable and ‖f‖Lp(Ω;F) <∞

}
.

In the above (F, | · |) can be taken to be any finite-dimensional normed space (algebra),
however the typical case is F = C for which we simply write Lp(Ω) := Lp(Ω;C). If the
domain Ω (or space (X,µ)) is also understood from context we could write simply ‖f‖Lp :=
‖f‖Lp(Ω). We follow the standard convention that we identify two functions f = g iff

f(x) = g(x) for a.e. x ∈ Ω. It is a classical fact that Lp(Ω) forms a Banach space for any
p ∈ [1,∞] and that L2(Ω) is a separable Hilbert space with the standard inner product

〈f, g〉 :=

∫
Ω
f(x)g(x) dx.

Proposition 2.7 (Hölder’s inequality). Let 1 ≤ p, q, r ≤ ∞. For Lp = Lp(Ω;F) we then

have(2)

‖fg‖Lr ≤ ‖f‖Lp ‖g‖Lq for
1

r
=

1

p
+

1

q
, (2.3)

and for all f ∈ Lp, g ∈ Lq. In particular, with p = q = 2 and r = 1,

‖fg‖L1 ≤ ‖f‖L2 ‖g‖L2

is the Cauchy-Schwarz inequality in L2. Moreover, if p, q ∈ (1,∞) then equality holds
in (2.3) if and only if |f |p and |g|q are linearly dependent in L1.

There is a trick to remember the precise form of, or to check the validity of, inequalities or
identities of the type (2.3). Namely, first note how it depends upon rescaling f or g with a
positive number λ > 0, i.e. linearly on both sides of the inequality, since by the property of
the norms ‖λf‖Lp = λ ‖f‖Lp . Secondly, one should note how the expressions behave upon
rescaling the argument of the functions f and g by a number µ > 0, i.e. fµ(x) := f(x/µ),

‖fµ‖Lp =

(∫
Ω
|f(x/µ)|p dx

)1/p

= µn/p ‖f‖Lp ,

if Ω = µΩ = Rn. Also in the case that Ω ( Rn one may note that if f is dimensionless then
the norm ‖fµ‖Lp has the dimension of a volume in Rn to the power 1/p, i.e. n/p. We then

find that the l.h.s. of (2.3) scales as µn/r, but also the r.h.s. scales as µn/pµn/q = µn/r. These
two scaling principles must always be obeyed and can be used to check similar expressions.

An application of the Hölder inequality (2.3) proves the triangle inequality on Lp:

Proposition 2.8 (Minkowski’s inequality). Let 1 ≤ p ≤ ∞. Then

‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp ,
for all f, g ∈ Lp.

In the case that Ω is noncompact it is useful to define, given any function space F (Ω;F)
(such as F = Lp), the local function space

Floc(Ω;F) :=
{
f : Ω→ F : ϕf ∈ F (Ω;F) for any ϕ ∈ C∞c (Ω;F)

}
,

where C∞c (Ω;F) denotes the space of smooth functions with compact support on Ω◦.

(2)We use the convention 1/∞ = 0.
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Exercise 2.4. Prove Hölder’s inequality, for example by

1. first reducing (2.3) to the case ‖fg‖1 ≤ ‖f‖p‖g‖q, 1 = 1/p+ 1/q, i.e. r = 1,
2. proving Young’s inequality

ab ≤ ap

p
+
bq

q
(2.4)

for such p, q and a, b ≥ 0, with equality iff ap = bq,
3. using this to prove Hölder’s inequality with r = 1 by first normalizing f and g.

Exercise 2.5. Prove Minkowski’s inequality, f.ex. by writing |f + g|p = |f + g||f + g|p−1

and then using the triangle and Hölder inequalities.

2.2.1. Convergence properties. One has the following extremely useful convergence proper-
ties of the Lebesgue integral:

Theorem 2.9. Let (X,µ) be a measure space with positive measure µ, and let (fn)∞n=1 be
a sequence of measurable functions in L1(X, dµ) that converges pointwise a.e. on X to a
function f (it may then be redefined on a set of measure zero so that it too is measurable).

(i) Lebesgue monotone convergence theorem.
Suppose that 0 ≤ fn(x) ≤ fn+1(x) for a.e. x ∈ X. Then limn→∞

∫
X fn dµ =

∫
X f dµ

(which could be finite or infinite).
(ii) Lebesgue dominated convergence theorem.

Suppose that there exists F ∈ L1(X, dµ) such that |fn(x)| ≤ |F (x)| for a.e. x ∈ X.
Then f ∈ L1(X, dµ) and limn→∞

∫
X |fn − f | dµ = 0.

(iii) Fubini’s theorem.
Suppose that X = X1×X2, where (Xj , µj), j = 1, 2 are two σ-finite measure spaces,
and that f is a measurable function on X. If f ≥ 0 then the following three integrals
are equal: ∫

X1×X2

f(x, y) (µ1 × µ2)(dx dy),

∫
X1

(∫
X2

f(x, y)µ2(dy)

)
µ1(dx),

∫
X2

(∫
X1

f(x, y)µ1(dx)

)
µ2(dy).

If f : X → C then the above holds if one assumes in addition that∫
X1×X2

|f(x, y)| (µ1 × µ2)(dx dy) <∞.

2.2.2. The layer-cake representation. Let (X,µ) be a measure space and f : X → C mea-
surable. Define the function λf : R+ → [0,∞],

λf (t) := µ({x ∈ X : |f(x)| > t}),

and its formal differential (the sign because λf is decreasing)

dλf (t) := −µ({x ∈ X : |f(x)| = t}).
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These allow to express the properties of f in terms of layers of its graph or its level sets,
namely, using that

|f(x)|p =

∫ ∞
t=0

1{|f(x)|>t} d(tp),

with d(tp) = ptp−1dt, one has the layer-cake representation

‖f‖pp =

∫ ∞
t=0

λf (t) d(tp) =

∫ 0

t=∞
tp dλf (t), (2.5)

where the second identity is a formal partial integration. Also,

‖f‖∞ = inf{t ≥ 0 : λf (t) = 0}.

An immediate application of (2.5) is Chebyshev’s inequality

‖f‖pp ≥ t
pλf (t), ∀t ≥ 0. (2.6)

2.3. Fourier transform. Given a measurable function f : Rn → C, we formally define its
Fourier transform f̂ by

f̂(ξ) := (Ff)(ξ) := (2π)−n/2
∫
Rn
f(x)e−iξ·xdx.

It can be shown that F is a bijective (and obviously linear) map from L2(Rn) into itself,
with its inverse given by

f(x) = (F−1f̂)(x) := (2π)−n/2
∫
Rn
f̂(ξ)eiξ·xdξ.

Moreover, Plancherel’s identity

‖Ff‖L2(Rn) = ‖f‖L2(Rn) , f ∈ L2(Rn),

shows that F is a unitary map on L2(Rn), i.e. its adjoint satisfies F∗ = F−1.
We also have the important relations between differentiation and multiplication(

∂f

∂xj

)∧
(ξ) = iξj f̂(ξ), (xjf)∧ (ξ) = i

∂f̂

∂ξj
(ξ), j = 1, . . . , n. (2.7)

2.4. Sobolev spaces. For any s ≥ 0, we define the Sobolev space to be the space of
square-integrable functions having square-integrable derivatives to order s, using the Fourier
transform on Rn and (2.7) as

Hs(Rn) :=
{
f ∈ L2(Rn) : |ξ|sf̂(ξ) ∈ L2(Rn)

}
. (2.8)

The most common case is that s = k is a non-negative integer, Hk(Rn), while otherwise
the space is called a fractional Sobolev space. We note that Hs(Rn) is a Hilbert space with
the inner product

〈f, g〉Hs(Rn) :=

∫
Rn
f̂(ξ)ĝ(ξ)(1 + |ξ|2)sdξ. (2.9)
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In particular, given a subset Ω ⊆ Rn, one may consider the subspace C∞c (Ω) ⊆ Hs(Rn)
of smooth and compactly supported functions on Ω and take its closure in Hs(Rn) (with
respect to the norm induced from the above inner product). We denote this space

Hs
0(Ω) :=

{
f ∈ Hs(Rn) : ∃(fn) ⊂ C∞c (Ω), ‖fn − f‖Hs(Rn) → 0

}
, (2.10)

and it has the interpretation as the space of functions which vanish ‘sufficiently fast’ at the
boundary ∂Ω (and are identically zero on Ωc). One has Hs

0(Rn) = Hs(Rn).
It is important to know that it is possible to define Sobolev spaces locally, i.e. on domains

Ω ⊆ Rn, without the use of the Fourier transform, however we will not discuss this properly
here since it is most naturally done using the theory of distributions which goes beyond

the course prerequisites. We only mention that, given u ∈ L1
loc(Ω) ⊇ Lp≥1

loc (Ω) it is always
possible to define its gradient ∇u as a generalized function, and in the case that this turns
out to be a locally integrable function, i.e. ∇u ∈ L1

loc(Ω;Cn), we say that u is weakly
differentiable (it has weak partial derivatives ∂ju ∈ L1

loc(Ω), j = 1, . . . , n). It may even
turn out that ∇u ∈ Lq(Ω;Cn) for some q ≥ 1, and we define the Sobolev spaces

H1(Ω) :=
{
u ∈ L2(Ω) : u is weakly differentiable and ∇u ∈ L2(Ω;Cn)

}
and, by iteration of this procedure to higher orders of derivatives, for k ∈ N

Hk(Ω) :=
{
u ∈ L2(Ω) : u has weak partial derivatives all the way up to order k, and

all of which are in L2(Ω)
}
.

The inner product in this space is given by

〈f, g〉Hk(Ω) =

∫
Ω

(
f(x)g(x) +

∑
α

∂αf(x)∂αg(x)

)
dx,

where the sum runs over all partial derivatives (α a multi-index) up to order k.
In the case Ω = Rn these spaces turn out to coincide with the above definitions (2.8) and

(2.10). When Ω ( Rn they contain but may (or may not) differ from Hk
0 (Ω), depending on

the geometry of Ω (we will return to this question in Section 4.2), and will be associated to
Neumann respectively Dirichlet boundary conditions for the Laplace operator.

Exercise 2.6. Show that the norm in Hk(Rn) is equivalent to that defined by replacing the
weight factor w(ξ) = (1 + |ξ|2)k in (2.9) by w1(ξ) = 1 + |ξ|2k or w2(ξ) = 1 +

∑n
j=1 |ξj |2k.

2.5. Forms and operators. An operator on a Hilbert spaceH is a linear map A : D(A)→
H, with the subspace D(A) ⊆ H the domain of A. Let ‖A‖ := supu∈D(A):‖u‖=1 ‖Au‖, then

A is called bounded if ‖A‖ <∞ and unbounded otherwise, and closed if its graph

Γ(A) := {(u, v) ∈ D(A)×H : v = Au}

is a closed subspace of H×H. We will always work with densely defined operators, i.e. with
D(A) dense in H, and shall denote by L(H) the space of such operators on H. We have a
subspace B(H) ⊆ L(H) of bounded operators A, for which one may assume D(A) = H.

An operator A ∈ L(H) is hermitian (or symmetric) if its corresponding sesquilinear
form

D(A)×D(A)→ C, (u, v) 7→ 〈u,Av〉 (2.11)
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satisfies 〈u,Av〉 = 〈Au, v〉 for all u, v ∈ D(A) (compare Definition 2.1.(iii)). Hermitian

operators are always closable, i.e. there is an extension Â : D(Â)→ H, withD(Â) ⊇ D(A)

and Â|D(A) = A, which is closed. Every closable operator A has a smallest closed extension,

its closure Ā, and every hermitian operator has a largest (on H) closed extension, namely
its adjoint A∗, which is in general defined with the domain

D(A∗) :=

{
u ∈ H : sup

v∈D(A):‖v‖=1
|〈u,Av〉| <∞

}
and (via the Riesz lemma) the formula 〈u,Av〉 = 〈A∗u, v〉 for all u ∈ D(A∗), v ∈ D(A). The
operator A is called self-adjoint if A∗ = A, i.e. if D(A∗) = D(A) and it is hermitian, and
essentially self-adjoint if it is hermitian and has a unique self-adjoint extension Ā = A∗.
Any bounded hermitian operator is self-adjoint.

Example 2.10. The Laplace operator L : u 7→ −u′′ on the interval [0, 1] is unbounded and
not defined as an operator on the full Hilbert space L2([0, 1]), but its restriction L|C∞c ([0,1]) to
the smooth functions with compact support (usually referred to as the minimal domain)

is perfectly well-defined and hermitian. Its closure L|C∞c ([0,1]) = L|H2
0 ([0,1]) is not self-adjoint,

L|∗
H2

0 ([0,1])
= L|H2([0,1]), however it has several self-adjoint extensions, such as the Dirichlet

Laplacian −∆D := L|D(−∆D), with

D(−∆D) := {u ∈ H1
0 ([0, 1]) : u′ ∈ H1([0, 1])} = H1

0 ([0, 1]) ∩H2([0, 1]),

and the Neumann Laplacian −∆N := L|D(−∆N), with

D(−∆N) := {u ∈ H1([0, 1]) : u′ ∈ H1
0 ([0, 1])} ( H2([0, 1]).

In contrast, when considering L on the full real line, L|C∞c (R) is essentially self-adjoint in

L2(R), with L|C∞c (R) = L|H2(R). This follows from the properties of Sobolev spaces, namely

H2
0 (R2) = H2(R2).

The form (2.11) of an operator A usually extends to a larger dense subspace Q(A) ⊆ H
called a form domain of A. We extend the notion of quadratic form to the unbounded
case, just as in Definition 2.1 but with V replaced by a dense subspace D(q) ⊆ H, q : D(q)→
C. In particular, it is hermitian if q : D(q) → R, non-negative if q : D(q) → R+, and
strictly positive if q(u) > 0 for all u ∈ D(q) \ {0}. We can also compare two hermitian
quadratic forms q and q′ if their domains intersect, and say that q ≥ q′ iff D(q) ⊆ D(q′) and
q(u) ≥ q′(u) for all u ∈ D(q). Thus the form q is semi-bounded from below if q ≥ c for

some constant c ∈ R, i.e. q(u) ≥ c ‖u‖2 for all u ∈ D(q). Note that if c < 0 such a form can
always be converted to a non-negative one by adding to it the constant −c. Furthermore, for
semi-bounded forms we usually distinguish the domain by writing q(u) = +∞ iff u /∈ D(q).

A non-negative (or semi-bounded with the above trick) quadratic form is said to be

closed iff D(q) is complete in the form norm ‖u‖2q+1 := q(u) + ‖u‖2. The following then

gives a very useful correspondence between forms and operators (cf. Exercise 2.8):

Theorem 2.11 (see e.g. [Tes14, Theorem 2.14]). If the quadratic form q : D(q) → R is
semi-bounded and closed, then it is the form q|D(A) = qA, with qA(u) := 〈u,Au〉, of a unique
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self-adjoint, semi-bounded operator A. Furthermore, A is given by

D(A) =
{
u ∈ D(q) : ∃uq ∈ H s.t. 〈v, u〉q = 〈v, uq〉 ∀v ∈ D(q)

}
, Au = uq.

The form domain of A is therefore Q(A) := D(q), to which qA extends as the closed
form q. It also follows that for semi-bounded hermitian operators there is always a unique
self-adjoint extension associated to the form (2.11), called the Friedrichs extension.

Theorem 2.12 (Friedrichs extension; see e.g. [RS75, Theorem X.23] or [Tes14, §2.3]). For
any semi-bounded from below hermitian operator A, the quadratic form qA(u) := 〈u,Au〉
with D(qA) = D(A) is closable and its closure qA = qÂF

is the quadratic form of a unique

semi-bounded self-adjoint operator ÂF. Furthermore, ÂF is the only self-adjoint extension
Â of A s.t. D(Â) ⊆ D(qA) =: Q(ÂF ) and the largest (ÂF ≥ Â, i.e. D(ÂF ) ⊆ D(Â)) among
all semi-bounded self-adjoint extensions of A.

Note that we compare semi-bounded hermitian operators in terms of their quadratic
forms: A ≥ B iff D(A) ⊆ D(B) and qA ≥ qB on D(A).

Example 2.13. Associated to the Laplace operator L on [0, 1] in Example 2.10 is the

non-negative quadratic form qL(u) =
∫ 1

0 |u
′|2 dx. The Dirichlet Laplacian −∆D is the

Friedrichs extension of L|C∞c ([0,1]) and thus also the operator associated to the closure of

qL|C∞c ([0,1]), with the resulting form domain Q(−∆D) = H1
0 ([0, 1]), while the Neumann

Laplacian −∆N is the operator associated to the closure of qL|C∞([0,1]), with resulting form

domain Q(−∆N) = H1([0, 1]). We have −∆D ≥ −∆N since C∞c ⊆ C∞.

Although necessary for some parts of the course, we will for simplicity try to avoid
operator theory as much as possible and will typically be working with forms and form
domains instead of operators and operator domains. So for example if u ∈ H1(Ω) and we
write

〈u, (−∆)u〉L2(Ω)

then since −∆ = ∇∗∇, here with Q(−∆) = D(∇) = H1(Ω) understood, we actually mean

〈∇u,∇u〉L2(Ω) =

∫
Ω
|∇u|2 <∞.

Exercise 2.7. Verify the statements in Example 2.10 (as completely as you can with the
preliminaries at hand; you may e.g. use that any u ∈ H1([0, 1]) is a continuous function on
(0, 1); see e.g. [Tes14, §2.7]).

Exercise 2.8. Suppose q : H → C is a bounded quadratic form, i.e. |q(u)| ≤ C ‖u‖2. Show
that there is a unique bounded operator A s.t. 〈u, v〉q = 〈u,Av〉, and moreover that the norm
of A is given by

‖A‖ = sup
‖u‖=‖v‖=1

| 〈u,Av〉 | ≤ 2C.

(The factor 2 may be removed in the hermitian case.)
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2.5.1. The spectral theorem. The spectrum σ(A) of an operator A ∈ L(H) is the set of
points λ ∈ C for which there does not exist a bounded inverse to the operator A−λ = A−λ1.
For λ /∈ σ(A) we call such (A − λ)−1 the resolvent of A at λ. A point λ ∈ σ(A) is an
eigenvalue of A if there is a corresponding nontrivial eigenspace ker(A − λ) 6= 0 of
eigenvectors u ∈ ker(A − λ) \ {0}. An operator A is self-adjoint if and only if it is
hermitian and σ(A) ⊆ R.

To fully describe a self-adjoint operator in terms of its spectrum, one needs to have also
a notion of spectral measure. A projection-valued measure P is a function Ω 7→ PΩ on
the Borel(3) sets Ω ⊆ R such that each PΩ is a projection on a Hilbert space H, P∅ = 0,
PR = 1, PΩ1PΩ2 = PΩ1∩Ω2 , and if Ω = ∪∞n=1Ωn, with Ωn and Ωm disjoint for n 6= m,

then PΩ = s-limN→∞
∑N

n=1 PΩn . Given any u, v ∈ H, we then have a complex measure
Ω 7→ 〈u, PΩv〉 on the real line.

Theorem 2.14 (Spectral theorem; see e.g. [RS72, Theorem VIII.6] or [Tes14, §3.1]).
There is a one-to-one correspondence between projection-valued measures PA and self-
adjoint operators A =

∫∞
−∞ λ dP

A(λ), with

D(A) :=

{
u ∈ H :

∫ ∞
−∞
|λ|2 d(

〈
u, PAu

〉
)(λ) <∞

}
and

〈u,Av〉 =

∫ ∞
−∞

λ
〈
u, dPA(λ)v

〉
:=

∫ ∞
−∞

λ d(
〈
u, PAv

〉
)(λ).

Furthermore,

Q(A) =

{
u ∈ H :

∫ ∞
−∞
|λ| d(

〈
u, PAu

〉
)(λ) <∞

}
= D(

√
|A|)

and if f : R→ R is a Borel function then we can define the operator

f(A) =

∫ ∞
−∞

λ dP f(A)(λ) :=

∫ ∞
−∞

f(λ) dPA(λ).

One may decompose the spectrum of a self-adjoint operator A into either

σ(A) = σdisc(A) t σess(A) or σ(A) = σpp(A) ∪ σac(A) ∪ σsc(A)

(the latter sets may overlap), where the discrete spectrum

σdisc(A) := {λ ∈ σ(A) : dimPA(λ−ε,λ+ε)H <∞ for some ε > 0}

is the set of isolated eigenvalues of finite multiplicity and the rest is the essential spectrum

σess(A) := {λ ∈ σ(A) : dimPA(λ−ε,λ+ε)H =∞ for every ε > 0}

(usually referred to as the continuous part of the spectrum), while the pure point spec-
trum σpp is the set of all eigenvalues of A, and σac resp. σsc are the supports for the
absolutely resp. singular continuous parts of the spectral measure of A.

(3)The σ-algebra of Borel sets on a topological space is the smallest σ-algebra containing all open sets.
A real-valued function f is a Borel function if f−1((a, b)) is a Borel set for any interval (a, b).
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Example 2.15. An operator A with eigenvalues (λj)
∞
j=0 ⊂ R and a corresponding or-

thonormal basis of eigenfunctions (uj)
∞
j=0 ⊂ H can be written A =

∫∞
−∞ λ dP

A(λ) with

projection-valued measure PA =
∑∞

j=0 δλjuj〈uj , ·〉. Note that if λ1 = λ2 = . . . = λN is a

repeated eigenvalue then
∑N

j=1 δλjuj〈uj , ·〉 = δλ1PW , where PW is the orthogonal projection

on the eigenspace W = Span{uj}Nj=1.

Example 2.16. A multiplication operator on L2(R) by f : R → R, (Afu)(x) :=
f(x)u(x) has formally

Af =

∫ ∞
−∞

f(λ) δλ〈δλ, ·〉 dλ, i.e. 〈u,Afv〉 =

∫ ∞
−∞

f(λ)u(λ)v(λ) dλ,

and σ(Af ) = f(R). Sometimes we shall identify the operator Af with f , or, in accordance

with common conventions, denote it f̂ (not the Fourier transform here).

The lowest eigenvalues λ1(A) ≤ λ2(A) ≤ . . . < inf σess(A) (also ordered according to

their multiplicity) of a semi-bounded from below self-adjoint(4) operator A can be obtained
using the so-called min-max principle:

λk(A) = inf
Wk

sup
u∈Wk\{0}

〈u,Au〉
‖u‖2

, (2.12)

where the Wk ⊆ H are linear subspaces of D(A) such that dimWk = k. If A ≥ B then
λk(A) ≥ λk(B) for each k, and inf σess(A) ≥ inf σess(B). The domain D(A) can in the above
be replaced by the form domain Q(A), or even a dense subspace w.r.t. the form norm, such
as typically C∞c or C∞.

Furthermore, if one continues to evaluate (2.12) for k = 1, 2, . . . and eventually only
repeated values λn = λn+1 = λn+2 = . . . are obtained, then one has reached the bottom of
the essential spectrum, λn = inf σess(A).

Example 2.17. Computing (2.12) with A = L from Examples 2.10 and 2.13, i.e. 〈u, Lu〉 =

qL(u) =
∫ 1

0 |u
′|2 on the form domain H1

0 ([0, 1]) or C∞c ([0, 1]) gives the eigenvalues λ of the
Dirichlet Laplacian,

−u′′(x) = λu(x), u(0) = u(1) = 0,

i.e. un(x) ∝ sin(πnx), λn = π2n2, n = 1, 2, 3, . . .. On the other hand, taking the form
domain H1([0, 1]) or C∞([0, 1]) gives those of the Neumann Laplacian,

−u′′(x) = λu(x), u′(0) = u′(1) = 0,

i.e. un(x) ∝ cos(πnx), λn = π2n2, n = 0, 1, 2, . . ..

Exercise 2.9. Given −∆Rd on L2(Rd) with domain H2(Rd), find its spectral decomposition
using the Fourier transform and its powers (−∆Rd)

s for s > 0 using the spectral theorem.

(4)Or just hermitian, for which the spectrum analyzed is that of its Friedrichs extension.
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2.5.2. Stone’s theorem. Crucially for quantum mechanics, Stone’s theorem tells us that
self-adjoint operators are the generators of groups of unitary transformations.

Theorem 2.18 (Stone’s theorem; see e.g. [RS72, Theorem VIII.7-8] or [Tes14, §5.1]). Let
A ∈ L(H) be a self-adjoint operator and define U(t) = eitA (using the spectral theorem).
Then U(t) is a strongly continuous one-parameter unitary group, i.e.

(i) U(t) is unitary for all t ∈ R,
(ii) U(t+ s) = U(t)U(s) for all s, t ∈ R, and
(iii) if ψ ∈ H and t→ t0 then (U(t)− U(t0))ψ → 0.

Furthermore,

(iv) if limt→0(U(t)− 1)ψ/t exists, then ψ ∈ D(A), and
(v) for such ψ, (U(t)− 1)ψ/t→ iAψ as t→ 0.

Conversely, if U(t) is a strongly continuous one-parameter unitary group acting on H,
then there is a self-adjoint operator A ∈ L(H) s.t. U(t) = eitA.

In fact, strong continuity may be replaced by just weak continuity, since weak conver-
gence implies strong convergence in this case; cf. [Tes14, Theorem 5.3] and [RS72, Theo-
rem VIII.9].
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3. A very brief mathematical formulation of classical and quantum
mechanics

We do not assume familiarity with classical and quantum physics in this course, and
therefore give a very brief account of the essentials here. However, a deeper understanding
of these concepts is of course helpful in the broader perspective and we refer to [Thi03, Thi02]
and [Thi07, Part IV] for introductory material suitable for mathematicians. In Section 3.2
we discuss the question of stability of matter in classical mechanics, and in Section 3.6.1 we
define what is meant with stability in quantum mechanics. Anyone who is already familiar
with many-body quantum mechanics may safely skip the chapter except possibly for these
parts.

3.1. Some classical mechanics. Although it is important to know that there are several
different equivalent formulations of classical mechanics, with their own advantages and dis-
advantages, we here choose to take the shortest mathematical path to quantum mechanics,
via Poisson algebras and Hamiltonian mechanics.

3.1.1. Phase space and Poisson brackets.

Definition 3.1 (Poisson algebra). A Poisson algebra A is a vector space over F (R or
C) equipped with an F-bilinear and associative product

A×A → A, (f, g) 7→ fg,

and an additional product (typically non-associative, called a Poisson bracket)

A×A → A, (f, g) 7→ {f, g},
satisfying, for all α, β ∈ F, and f, g, h ∈ A:

(i) linearity: {f, αg + βh} = α{f, g}+ β{f, h},
(ii) antisymmetry: {f, g} = −{g, f},
(iii) Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0,
(iv) Leibniz rule: {f, gh} = {f, g}h+ g{f, h}.

Remark 3.2. A may also be equipped with a unit 1 ∈ A s.t. f = 1f = f1. Note that
(i)+(ii) implies bilinearity, (i)+(ii)+(iii) means that the product {·, ·} is a Lie bracket and
(A, {·, ·}) a Lie algebra, and (iv) that it acts as a derivation of the associative product.

The archetypical example of a Poisson algebra is the algebra A = C∞(Pn) of smooth
functions on the classical 2n-dimensional phase space

Pn := R2n 3 (x,p) = (x1, . . . , xn, p1, . . . , pn), (3.1)

endowed with the Poisson bracket

{f, g} :=

n∑
j=1

(
∂f

∂xj

∂g

∂pj
− ∂g

∂xj

∂f

∂pj

)
. (3.2)

The first half of the phase space,

Cn := Rn 3 x = (x1, . . . , xn),

is called the classical configuration space and is parameterized by the coordinates or
position variables xj , while the second half, parameterized by momentum variables pj ,
is considered dual or conjugate to Cn via the Poisson brackets. Namely, note that by (3.2),
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the coordinates and momenta satisfy the following simple relations called the canonical
Poisson brackets:

{xj , xk} = 0, {pj , pk} = 0, {xj , pk} = δjk1, ∀j, k, (3.3)

where the constant function 1 on Pn is the unit in A. Hence the xj ’s and pk’s Poisson-
commute individually, while pj is Poisson-conjugate to xj and vice versa (though note that
there is a certain choice of orientation in the bracket, so the coordinates xj ’s should come
first).

In the case that we allow for complex-valued functions on phase space, we note that A
is also (non-trivially) endowed with the structure of a ∗-algebra in the sense that there is

an operation f 7→ f∗, here given by complex-conjugation f∗(x, p) := f(x,p), satisfying:

(i) (αf + βg)∗ = ᾱf∗ + β̄g∗ (conjugate linear)
(ii) (f∗)∗ = f (involution),
(iii) (fg)∗ = g∗f∗ (antiautomorphism).

Remark* 3.3. The proper mathematical setting for classical mechanics in general is to model
the Poisson algebra A = C∞(Pn) on a geometric object called a symplectic manifold
(Pn, ω), where ω is a symplectic form. Then the Poisson bracket is {f, g} := χf (g), where
the vector field χf ∈ T (Pn) is defined via the relation ω(χf , ·) = −df . Typically, Pn is
defined as the cotangent bundle of a configuration space manifold Cn =M, dimM = n, i.e.
Pn := T ∗(M), with its canonical symplectic structure ω := dθ, θ[X](p) := p(πX), given
locally by θ =

∑n
j=1 pjdxj and (3.2). See e.g. [Thi07, Nak03].

Exercise 3.1. Check that (3.2) defines a Poisson bracket and makes A = C∞(Pn) a Poisson
algebra. Discuss whether (3.3) also defines this Poisson algebra completely.

3.1.2. Hamiltonian mechanics. Classical mechanics is about time evolution on the configu-
ration space Cn, i.e. one considers maps

R ⊇ I → Cn, t 7→ x(t) = (x1(t), . . . , xn(t)).

The evolution is typically of second order in time but can instead be formulated in a more
advantageous first-order form on the phase space Pn if one takes as the momenta pj := ẋj
(or similar), with the dot denoting the derivative with respect to time t, ḟ := df/dt.

The desired evolution equation is then determined by a choice of a function H on the
phase space called the Hamiltonian, i.e. an elementH ∈ A which depends on the particular
physical system under consideration. The value of this function H(x, p) can usually be
interpreted as the energy of the system at the corresponding point (x,p) in the phase space.
The time evolution for general f ∈ A is then defined to be governed by the equation

ḟ = {f,H}, (3.4)

reducing in particular, by (3.2), for the case of the coordinates and momenta to Hamilton’s
equations of motion:

ẋj =
∂H

∂pj
, ṗj = −∂H

∂xj
. (3.5)
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Note conversely that these equations and the definition (3.2) imply (3.4),

ḟ =
d

dt
f(x,p) =

n∑
j=1

(
∂f

∂xj

dxj
dt

+
∂f

∂pj

dpj
dt

)
=

n∑
j=1

(
∂f

∂xj

∂H

∂pj
− ∂f

∂pj

∂H

∂xj

)
= {f,H}.

Example 3.4 (Free particle). A particle that is free to move in three-dimensional space
has the configuration space C3 = R3 of positions x = (x1, x2, x3) and the phase space
P3 = R6 3 (x,p), where p = (p1, p2, p3) is the canonical momentum of the particle. These
variables satisfy the canonical Poisson brackets (3.3). We take the Hamiltonian to be the
(non-relativistic; see also the below remark for an explanation) free kinetic energy

H(x,p) = T (p), T (p) :=
p2

2m
, (3.6)

with m > 0 known as the mass of the particle which is considered as a fixed (non-dynamical)
parameter. Indeed, Hamilton’s equations of motion (3.5) are then

ẋ = p/m, ṗ = 0,

i.e. ẍ = 0, giving straight trajectories x(t) = a + tb in C3. Also, we obtain the relationship
p = mv between the momentum and the velocity v := ẋ of the particle, and therefore the
well-known formula for its kinetic energy

T (p) =
1

2
mv2.

Remark* 3.5. The special theory of relativity tells us that (mc2)2 = E2 − p2c2, where mc2

is the rest energy, or m the rest mass, of a free particle. Therefore, for small p/(mc),

E =
√
m2c4 + c2p2 = mc2

√
1 +

p2

m2c2
= mc2 +

p2

2m
+O(p4), (3.7)

which after subtracting the constant mc2 yields the non-relativistic (first-order) approxima-
tion (3.6) to the kinetic energy. However, one may also study the full relativistic expression

Trel,m(p) := mc2
√

1 + p2/(mc)2 −mc2 or the simpler massless case Trel,0(p) := c|p|.

Example 3.6 (Particle in an external potential). Mechanics would be rather boring if there
were only free particles moving in straight lines, but what we may do is to add a scalar
potential to the Hamiltonian (3.6),

H(x,p) = T (p) + V (x),

where V : R3 → R is a function of the coordinates only. Hamilton’s equations are then
modified to

ẋ = p/m, ṗ = −∇V,

where F := −∇V is the force acting on the particle, with its sign chosen to act to minimize
the potential energy. Hence, mẍ = F, which is Newton’s equation of motion.

Remark* 3.7. In fact, the potential may be understood to have a geometric origin and
is again most naturally formulated in the framework of relativity. Namely, one couples
the spacetime momentum p = (E/c,p) of the particle to the gauge potential A(x) =
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(A0(t,x),A(t,x)) of the electromagnetic field F = dA using the replacement p 7→ p − qA,
where q is the charge of the particle. Then (mc)2 = (p− qA)2 = (E/c− qA0)2 − (p− qA)2

implies the electromagnetically coupled version of (3.7):

E = mc2 +
(p− qA)2

2m
+ V +O((p− qA)4),

with scalar potential V = qcA0. See [Nak03] for more on the geometry of electrodynamics.

Example 3.8 (Harmonic oscillator). The standard example of an external potential, due to
its simplicity and also its widespread appearance in real physical systems, is the harmonic
oscillator potential,

Vosc(x) :=
1

2
mω2|x|2,

where ω ≥ 0 is a parameter known as the angular frequency of the oscillator. The mass
m appears here scaled out of ω in order to make the dynamics independent of m, namely,
Newton’s equations become simply ẍ = −ω2x, with well-known 2πω-periodic solutions.

What one usually does in preparation for the quantum version of the harmonic oscillator
is to introduce the complex phase-space variables

aj :=

√
mω

2

(
xj +

i

mω
pj

)
, a∗j =

√
mω

2

(
xj −

i

mω
pj

)
.

One may then observe that these satisfy the Poisson algebra

{aj , ak} = 0, {a∗j , a∗k} = 0, {aj , a∗k} = −iδjk1, (3.8)

and, if N :=
∑

j a
∗
jaj =

∑
j |aj |2,

N = N ∗ = H/ω, {N , aj} = iaj , {N , a∗j} = −ia∗j . (3.9)

Also, xj = (2mω)−1/2(a∗j + aj) and pj = i(mω/2)1/2(a∗j − aj).

Note that by construction of the dynamical equations (3.4) and the antisymmetry of the
Poisson bracket, we have that the Hamiltonian is a conserved quantity under the motion,

d

dt
H(x,p) = Ḣ = {H,H} = 0. (3.10)

In fact, any function f on Pn is by (3.4) conserved in time iff it Poisson-commutes with H
(the general important relationship between symmetries of the Hamiltonian and conserved
quantities admits a more thorough formulation and is known as Noether’s theorem).

Remark* 3.9. There are subtleties even in classical mechanics when one considers systems
with singular behavior which need to be treated using constraints. Typical examples are
field theories such as electromagnetism, where passing from a Lagrangian to a Hamiltonian
formulation involves redundant degrees of freedom and results in non-invertible transfor-
mations. However, Dirac has invented a procedure to treat such constrained Hamiltonian
systems and to perform reductions in the Poisson algebra. See [Dir67], [Thi07, Chapter 24],
and e.g. [dWHL11] for a recent example in membrane theory. Also fully general-relativistic
systems — where there is no canonical time coordinate — may be considered, though in an
even more general framework for mechanics, as outlined e.g. in [Rov04, Thi07].

Exercise 3.2. Verify the brackets (3.8) and (3.9).
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3.2. The instability of classical matter. Let us briefly discuss why ordinary matter
formulated in terms of the above-outlined rules for mechanics turns out to be unstable. We
do not need to construct a very complicated model of matter in order to see the instability.
In fact it arises already upon considering the simplest model of an atom consisting of a
single electron moving in three-dimensional space around a fixed nucleus, which we for
simplicity place at the origin of the electron’s coordinate system C3 = R3. To justify
this assumption, either consider the nucleus to be much heavier than the electron (which
indeed it is by experiment) so that it experiences only very slow acceleration (according to
Newton’s equation) and thus can be safely considered fixed during a short time frame, or
better consider the problem in relative coordinates as will be described in Section 3.5.

The electron and the nucleus have opposite electric charge and therefore experience an
attractive electric force given by the Coulomb potential,

VC(x) :=
q1q2

|x|
, (3.11)

where q1 and q2 are the particles’ respective charges, resulting in the Coulomb force

FC(x) = −∇VC(x) = q1q2
x

|x|3
.

In accordance with commonly used conventions and for future simplicity, we will normalize
the electron charge to q1 = −1 and call the charge of the nucleus q2 = Z > 0. For a
neutral one-electron atom the nucleus consists of a single proton with charge +1 and we
thus have Z = 1 (this charge Z is known in chemistry as the atomic number, with
Z = 1 representing the hydrogen atom), however we will for generality keep Z > 0 free
as a mathematical parameter. We therefore take as our model for the dynamics of the
electron in this hydrogenic atom the model considered in Example 3.6, with the external
potential(5)

VC(x) = − Z

|x|
.

Hence the Hamiltonian defined on the electron’s phase space P3 = R3 × R3 3 (x,p) is

H(x,p) = T (p) + VC(x) =
p2

2m
− Z

|x|
. (3.12)

We already observe an obvious problem here: that H is unbounded from below, namely
fixing p while taking x→ 0 results in H(x,p)→ −∞. However, one may object that this
limit is quite artificial and perhaps cannot be realized in practice, in particular because the
energy must be conserved throughout the dynamics as we already observed in (3.10). Let
us therefore instead consider a possible trajectory: say for simplicity that the electron starts
from rest at the point (1, 0, 0) ∈ R3, i.e. x(0) = (1, 0, 0) and p(0) = 0. Then the non-trivial
equation of motion to be solved is

mẍ1 = −Zx1/|x1|3, x1(0) = 1, ẋ1(0) = 0, (3.13)

whose solution (see Exercise 3.3) can be seen to satisfy x1(t)→ 0 in finite time. Therefore
the electron described in the framework of classical mechanics admits dynamics whereby it
collapses into the nucleus.

(5)Though VC /∈ A, we may consider it as a limit of smooth functions (see remark) or extend our A a bit.
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Remark* 3.10. With a little more physics background, one may still object to this conclusion
of instability in two ways. The first is that the nucleus is actually a composite particle which
has some spatial extent and therefore it is not clear that a collapse happens — maybe the
electron would just bounce around in a continuous charge distribution. However, it is known
that the size of a nucleus is about 10−15 m while the typical size of a hydrogen atom is about
10−10 m (the Bohr radius), so from the perspective of the typical electron orbit the nucleus
certainly looks pointlike, and one rather needs to explain why the electron insists on staying
so far away from the nucleus. This leads to the second objection, namely that in analogy to
the picture of a planetary system (which is completely justified from the model (3.12) since
the Newtonian gravitational potential looks exactly the same), the electron could just move
in a circular or elliptical orbit with its centripetal acceleration exactly matching the Coulomb
force. In order to object to this picture of apparent stability one needs to know a little more
about electromagnetic interactions, namely that an accelerating charge necessarily emits
electromagnetic radiation to its surroundings (in order to properly incorporate this — still
purely classical — effect, called bremsstrahlung, one needs to modify both the above simple
Hamiltonian and the phase space severely, and the resulting Hamiltonian describing the
electron is then not conserved in time). The consequence of this radiative effect is that the
electron loses energy and therefore transcends into lower and lower orbits, in effect spiraling
in towards the nucleus and leading to the collapse of classical matter.

Exercise 3.3. Find an implicit solution of (3.13) for x1(t) > 0 and determine the time T
for which x1(T ) = 0. (Hint: start by multiplying the equation by ẋ1.)

3.3. Some quantum mechanics. The above-discussed problem of instability, together
with other unexpected discoveries in the beginning of the 20th century, led to the realization
that Hamiltonian mechanics on phase space (as well as the other equivalent formulations
of classical mechanics) is not sufficient to describe the physical world. This was in the
1920’s subsequently remedied by the invention of a quantum representation for mechanics.
Nowadays this is quite well understood as a kind of mathematical recipe, referred to as
canonical quantization, although depending on which systems are considered there are
still many subtleties to be dealt with, both on a formal level and also when it comes to the
physical interpretation.

3.3.1. Axioms of canonical quantization. In mathematical terms, the procedure of ‘canon-
ical quantization’ amounts to selecting a (sufficiently interesting) Lie-subalgebra O ⊆ A
and a representation of this O as an algebra of linear operators on a Hilbert space H,
O → Ô ⊆ L(H). This translates to the following set of axioms of quantum mechanics:

A1. (States) There exists a complex(6) separable(7) Hilbert space H, which we call the
quantum configuration space. The non-zero elements ψ ∈ H \ {0} will describe

the states(8) of the quantum system, and furthermore two vectors ψ and φ in H
describe the same state if and only if φ = cψ, c ∈ C \ {0}. In other words the set of
quantum states constitutes a ray representation of H.

(6)One may also consider purely real Hilbert spaces; see e.g. [Lun08] and references for a discussion.
(7)This assumption could, and should, sometimes be relaxed; see e.g. [Thi07, AS11].
(8)These may also be called pure states in contrast to mixed states (density matrices; Remark).
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A2. (Observables) One has selected a set of observables a ∈ O which form a closed Lie-
subalgebra of A, and which are real, a∗ = a. To each such observable a ∈ O there is
associated a densely defined self-adjoint operator â acting on H, i.e. â∗ = â ∈ L(H).
The spectrum of â are the possible results of a measurement of the observable a.

A3. (Commutators) The Poisson bracket in classical mechanics is replaced by the com-
mutator

[â, b̂] := âb̂− b̂â

of operators, according to:

{a, b} 7→ 1

i~
[â, b̂]. (3.14)

Here we have multiplied the commutator with −i (and the sign is just a conven-
tion) in order to make the expression self-adjoint (by the closedness of O, the
bracket of two observables is also an observable and hence should be represented
by a self-adjoint operator, but the commutator of two self-adjoint operators is anti -
self-adjoint(9)), and we furthermore introduced a new parameter ~ > 0 known as
Planck’s constant.

A4. (Expectations) Given a state ψ ∈ H, the expectation value of an observable a ∈ O
in this state is given by

〈â〉ψ :=
〈ψ, â ψ〉
〈ψ,ψ〉

.

The interpretation is that if one prepares a large ensemble of identical systems, each
of which is prepared to be in the state ψ, and then makes a measurement of the
observable a then the result of the measurement will in general be random but the
expectation value of the results will be given by the quantity 〈â〉ψ ∈ R. If a has

physical meaning but ψ /∈ Q(â) then ψ may be interpreted as an unphysical state.
A5. (Time evolution) The choice of dynamics depends on the choice of a Hamiltonian

H ∈ O, which is represented as a self-adjoint Hamiltonian operator Ĥ on H.
Operators corresponding to other observables may then evolve with time according
to Heisenberg’s equation of motion (compare (3.4)),

d

dt
â(t) =

1

i~
[â(t), Ĥ], (3.15)

and their corresponding expectation value at time t is

〈â(t)〉ψ =
〈ψ, â(t)ψ〉
〈ψ,ψ〉

.

Remark 3.11. The reasons for insisting that observables be represented by self-adjoint op-
erators are threefold:

1. An observable a ∈ O should represent a real measurable physical quantity, and its
expectation value satisfies 〈â〉ψ ∈ R for all states ψ ∈ Q(â) iff â is hermitian.

(9)On the basis of this one may argue that the more natural thing to do is to replace everything by
anti-self-adjoint operators.
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2. Self-adjoint operators have a spectral representation given by the spectral theo-
rem, Theorem 2.14, and the points of the spectrum σ(â) ⊆ R represent the possible
values of a measurement of the observable a ∈ O. Also, if the system is in a state
ψ ∈ H, then the probability of measuring values of a in the interval [λ, λ′] ⊆ R is

given by the expectation value (of the observable(10) “a ∈ [λ, λ′]”)

〈
P â[λ,λ′]

〉
ψ

=

∥∥∥P â[λ,λ′]ψ∥∥∥2

‖ψ‖2
, (3.16)

where Ω 7→ P âΩ is the corresponding spectral projection (see e.g. Example 2.15).
3. By Stone’s theorem, Theorem 2.18, self-adjoint operators are the generators of one-

parameter unitary groups, t 7→ Uâ(t) := eiât, which is in particular important for the

time evolution by the Hamiltonian Ĥ to conserve probabilities,
∥∥UĤ(t)ψ

∥∥ = ‖ψ‖. A
non-self-adjoint Hamiltonian operator would describe non-unitary time evolution,
which would however be appropriate when there is energy or information loss
from the system to an external environment.

We also note that:

4. A measurement necessarily exchanges information between the system being mea-
sured and the observer, and therefore results in non-unitary evolution. In effect, after
measurement the state has become projected into the subspace corresponding to the
information obtained, ψ 7→ P â[λ,λ′]ψ, by means of the spectral projection in (3.16).

For example, if â has an isolated simple eigenvalue λj ∈ σ(â) with corresponding
normalized eigenstate uj , then the probability (3.16) of measuring precisely this

value in the normalized state ψ is
〈
P â[λj−ε,λj+ε]

〉
ψ

= |〈uj , ψ〉|2, and the state of

the system ψ 7→ uj after such a measurement. Repeated measurement of a will
then produce the same value λj with certainty (unless the observable has evolved
with time). The quantity 〈uj , ψ〉 ∈ C is called a probability amplitude, and the
probabilistic interpretation is known as Born’s rule.

Remark 3.12. Instead of evolving the operators in time according to the solution of (3.15),

â(t) = eitĤ/~â(0)e−itĤ/~ ∈ L(H),

one may evolve the states, ψ(t) := e−itĤ/~ψ(0) ∈ H, so that by unitarity

〈â(t)〉ψ(0) = 〈â(0)〉ψ(t).

These states then satisfy the Schrödinger equation

i~
d

dt
ψ(t) = Ĥψ(t).

(10)Note that if we can measure a then we may also determine if a ∈ [λ, λ′] for any interval [λ, λ′] ⊆ R,
and similarly if we have a self-adjoint operator â then we also have access to its projection-valued measure

P â[λ,λ′]. The commutativity of P âΩ and P b̂Ω′ expresses what may be known simultaneously about a and b.
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3.3.2. The Schrödinger representation. Let us now implement the above quantization rules
on the archetypical Poisson algebraA, namely the phase space (3.1)-(3.2), with the canonical
Poisson brackets (3.3). We take the canonical coordinate and momentum functions xj and
pk as our fundamental observables, with for example

O = SpanR{1, x1, . . . , xn, p1, . . . , pn}, (3.17)

(note that we added 1 to make this a closed Lie-subalgebra of A, also known as the Lie
algebra of the Heisenberg group). However we will typically want to work with something
slightly larger than (3.17) since by A5 we also need a Hamiltonian observable H ∈ O which
is some function of x and p. These observables should according to A1-A2 be promoted
to operators 1̂, x̂j , p̂k ∈ L(H) on some Hilbert space H, which we leave undetermined for a
brief moment.

The canonical Poisson brackets (3.3) should then according to A3 be represented by the
canonical commutation relations (CCR):

[x̂j , x̂k] = 0, [p̂j , p̂k] = 0, [x̂j , p̂k] = i~ δjk1̂. (3.18)

We also note that since {1, a} = 0 for all a ∈ A, we should have [1̂, â] = 0, at least for all

a ∈ O, so that upon considering irreducible(11) representations of this algebra we may write
1̂ = c1, where c ∈ C, or actually c̄ = c ∈ R since 1̂∗ = 1̂. However, as 1̂ appears only in
combination with ~ in the r.h.s. of (3.18), and since we have not yet fixed the value of ~,
we may absorb this freedom into ~ and take c = 1, i.e. 1̂ = 1, the unit in L(H).

It is now time to find a Hilbert space on which to represent the operator observables.
However, taking the simplest non-trivial choice that comes to mind, i.e. H = CN for some
finite dimension N ≥ 1 and with the operators acting as hermitian N ×N -matrices, is seen
not to work, simply by taking the trace on both sides of for example the operator equation
corresponding to the first non-trivial commutator in (3.18),

x̂1p̂1 − p̂1x̂1 = i~1. (3.19)

The trace is zero on the l.h.s. but i~N on the r.h.s., and hence yields a contradiction unless
~ = 0. As a result, we cannot represent these relations non-trivially unless the space H is
infinite-dimensional, which leads us to the next-most natural choice H = L2(Cn) = L2(Rn),
where we may for example take the standard Schrödinger representation: for ψ ∈ H,

(x̂jψ)(x) := xjψ(x), (3.20)

i.e. simply multiplication by the coordinate, and

(p̂jψ)(x) := −i~ ∂ψ
∂xj

(x). (3.21)

The sign convention on p̂j here matches that of (3.14).
Note that both of these are unbounded operators and therefore care has to be taken that

they are self-adjoint. They are obviously hermitian when considered as forms on C∞c (Rn),

〈ϕ, x̂jψ〉 = 〈x̂jϕ,ψ〉 , 〈ϕ, p̂kψ〉 = 〈p̂kϕ,ψ〉 , ∀ϕ,ψ ∈ C∞c (Rn), (3.22)

(11)That is, if seen as matrices, not block-diagonalizable but restricted to just one full block which cannot
be reduced further (no invariant strict subspace). Irreducibility comes in by axiom A1 and the desire to be
able to distinguish all states. — If they are not distinguishable by any means then they should be identified!
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but one needs to specify corresponding domains so that D(x̂∗j ) = D(x̂j) and D(p̂∗k) = D(p̂k).

In the case x̂j , the natural (maximal) domain is

D(x̂j) :=

{
ψ ∈ L2(R) :

∫
Rn
|xj |2|ψ(x)|2 dx <∞

}
,

while the common joint domain for all x̂j is

D(x̂) := {ψ ∈ L2(Rn) : x̂ψ = (x̂1ψ, . . . , x̂nψ) ∈ L2(Rn;Cn)},
and for p̂k,

D(p̂k) :=

{
ψ ∈ L2(R) :

∫
Rn
|ξk|2|ψ̂(ξ)|2 dξ <∞

}
, D(p̂) := H1(Rn). (3.23)

This also corresponds to taking the closure of the minimal operators, i.e. with x̂j and p̂k
initially defined on the minimal domain C∞c (Rn).

Writing p = ~ξ (we will later set ~ = 1), we have in terms of the Fourier transform(12)

(2.7)

(p̂jψ)∧(p) = pjψ̂(p), (x̂kψ)∧(p) = i~
∂ψ̂

∂pk
(p),

so that an alternative but equivalent representation (called the momentum representa-

tion) is given by FH = FL2(Cn) = L2(Rn) 3 ψ̂ with operators 1̌ = 1, x̌k, p̌j ∈ L(FH)
defined by

(p̌jψ̂)(p) := pjψ̂(p), (x̌kψ̂)(p) := i~
∂ψ̂

∂pk
(p), (3.24)

i.e. x̌k = F x̂kF−1 and p̌j = F p̂jF−1.

Remark 3.13 (Stone–von Neumann uniqueness theorem). In fact, one may consider the
abstract unitary group generated by, say x̂1, p̂1, with the commutation relations (3.19), via

U(s) := eisx̂1 , V (t) := eitp̂1/~, (3.25)

which satisfy the Weyl algebra

U(s)U(s′) = U(s+ s′), V (t)V (t′) = V (t+ t′), V (t)U(s) = eistU(s)V (t). (3.26)

It turns out that, with the only assumptions that the representation of this group is unitary,
irreducible and weakly continuous, i.e.

lim
t→0
〈u, U(t)v〉 = 〈u, v〉 ∀u, v ∈ H, (3.27)

and similarly for V (t), it must be equivalent to the Schrödinger representation: that is, up
to conjugation with a unitary (such as F), we have H = L2(R) with

(U(s)ψ)(x) = eisxψ(x), (V (t)ψ)(x) = ψ(x+ t). (3.28)

This is known as the Stone–von Neumann uniqueness theorem. However, upon re-
laxing the assumption (3.27) on weak continuity other representations may be found, on
non-separable Hilbert spaces; see Section 2.5.2 and [Thi07, p. 213], [AS11].

(12)The conventions here are unfortunate but standard; hats on states denote their Fourier transform,
and otherwise it denotes operator representations of phase-space functions.
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Since the x̂j are commuting operators we may diagonalize them simultaneously, with
well-defined projections on the joint spectrum of the operators x̂ = (x̂1, . . . , x̂n),

P x̂
I1×I2×...×In = P x̂1

I1
P x̂2
I2
. . . P x̂nIn , Ij ⊆ R intervals,

which may be generalized to P x̂
Ω for any (Borel) Ω ⊆ Rn. This is again the same as taking

the Schrödinger representation with P x̂
Ω = 1Ω. For normalized ψ ∈ L2(Rn), ‖ψ‖L2 = 1, we

have by Remark 3.11.2 also a natural interpretation for∫
Ω
|ψ|2 = 〈1Ω〉ψ =

〈
P x̂

Ω

〉
ψ
,

which is thus the probability of measuring the event x ∈ Ω given the state ψ ∈ H. Further-
more,

|ψ(x)|2 = 〈ψ, δxψ〉 = lim
ε→0
|Bε(x)|−1

〈
P x̂
Bε(x)

〉
ψ

(valid for a.e. x ∈ Rn by the Lebesgue differentiation theorem) may be interpreted as the
probability density of measuring the coordinates x ∈ Rn.

In the case of diagonalizing p̂ instead, i.e. switching to the momentum representation

where FP p̂
ΩF−1 = P p̌

Ω = 1Ω, one has

|ψ̂(p)|2 =
〈
ψ̂, δpψ̂

〉
= lim

ε→0
|Bε(p)|−1

〈
P p̌
Bε(p)

〉
ψ̂

= lim
ε→0
|Bε(p)|−1

〈
P p̂
Bε(p)

〉
ψ
,

the probability density of measuring the momenta p ∈ Rn.

Remark 3.14. The reason why we cannot just take the full Poisson algebra O = A and quan-
tize that is that there will be problems when it comes to the choice of ordering of operators.
Namely by (3.19), x̂1p̂1 is not the same as p̂1x̂1, so it matters if we by x1p1 = p1x1 ∈ A
mean x̂1p̂1, or p̂1x̂1, or perhaps 1

2(x̂1p̂1 + p̂1x̂1). This is known as the factor ordering
ambiguity in quantum mechanics and causes many headaches when trying to quantize
classical mechanical systems. As a result there are often different routes to quantization
with obstacles to be overcome and choices to be made of both ordering rules and repre-
sentations, so that, in practice, the procedure of ‘canonical quantization’ may not seem so
canonical after all. For a very general treatment of the quantization procedure, see e.g.
[Thi07, Rov04].

Exercise 3.4. Verify (3.22) and the CCR (3.18) for both the choice (3.20)-(3.21) and the
alternative (3.24), and note the agreement of all sign conventions.

Exercise 3.5. Verify that the Schrödinger representation (3.20)-(3.21) exponentiates to
(3.28) and satisfies the Weyl algebra (3.26). Conjugate with F and compare with (3.24).
Derive the abstract Weyl algebra starting from the definitions (3.25) and the CCR (3.18).

3.4. The one-body problem. Let us now consider the case of the one-body problem,
i.e. a single particle on a d-dimensional classical configuration space Cd = Rd and phase
space Pd = R2d, on which we may take the Hamiltonian H(x,p) = T (p) + V (x) from
Example 3.6 (in that case we had d = 3, but let us be more general here and take d ∈ N).
Since it generates our dynamics, we should promote it to an observable, i.e. add it to (3.17)

and then construct its quantum representation Ĥ ∈ L(H). However, before we do so, let
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us make sure that we are done with our choice of observables O. Namely, O needs to be
closed under Poisson brackets, and indeed

{xj , T (p)} =
pj
m
∈ O, {xj , V (x)} = 0, {pj , T (p)} = 0,

but we find that we might also need to add

{pj , V (x)} = −∂V (x)

∂xj
= Fj(x),

i.e. the components of the corresponding force F, as well as

{pj , Fk(x)} = −∂Fk
∂xj

(x),

in case this expression is non-zero, and so on. Hence all of these functions on Pd need to be
represented as operators as well. Moreover, there may be other relevant observables such
as

Ljk := xjpk − xkpj , 1 ≤ j < k ≤ d, (3.29)

for which {Ljk, T (p)} = 0 and {Ljk, V (x)} = 0 if V (x) = f(|x|) (i.e. radial potentials), and
which describe angular momentum. On the other hand, it is not always the case that
any of the canonical variables xj and pk ought to be considered observables, and one may
in such an extreme circumstance therefore just take the trivial choice O = Span{1, H} or
O = RH (but with e.g. some non-trivial representation based on the concrete expression
for H) and hence only have to worry about quantizing the Hamiltonian H in that case.

Example 3.15 (Free particle). The simplest example is again the free particle with V = 0,
for which we have H = T (p) = p2/(2m). In the usual Schrödinger representation (3.20)-
(3.23) the natural thing to do is to take

Ĥ =
p̂2

2m
=

~2

2m
(−∆Rd),

with domain D(Ĥ) = D(p̂2) = H2(Rd). This is then a self-adjoint operator, and if instead
considered on the minimal domain C∞c (Rd) it is essentially self-adjoint with the above
extension as its closure. Hence there is no other choice for the quantum dynamics in this
case (there could however be other options if one changes Cd a bit by for example removing
or identifying points, as will be seen in Section 3.7). Moreover, taking the Fourier transform
and thus the momentum representation as a pure multiplication operator (3.24) we may

even determine its spectrum explicitly (cf. Exercise 2.9): σ(Ĥ) = σ(p̌2/(2m)) = [0,∞).

Even if the potential V is non-zero, since T (p) and V (x) depend only on p and x
separately there is, luckily, no factor ordering problem in H = T + V . But we do need to
ensure self-adjointness of Ĥ, which could actually be quite difficult depending on V . The
typical procedure would again be to use our earlier Schrödinger representation for x̂ and
p̂ = −i~∇ and thus write for the Hamiltonian operator

Ĥ := T (p̂) + V (x̂) = T (−i∇) + V (x) =
~2

2m
(−∆) + V (x), (3.30)

at least on the minimal domain C∞c (Rd). This is a hermitian expression on this domain as
long as the potential is real-valued, V : Rd → R, and not too singular (as will be illustrated
in Example 3.20), and one may consider it as the sum of two quadratic forms. In the case
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that V ≥ −C with a constant C ≥ 0 the resulting form is bounded from below, Ĥ ≥ −C,
and therefore by Friedrichs extension, Theorem 2.12, there is a unique semi-bounded self-
adjoint operator corresponding to the closure of this form expression. An operator on the
form (3.30) for some potential V is conventionally called a Schrödinger operator.

Example 3.16 (Harmonic oscillator). Our main example for a system with non-zero po-
tential is again the harmonic oscillator, V = Vosc ≥ 0 from Example 3.8. In this case
the Schrödinger operator Ĥ ≥ 0 may be defined by Friedrichs extension or form closure,
Theorem 2.11, on C∞c (Rd) and the form domain is

Q(Ĥ) = Q(−∆) ∩Q(V ) =
{
ψ ∈ H1(Rd) :

∫
Rd |x|

2|ψ(x)|2 dx <∞
}
.

We note that {pj , V (x)} = −mω2xj , and hence one may take O = SpanR{1, xj , pk, H} as

a closed algebra of observables, with quantum representatives Ô = SpanR{1, x̂j , p̂k, Ĥ} ⊆
L(H), all acting on a common dense domain D(Ĥ) ⊆ Q(Ĥ) ⊆ H = L2(Rd).

Alternatively, let us consider the closed algebra (3.8)-(3.9) spanned by {1, aj , a∗k,N} and
try to quantize that. For simplicity we take ~ = 1, d = 1 and drop the index j = 1. Note
that a 6= a∗ (and also a 6= −a∗) since {a, a∗} 6= 0, and hence a or a∗ are not observables.
However, any of the expressions aa∗ = a∗a = N = (a∗a + aa∗)/2 ∈ A may be used. Also,
given that we can extract from the real combinations a+a∗ and −i(a−a∗) subject to (3.8)
the original observables x resp. p and their canonical CCR, we may consider promoting a
and a∗ to non-self-adjoint operators â resp. â∗ satisfying the commutation relations

[â, â∗] = 1, [N̂ , â] = −â, [N̂ , â∗] = â∗, (3.31)

where we defined N̂ := â∗â. Also note that ââ∗ = N̂ + 1 by the first commutator above.
Hence, the expressions that were the same on A are now given by different operators.
Furthermore, if we demand that N̂ = N̂ ∗ is self-adjoint and has some non-trivial eigenstate
ψ ∈ H with eigenvalue λ ∈ R, then one may observe that âkψ resp. (â∗)kψ are also

eigenstates with eigenvalues λ−k resp. λ+k. Therefore, if also demanding N̂ to be bounded
from below, there must exist a state ψ0 ∈ H such that âψ0 = 0, and the remaining states
of an irreducible representation of (3.31) are then given by ψk := (â∗)kψ0 with N̂ψk = kψk,

k = 0, 1, 2, . . .. Taking finally the symmetrized expression Ĥ/ω := (â∗â+ ââ∗)/2 = N̂ +1/2,

and H := Span{ψk}∞k=0, this then provides the algebraic solution to the spectrum of the
quantum Harmonic oscillator (one may finally show that these two representations coincide).

If V is unbounded from below then it is not certain that Friedrichs extension applies,
but there are other tricks and concepts, such as relative form boundedness and relatively
bounded perturbations, which may be used to define the sums of such forms and operators.
However we will in this course rely solely on proving that the full Schrödinger expression
(3.30) is bounded from below as a quadratic form, so that there is then an unambiguous

choice of an associated bounded from below quantum Hamiltonian Ĥ.

Example 3.17 (Coulomb potential). As already noted in Section 3.2, the Coulomb po-
tential VC(x) = −Z/|x| is unbounded from below. In the next section we will use the
uncertainty principle to prove that the form

q(ψ) :=

〈
ψ,

[
~2

2m
(−∆R3)− Z

|x|

]
ψ

〉
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is nevertheless bounded from below on the minimal domain C∞c (R3) (also note here that,
even though VC is singular at x = 0, we still have VC ∈ L1

loc(R3) which makes the expression
well defined on this domain), and hence it defines a semi-bounded from below self-adjoint

operator Ĥ by Theorem 2.11 or 2.12.

We remark that, as soon as we have defined a self-adjoint Hamiltonian operator Ĥ which
is bounded from below, Ĥ ≥ −C, then there cannot be any problems with the physical
system for any future time, since all states ψ ∈ H then evolve unitarily by Stone’s theorem,
and furthermore arbitrarily negative values of the energy cannot be measured at any time
since the measurable energy spectrum has a finite lower bound, σ(Ĥ) ⊆ [−C,+∞). Hence,
in this precise sense there is then stability for the corresponding quantum system.

Exercise 3.6. Verify the algebraic relations in Example 3.16 and extend the solution to
d > 1.

Exercise 3.7. Consider the angular momenta (3.29) in R3, with L1, L2 and L3 := x1p2 −
x2p1 cyclically defined. Verify the Poisson brackets {L1, L2} = L3 (cyclic) and {L2, Lk} = 0
for all k, where L2 := L2

1 +L2
2 +L2

3. By considering L± := L1 ± iL2 and the corresponding
commutation relations, show that all possible finite-dimensional irreducible quantizations of
this algebra (with L̂k self-adjoint) may be labelled by a number ` ∈ Z≥0/2 (called spin), and

that the corresponding spectrum is σ(L̂3) = ~{−`,−`+ 1, . . . , `} and L̂2 = ~2`(`+ 1)1.

Exercise 3.8. Show that L̂j = 1
2σj with the Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
,

respectively L̂j = iSj the generators of rotations in R3,

S1 =

0 0 0
0 0 −1
0 1 0

 , S2 =

 0 0 1
0 0 0
−1 0 0

 , S3 =

0 −1 0
1 0 0
0 0 0

 ,
yield irreducible representations of spin ` = 1/2 resp. ` = 1. Also note that L̂2

j commute

for these representations (is this always the case?).

3.5. The two-body problem and the hydrogenic atom. In the case that one considers
two particles on Rd, the classical configuration space would be C2d = Rd×Rd and the phase
space P2d = R4d. We write the corresponding coordinates x = (x1,x2) and momenta
p = (p1,p2), with xj ,pk ∈ Rd. For the Hamiltonian, one could here think of adding the
kinetic energies Tj(pj) = p2

j/(2mj) for each of the two particles j = 1, 2, and also allow for

some potential on configuration space V : C2d → R which depends on both particles:

H(x,p) = T1(p1) + T2(p2) + V (x1,x2) =
p2

1

2m1
+

p2
2

2m2
+ V (x1,x2) (3.32)

Note that the masses m1 resp. m2 of the particles could be different, and that we may also
w.l.o.g. rewrite the potential V into a sum of independent one-particle parts Vj and a final
part W describing any correlation or interaction between the two particles,

V (x1,x2) = V1(x1) + V2(x2) +W (x1,x2),
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thus

H(x, p) =
∑
j=1,2

Hj(xj ,pj) +W (x1,x2), Hj(xj ,pj) =
p2
j

2mj
+ Vj(xj).

In case there is no correlation between the particles, W = 0, this hence just describes a sum
of two independent one-body Hamiltonians for which we may proceed with quantization as
in Section 3.4. If we can find self-adjoint representations of the corresponding operators
Ĥj ∈ L(H) on one-particle Hilbert spaces H = L2(Cd) = L2(Rd) (the same Cd for the
two particles), then we can take the two-body Hilbert space to be the tensor product
H = H⊗ H ∼= L2(R2d) (see Exercise 3.9) and form a self-adjoint Hamiltonian operator out
of two commuting ones:

Ĥ = Ĥ1 ⊗ 1+ 1⊗ Ĥ2 ∈ L(H), D(Ĥ) = D(Ĥ1)⊗D(Ĥ2),

with spectrum σ(Ĥ) = σ(Ĥ1) + σ(Ĥ2) (see e.g. [Tes14, Section 4.6]). For brevity we will
usually leave out the trivial factors of 1 in the tensor products if it is understood on which
part of the space the operator acts. Also note that the expression for Ĥ exponentiates to a
unitary time evolution on two-body states Ψ = ψ ⊗ φ ∈ H (and linear combinations):

eitĤ/~Ψ = (eitĤ1/~ ⊗ eitĤ2/~)(ψ ⊗ φ) = eitĤ1/~ψ ⊗ eitĤ2/~φ.

Example 3.18. The d-dimensional harmonic oscillator from Example 3.16,

H(x,p) =
p2

2m
+

1

2
mω2x2 =

d∑
j=1

(
p2
j

2m
+

1

2
mω2x2

j

)
,

separates into d copies of a one-dimensional oscillator, with no correlation between these
different degrees of freedom, and hence it suffices to solve the one-dimensional problem to

determine the full spectrum: σ(Ĥ) =
∑d

j=1 ω(Z+ + 1/2) = ω(Z+ + d/2).

In the case that there are correlations between the particles, W 6= 0, it may be helpful
to change variables. For the Hamiltonian (3.32) we define the center of mass (COM) and
its conjugate momentum

X :=
m1x1 +m2x2

m1 +m2
, P := p1 + p2, (3.33)

as well as the relative coordinate with its conjugate momentum

r := x1 − x2, pr := µ(p1/m1 − p2/m2). (3.34)

Here
µ :=

m1m2

m1 +m2

is the reduced mass of the pair of particles. We may then rewrite the two-body Hamil-
tonian (3.32) in these coordinates as (see Exercise 3.10)

H(x1,x2; p1,p2) =
P2

2(m1 +m2)
+

p2
r

2µ
+ V

(
X +

µ

m1
r,X− µ

m2
r
)

=: H̃(X, r; P,pr).

Example 3.19 (The hydrogenic atom). Recall from Section 3.2 that the hydrogenic atom
consists of a nucleus with charge Z > 0 and an electron with charge −1, which interact via
the Coulomb potential VC(r) = −Z/|r|, where |r| is the distance between the particles in
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R3. The proper model is therefore a two-body classical configuration space C3×2 = R3×R3,
phase space P3×2 = R12, and Hamiltonian

H(x1,x2; p1,p2) =
p2

1

2m1
+

p2
2

2m2
− Z

|x1 − x2|
,

with m1 and m2 the masses of the nucleus and electron, respectively. It is here appropriate
to switch to COM and relative coordinates, C3×2 ∼= Ccm × Crel 3 (X, r), in which the
Hamiltonian separates,

H̃(X, r; P,pr) =
P2

2(m1 +m2)
+

p2
r

2µ
− Z

|r|
.

The first term involving the center-of-mass momentum P is just the one-body Hamiltonian
Hcm(X; P) of a free particle on Ccm = R3, which we may quantize uniquely along the lines
of Example 3.15, while the second two terms constitute the Hamiltonian Hrel(r; pr) of the
one-body Coulomb problem on Crel = R3 which was discussed classically in Section 3.2 and
quantum-mechanically in Example 3.17 of Section 3.4, and which we shall return to many
more times. Given a self-adjoint quantization Ĥrel ∈ L(L2(Crel)) of this Hamiltonian, we
therefore have the two-particle operator

Ĥ =
~2(−∆X)

2(m1 +m2)
⊗ 1+ 1⊗ Ĥrel, D(Ĥ) = H2(R3)⊗D(Ĥrel),

on the two-particle quantum configuration space H = L2(R3, dX)⊗L2(R3, dr). Again then,

σ(Ĥ) = σ(Ĥcm) + σ(Ĥrel) = [0,∞) + σ(Ĥrel) = [inf σ(Ĥrel),∞),

and we see that the spectrum of the free center-of-mass motion in the end obscures most of
the information about the relative one. Therefore, in practice one often removes the COM
part from the problem altogether and then studies only the more interesting relative part.

Exercise 3.9. Use Fubini’s theorem to show that L2(X,µ)⊗ L2(Y, ν) ∼= L2(X × Y, µ× ν),
where µ, ν are σ-finite measures and, for two Hilbert spaces H,K, H⊗K is defined with

〈u1 ⊗ u2, v1 ⊗ v2〉H⊗K := 〈u1, v1〉H 〈u2, v2〉K .

Exercise 3.10. Verify that the COM and relative coordinates and momenta (3.33)-(3.34)
are canonically conjugate, i.e

{(X)j , (P)k} = δjk, {(r)j , (pr)k} = δjk,

and all other Poisson brackets in X, r,P and pr are zero, and furthermore that

m1x
2
1 +m2x

2
2 = (m1 +m2)X2 + µr2,

p2
1

m1
+

p2
2

m2
=

P2

m1 +m2
+

p2
r

µ
.

3.6. The N-body problem. We may extend much of the above analysis to the N-body
problem, that is, we may consider N particles on Rd with masses mj and with indepen-
dent one-body potentials Vj(xj), two-body correlation potentials Wjk(xj ,xk) describing
pairwise interactions between particles xj and xk with j 6= k, as well as three-body inter-
actions Wjkl(xj ,xk,xl) with j, k, l all distinct, and so on. Although interaction potentials
involving more than two particles are not uncommon in physics, they will not be relevant
for our stability of matter problem and shall hence for simplicity not be considered further
in this course (except perhaps occasionally). Furthermore, it is common that the one-body
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potentials have already incorporated all the dependence on absolute positions such as pair-
wise centers of mass, and hence that the pair-interactions Wjk are translation-invariant,
i.e., depending only on the relative coordinate rjk := xj − xk of each pair (w.l.o.g. j < k).

With these restrictions or simplifications, the N-body Hamiltonian on the classical
configuration space Cd×N = (Rd)N and phase space Pd×N = (Rd)N × (Rd)N may thus be
defined

H(x,p) :=

N∑
j=1

(Tj(pj) + Vj(xj)) +
∑

1≤j<k≤N
Wjk(xj − xk) = T (p) + V (x) +W (x).

Again we see that there is no ordering ambiguity here since the terms involve coordinates
and momenta separately. The natural quantum version of the expression is therefore

Ĥ :=

N∑
j=1

(Tj(p̂j) + Vj(x̂j)) +
∑

1≤j<k≤N
Wjk(x̂j − x̂k) = T̂ + V̂ + Ŵ ,

which is to be acting as an operator on H = L2(Cd×N ) = L2(RdN ), that is, we should
try to implement these expressions as operators or forms on some space F of sufficiently
well-behaved functions Ψ ∈ L2(Cd×N ), called N-body quantum states or N-body wave
functions, according to

T̂Ψ(x) :=
N∑
j=1

p̂2
j

2mj
Ψ (x) = −

N∑
j=1

~2

2mj
∆xjΨ(x), (3.35)

V̂Ψ(x) :=

N∑
j=1

Vj(xj)Ψ(x),

ŴΨ(x) :=
∑

1≤j<k≤N
Wjk(xj − xk)Ψ(x).

Which space F we may choose depends on details of the potentials V and W , namely, if for
example the interaction W is too singular then this may force us to consider only those func-
tions which vanish (sufficiently fast) at the singularities. Hence, the usual minimal domain
C∞c (RdN ) ⊆ H might not always be appropriate, as the following example illustrates.

Example 3.20 (Hard-core interaction). Consider an interaction potential WR(r) formally
defined by

WR(r) =

{
+∞, if |r| < R,
0, if |r| ≥ R.

This describes hard spheres (or hard cores) of radius R/2, because as soon as the
particles are within a distance |r| = |xj − xk| < R the energy is infinite — a very hard
collision — and otherwise they do not see each other. Since the corresponding form on the
relative Hilbert space L2(Rd, dr) is formally

〈ψ,WRψ〉 =

∫
Rd
WR|ψ|2 =

{
+∞, if |BR(0) ∩ suppψ| > 0,
0, otherwise,

the mathematically precise way to incorporate this potential is to consider a new minimal
domain D(WR) = C∞c (BR(0)c) ⊆ H and a corresponding restriction in the Hilbert space
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H = L2(BR(0)c) = D(WR) (the closure may be taken in the old Hilbert space L2(Rd)).
This enforces the knowledge that there is zero probability that the particles overlap.

Note that (again by Exercise 3.9) we may equivalently think of Ψ ∈ L2(RdN ) ∼= ⊗NH as
tensor products (including any finite linear combinations and limits thereof) of one-particle
states ψn ∈ H = L2(Rd),

Ψ =

∞∑
n1=1

. . .

∞∑
nN=1

cn1...nNψn1 ⊗ . . .⊗ ψnN , cn1...nN ∈ C.

In the case that all Wjk = 0 we again have a separation of the problem into independent
one-body problems,

Ĥ =
N∑
j=1

ĥj , ĥj = − ~2

2mj
∆xj + Vj(xj) ∈ L(H), (3.36)

and, if these are subsequently realized as self-adjoint operators, then σ(Ĥ) =
∑N

j=1 σ(ĥj).
Also, if Wjk 6= 0, then one may for each pair of particles instead consider the problem

in the corresponding relative coordinates rjk. However, because for N > 2 there are more

pairs than relative degrees of freedom,
(
N
2

)
> N − 1, this forms a redundant set of variables

and the problem typically does not separate. The total center of mass,

X =
N∑
j=1

mjxj

/ N∑
j=1

mj , P =
N∑
j=1

pj ,

may still be separated away though if the one-body potential V admits such a separation.
We will not consider the appropriate change of variables in the general case, involving
Jacobi coordinates, but only in the below special case of identical masses.

3.6.1. Models of matter and notions of stability. An important special case is that all the
particles are of exactly the same kind so that we have the same mass mj = m and one-
particle interaction Vj = V for all j, and also that the two-particle interaction Wjk = W
is independent of the pair considered and furthermore symmetric w.r.t. particle exchange
rjk 7→ −rjk = rkj , i.e. W (rjk) = W (−rjk). The resulting Hamiltonian operator

ĤN :=
N∑
j=1

(
~2

2m
(−∆xj ) + V (xj)

)
+

∑
1≤j<k≤N

W (xj − xk) (3.37)

then defines the typical N-body quantum system involving a single type of particle.
In this case it may be useful to write the momenta as a sum of pairs using the generalized

parallelogram identity (valid on Cd or general Hilbert spaces; cf. Example 2.3),

N∑
j=1

|pj |2 =
1

N

∣∣∣∣∣
N∑
j=1

pj

∣∣∣∣∣
2

+
1

N

∑
1≤j<k≤N

∣∣pj − pk
∣∣2, (3.38)

and thus for the Hamiltonian

ĤN =
~2

2mN
(−∆X) +

∑
1≤j<k≤N

(
1

2mN

∣∣p̂j − p̂k
∣∣2 +

1

N − 1

(
V (xj) + V (xk)

)
+W (rjk)

)
.
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Again, although it looks as if we may have separated the problem if V = 0, this is indeed
true for the COM variable but the particle pairs are actually not independent.

Another important case will in fact constitute our model of matter in the sequel.
Here we have two species of particles: N electrons and M nuclei, with positions xj ∈ Rd
respectively Rk ∈ Rd. The quantum Hamiltonian on L2(Cd×N × Cd×M ) is

ĤN,M :=
N∑
j=1

~2

2me
(−∆xj ) +

M∑
k=1

~2

2mn
(−∆Rk

) +WC(x,R), (3.39)

with masses me > 0 respectively mn > 0, and where we have taken as the interaction the
(N,M)-body Coulomb potential:

WC(x,R) :=
∑

1≤i<j≤N

1

|xi − xj |
−

N∑
j=1

M∑
k=1

Z

|xj −Rk|
+

∑
1≤k<l≤M

Z2

|Rk −Rl|
(3.40)

This implements the appropriate Coulomb interaction (3.11) between each pair of particles,
where the charges are again qe = −1 for the electrons and qn = Z > 0 for the nuclei.
One may also add external one-body potentials Ve respectively Vn, although we will not do
so here but rather consider the whole system (3.39) of N + M particles to be completely
free apart from the internal interactions in WC. Sometimes we may however consider the
kinetic energies of the nuclei to be irrelevant for the problem since in reality mn � me

and thus we could consider this as a limit mn → ∞. We may in any case drop the non-
negative terms (−∆Rk

)/(2mn) ≥ 0 for a lower bound to ĤN,M . Upon doing so the positions
R = (R1, . . . ,RM ) of the nuclei remain as parameters of the resulting N -body Hamiltonian

ĤN (R) and the corresponding terms of the interaction WC are then treated as external
one-body potentials.

Definition 3.21 (Ground-state energy, and stability of the first and second kind).
Given a quantum system modeled on a Hilbert space H with a self-adjoint Hamiltonian
operator Ĥ ∈ L(H), we define its ground-state energy to be the infimum of the spectrum,

E0 := inf σ(Ĥ) = inf
ψ∈Q(Ĥ)\{0}

〈
Ĥ
〉
ψ
.

We say that the system is stable of the first kind iff Ĥ is bounded from below,

E0 > −∞.
Moreover, in the case that the system depends on a total of N particles, with H = HN ,
Ĥ = ĤN , and

E0(N) := inf σ(ĤN ) = inf
Ψ∈Q(ĤN )\{0}

〈
ĤN

〉
Ψ
,

then it is called stable of the second kind iff ĤN admits a lower bound which is at most
linearly divergent in N , i.e. iff there exists a constant C ≥ 0 such that for all N ∈ N

E0(N) ≥ −CN.

Remark 3.22. A stable system does not necessarily have a ground state, i.e. some eigen-
state ψ ∈ H\{0} with energy equal to the ground-state energy E0, Ĥψ = E0ψ. For example
the free particle on Rd (Example 3.15) is certainly stable with E0 = 0 but has no ground
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state, since the only sensible candidate would be either the constant function (in the usual

form sense, 〈ψ,−∆ψ〉 = ‖∇ψ‖2 = 0) or perhaps a harmonic function (in the operator sense,
−∆ψ = 0) which in either case is not in L2(Rd).

3.6.2. Density and particle probabilities. The problem with the models of matter (3.37)

and (3.39) is that it is in practice extremely difficult to compute their spectra σ(Ĥ), even
numerically on any foreseeable supercomputer, since in reality N is typically extremely
large. In just 1 gram of matter there are N ∼ 1023 particles (and, in fact, even the classical
many-body problem is then almost impossible to understand on the individual particle
level). The approach one takes instead is to try to reduce this problem, which takes place
on the enormous classical configuration space RdN with N � 1, to an approximate problem
on some space of fixed small dimension such as Rd.

Recall that if Ψ is normalized in L2(RdN ) — which we shall assume from now on for
our quantum states — then |Ψ(x)|2 may be interpreted as the probability density of finding
the particles at positions x = (x1, . . . ,xN ) ∈ (Rd)N . We may however instead define a
corresponding particle density on the one-body configuration space Rd:

Definition 3.23 (One-body density). The one-body density associated to a normalized
N -body wave function Ψ ∈ L2((Rd)N ) is the function %Ψ ∈ L1(Rd) given by

%Ψ(x) :=
N∑
j=1

∫
Rd(N−1)

|Ψ(x1, . . . ,xj−1,x,xj+1, . . . ,xN )|2
∏
k 6=j

dxk. (3.41)

The interpretation of this expression is that it is a sum of contributions to a particle
density, where each term gives the probability of finding particle j at x ∈ Rd while all the
other particles are allowed to be anywhere in Rd and hence with their positions integrated
out. Because of the sum, we have no information in %Ψ(x) which one of the N particles was
at x but only how many were there on average. Indeed,

∫
Ω %Ψ will be the expected number

of particles to be found on the set Ω ⊆ Rd, and we can write∫
Ω
%Ψ =

〈
N∑
j=1

1{xj∈Ω}

〉
Ψ

and %Ψ(x) =

〈
N∑
j=1

δxj=x

〉
Ψ

in accordance with the interpretations of Remark 3.11.2 and Section 3.3.2. Note that∫
Rd %Ψ = N since every particle has to be somewhere in Rd.

Further note that using %Ψ we can now write for the expectation value of the one-body
potential 〈

V̂
〉

Ψ
=

∫
Rd
V (x)%Ψ(x) dx,

which is indeed a tremendous simplification of the full N -body form to only depend on
the one-body density. Unfortunately a similar straightforward simplification does not occur
for the kinetic and interaction energies

〈
T̂
〉

Ψ
and

〈
Ŵ
〉

Ψ
, and the task of physicists and

mathematicians working in many-body quantum theory is to try to find such simplifications.
We shall come across some important instances of this later in the course.

We will also find it useful to extract the local particle probability distribution
encoded in the full wave function Ψ. Namely, given a subset Ω ⊆ Rd of the one-body
configuration space and a subset A ⊆ {1, 2, . . . , N} of the particles (particle labels), we may
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form the probability to find exactly those particles on Ω and the rest outside Ω (i.e. on its
complement Ωc = Rd \ Ω):

pA,Ω[Ψ] :=

〈∏
k∈A

1{xk∈Ω}
∏
k/∈A

1{xk∈Ωc}

〉
Ψ

=

∫
(Ωc)N−|A|

∫
Ω|A|
|Ψ|2

∏
k∈A

dxk
∏
k/∈A

dxk.

The probability of finding exactly n particles on Ω irrespective of their labels is then the
sum of all such possibilities

pn,Ω[Ψ] :=
∑

A ⊆ {1, . . . , N} s.t. |A| = n

pA,Ω[Ψ].

We then note that (exercise)

N∑
n=0

pn,Ω[Ψ] =
∑

A⊆{1,...,N}

pA,Ω[Ψ] =

∫
RdN
|Ψ|2 = 1, (3.42)

in other words, some number of particles (possibly zero) and some subset of the particles
(possibly the empty one) must always be found on Ω. Also, the expected number of
particles to be found on Ω is (exercise)

N∑
n=0

n pn,Ω[Ψ] =
N∑
j=1

∫
RdN

1Ω(xj)|Ψ(x)|2 dx =

∫
Ω
%Ψ, (3.43)

which agrees with our earlier interpretations.

Remark 3.24. There is also a more general concept of density matrices, which certainly
is very useful but will not be treated here. We refer instead to e.g. [LS10, Chapter 3.1.4].

Remark 3.25 (Fock spaces). For settings where the number N of particles can vary with time
it is necessary to introduce an appropriate space containing all different particle numbers,
known as a Fock space:

F =
∞⊕
N=0

HN = C⊕ H⊕H2 ⊕ . . .

where HN = ⊗NH is the N -body space. The concept will not be applied in this course
however, as we will only be working with time-independent Hamiltonians with a fixed
number of particles.

Exercise 3.11. Prove (3.38) for arbitrary pj ∈ C.

Exercise 3.12. Prove (3.42) and (3.43) by inserting and expanding the identity

1 =

N∏
k=1

(
1Ω(xk) + 1Ωc(xk)

)
=

∑
A⊆{1,2,...,N}

1xk∈A∈Ω1xk/∈A∈Ωc . (3.44)
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3.7. Identical particles and quantum statistics. It will turn out that our model of
matter (3.39) as presently formulated is actually unstable with N +M → ∞. Although it
is very hard to see it directly in (3.39)–(3.40) — and indeed we have not yet even settled
stability for the hydrogen atom N = M = 1, the topic of the next section — a picture
one could keep in mind for now is that of a single massive atom with a large nucleus (or
charge Z � 1) surrounded by many electrons (say N = Z to make the system neutral).
If we may ignore their mutual Coulomb repulsion, these electrons would all prefer to sit
in the tightest orbit with the lowest energy, and this turns out to diverge too fast with
N for stability. You could at this stage think of the atom’s energy levels as similar to
the harmonic oscillator energy levels, although in the attractive Coulomb potential of the
nucleus they will be negative and accumulating to zero, with the lowest level proportional to
−Z2 ∼ −N2, yielding a total energy ∼ −N3 for the electrons. However, this picture turns
out not to be the correct one, not simply because of the neglected Coulomb repulsion terms,
but perhaps more importantly because of an additional fundamental property of electrons
which was not visible classically. Namely, apart from the uncertainty principle arising as a
consequence of the non-commutativity relations of operator observables, an additional pair
of intimately related and fundamentally new concepts brought in by quantum mechanics is
that of identical particles and quantum statistics.

We have already assumed in (3.37) and (3.39) that all N (or M) particles are of the
same kind, for example electrons, which means that they all have the exact same physical
properties such as mass and charge, and therefore behave in the exact same way. In fact no
measurement can ever distinguish one such particle from another. In quantum mechanics,
where the uncertainty principle sets fundamental (logical) limits to distinguishability, this
becomes a very important logical distinction since the particles must therefore be treated as
logically identical. In particular, considering the probability density of an N -body state
Ψ ∈ L2((Rd)N ) of such indistinguishable particles, we must have a symmetry upon
exchanging two particles j and k,

|Ψ(x1, . . . ,xj , . . . ,xk, . . . ,xN )|2 = |Ψ(x1, . . . ,xk, . . . ,xj , . . . ,xN )|2, j 6= k, (3.45)

since we cannot tell which one is which. However, since Ψ takes values in C, this relation
involving only the amplitude would still allow for a phase difference,

Ψ(x1, . . . ,xj , . . . ,xk, . . . ,xN ) = eiθjkΨ(x1, . . . ,xk, . . . ,xj , . . . ,xN ), j 6= k. (3.46)

One may then argue that a double exchange does nothing to the state (the square of a
transposition is the identity) so we must have (eiθjk)2 = 1, that is θjk = 0 or π. Further,
by considering the expectation values of symmetric N -particle operator observables (see
[MG64, Gir65, Gir69] for a more elaborate argument, as well as Exercise 3.13) one may also
realize that, for consistency, these phases cannot depend on which pair is considered, i.e.
on j or k. The only possibility is then that Ψ satisfies either

Ψ(xσ(1),xσ(2), . . . ,xσ(N)) = Ψ(x1,x2, . . . , . . . ,xN ), (3.47)

for any permutation σ ∈ SN of the indices, in which case we refer to these N identical
particles as bosons, or

Ψ(xσ(1),xσ(2), . . . ,xσ(N)) = sign(σ)Ψ(x1,x2, . . . , . . . ,xN ), (3.48)

for which the particles are instead called fermions. Hence, this amounts to a reduction
of the full Hilbert space H = L2(RdN ) ∼= ⊗NH, H = L2(Rd), of (distinguishable) N -body
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quantum states into the symmetric subspace

Hsym = L2
sym((Rd)N ) :=

{
Ψ ∈ L2(RdN ) : Ψ satisfies (3.47) ∀σ ∈ SN

} ∼= ⊗N

sym
H,

or the antisymmetric subspace

Hasym = L2
asym((Rd)N ) :=

{
Ψ ∈ L2(RdN ) : Ψ satisfies (3.48) ∀σ ∈ SN

} ∼= ∧N
H.

The above argument to fix the phase ambiguity (3.46) of Ψ under particle exchange was
the standard one in the first half of a century after the discovery of quantum mechanics,
and is in fact still today commonly applied in physics textbooks without further discussion.
However, in the 1970’s it was clarified (see [LM77], or e.g. [Myr99] for review(13)) that
this is actually not the complete appropriate way to think about the problem for identical
particles. Rather, even before quantization, the classical configuration space Cd×N = RdN
should be replaced by the symmetrized one

Cd×Nsym :=
(

(Rd)N \ 44
)/

SN ,

simply because there is no way to distinguish the particles even classically. Here we have first
removed the set of particle coincidences(14), i.e. the fat diagonal(15) of the configuration
space

44 := {(x1, . . . ,xN ) ∈ (Rd)N : ∃ j 6= k s.t. xj = xk}, (3.49)

and then taken the quotient under the action of the group SN of permutations of N indices,

σ : (x1, . . . ,xN ) 7→ (xσ(1),xσ(2), . . . ,xσ(N)),

to obtain the set of proper N-point subsets of Rd:

Cd×Nsym =
{
A = {x1, . . . ,xN} ⊆ Rd : |A| = N

}
.

This is the natural space of configurations for N truly indistinguishable (logically identi-
cal) particles, and while it changes very little on the classical side, e.g. only marginally
the space where one may define potentials V (x) since they anyway have to be symmet-
ric under permutations, it does affect the possible quantizations of the free kinetic energy
T (p) = (2m)−1|p|2, which turn out to depend on the non-trivial topology of this config-
uration space. In particlar, particle exchange no longer makes sense as a permutation of
indices (note that this is the identity operation on the quotient Cd×Nsym ) but should instead
be considered as a continuous operation which relates points in the configuration space via
paths. The consequences of this approach have by now been studied in detail and are quite
well understood even on a strict mathematical level (although some important questions
still remain open). To give the full story would be a course in itself, however, and we will
only state the main points here, guided by the following simpler example:

(13)Note however that there were plenty of earlier hints, and the story actually goes back all the way to
Gibbs’ classical statistical mechanics; see e.g. [Frö90] and references therein, as well as [Gir65][Sou70, p. 386].

(14)This can be motivated by the fact that if some positions exactly coincide then we cannot tell if there
really are N particles, which is what we want to consider here. It may also be justified a posteriori [BS92].

(15)The thin diagonal would be the points x ∈ RdN such that x1 = x2 = . . . = xN .
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Example 3.26 (Two identical particles). Consider just one pair of particles on Rd whose
configuration space in the distinguishable case is Cd×2 = Rd × Rd 3 (x1,x2), while the
indistinguishable one is

Cd×2
sym =

(
Rd × Rd \ 44

)/
∼
, 44 = {(x,x) : x ∈ Rd},

with the identification (x1,x2) ∼ (x2,x1) of the particles. The geometry of this space
becomes more transparent upon changing to COM and relative coordinates, (X, r) ∈ Ccm×
Crel. The space then separates into Cd×2

(sym)
∼= Ccm × C(sym)

rel where Ccm = Rd, and the relative

space in the distinguishable case is Crel = Rd while in the indistinguishable case it is Csym
rel =

(Rd \ {0})/∼ with the antipodal identification r ∼ −r. The diagonal 44 ∼= Ccm × {0}
corresponds precisely to r = 0. The remaining relative space may finally be parameterized
in terms of the pairwise distance r > 0 and a relative angle ω ∈ Sd−1 or ω ∈ Sd−1/∼.

Note that the topology of Csym
rel varies markedly with dimension, namely consider the

fundamental group π1 of this topological space:

π1(Csym
rel ) ∼= π1(Sd−1/∼) =

 π1(RP d−1) ∼= Z2, d ≥ 3,
π1(S1) ∼= Z, d = 2,
π1({1}) ∼= 1, d = 1.

The group π1 is by definition the group of continuous loops(16) in the space modulo con-
tinuous deformations (homotopy equivalences), and it is exactly this group which describes
the non-trivial continuous particle exchanges, amounting to continuous loops or particle
trajectories γ ⊂ Csym

rel modulo any such loops that are topologically trivial (trivial in this
sense means that no exchange has taken place, the particles may just have wiggled a bit).

In the case d = 1 we have Csym
rel
∼= R+ and the group of loops is trivial, while for d = 2

and S1/∼ ∼= S1 the generator τ of the group π1(Csym
rel ) ∼= π1(S1) may be chosen as a simple

(say counter-clockwise) loop, and an arbitrary element is [γ] = τn, n ∈ Z the winding
number of the loop. In the case d ≥ 3 one finds by an interesting exercise in topology that
τ2 = 1 and thus the group is π1(Sd−1/∼) ∼= Z2. Hence, if we assign a complex phase eiθ to
the generator τ representing a simple 2-particle exchange, then in the case d ≥ 3 we must
for consistency have that ei2θ = 1 and hence either θ = 0 or θ = π.

Now, very briefly, in the general N -particle case the possibilities for the free kinetic energy
operator depend in a similar way critically on the dimension d of the one-particle space,
and in particular on the fundamental group π1 of the N -particle configuration space (again
the non-trivial continuous particle exchanges are described by the group of loops in the
configuration space modulo homotopy equivalences). This is

π1(Cd×Nsym ) =

 SN , d ≥ 3,
BN , d = 2,
1, d = 1,

where BN is called the braid group on N strands, and 1 is the trivial group. The possible
quantizations T̂ such that they reduce locally to the usual one for free distinguishable par-
ticles are then labeled by (irreducible, unitary) representations of these groups as complex

(16)A loop γ in a space X is a continuous function [0, 1]→ X such that its endpoints are identified.
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phases, i.e. homomorphisms

ρ : π1(Cd×Nsym )→ U(1), (3.50)

which in the case d ≥ 3 of the permutation group reduces to only two possibilities:

ρ = 1 (the trivial representation), or ρ = sign . (3.51)

These can be shown to correspond to the bosons respectively fermions defined above,
namely, after choosing one of these representations one may in fact consistently extend
the configuration space with a patch for each element σ ∈ SN to obtain RdN \ 44 with the
corresponding N -body wave functions satisfying either (3.47) or (3.48), and after closing

up the space RdN \ 44 = RdN (unambiguous limits) one is finally left with Hsym or Hasym.
On the other hand, in the case d = 2 it turns out one has a full unit circle of possibilities:

ρ(τj) = eiαπ, α ∈ [0, 2) (periodic), (3.52)

with α the same for all the generators τj , j = 1, 2, . . . , N − 1, of the group BN (see Exer-
cise 3.13). The corresponding particles are called anyons (as in ‘any phase’ [Wil82]) with
statistics parameter α, and in the case α = 0 one again has bosons in the above com-
mon sense and for α = 1 fermions. We shall denote by T̂α the free kinetic energy operator
for anyons, and it turns out that there are two equivalent ways to model them rigorously:
either by means of topological boundary conditions, known in the literature as the anyon
gauge picture (see [MS95, DFT97] and Remark 3.29 below for a proper definition), or
using the ordinary bosons Ψ ∈ L2

sym(R2N ) or fermions Ψ ∈ L2
asym(R2N ) but with a peculiar

(again topological) magnetic interaction, which is known as the magnetic gauge picture.
Taking bosons at α = 0 as reference, the kinetic energy operator in the latter picture is
explicitly

T̂α :=

N∑
j=1

−i∇xj + α
∑
k 6=j

(xj − xk)
⊥

|xj − xk|2

2

, (3.53)

acting on the bosonic Hilbert space Hsym = L2
sym(R2N ), where x⊥ = (x, y)⊥ := (−y, x).

Note that for α 6= 0 this operator is singular at 44. One may take its Friedrichs extension
on the minimal domain C∞c (R2N \44)∩Hsym to define free anyons (see [LS14, Section 2.2],
[LL18, Section 1.1] and [CO18] for a mathematical discussion of the possible definitions).
Indeed there is a periodicity in the parameter α as in (3.52), manifested by conjugating
with even powers of the (unitary but also singular at 44) Bose-Fermi transmutation

U : Hsym → Hasym, Hasym → Hsym, UΨ(x) =
∏
j<k

exp
[
i arg(xj − xk)

]
Ψ(x). (3.54)

Finally, in the one-dimensional case it looks as if there are no non-trivial choices since
the fundamental group is trivial (the space C1×N

sym is simply connected, geometrically having

the form of a wedge-shaped subset of RN ), however in this case there are other ambigui-

ties leading to different quantizations T̂ (see e.g. [Pol99, Myr99] for physical reviews, and
[LS14, Section 2.1] for mathematical details). Intuitively, this is because a continuous ex-
change of two particles on the real line R necessarily leads to a collision and therefore one
needs to prescribe what happens at the collision points, while more formally it is because
the removal of the diagonals 44 introduces boundaries in the configuration space and thus
demands the specification of boundary conditions. However, most if not all of the known
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quantizations can in fact be modeled using bosons or fermions together with some choice
of pair interactions W , and thus we will in one dimension only consider the usual bosons
(3.47) or fermions (3.48).

Remark 3.27. The observable incorporation (3.45) of the indistinguishability of particles,
and its lifting to the phase ambiguity (3.46), or in general (3.50), may be viewed as a conse-
quence of the definition of quantum states in axiom A1, namely that a state is only defined
up to an equivalent ray in the Hilbert space H, and that states that cannot be distinguished
by any observable should be identified. Taking into account the overall normalization of
the state Ψ ∈ H, the position observable x ∈ Cd×Nsym , and its projection operator P x̂

Ω, which
together determine the amplitude of Ψ at every point, the only remaining ambiguity is the
pointwise phase of Ψ (see below for further details).

Also note that, because of the symmetry (3.45), the one-body density (3.41) simplifies to

%Ψ(x) = N

∫
Rd(N−1)

|Ψ(x,x1, . . . ,xN−1)|2 dx1 . . . dxN−1

for indistinguishable particles.

Remark 3.28. A further complication, which we will not find room to discuss in detail
here, is the concept of spin. Namely, relativistic quantum mechanics predicts that there
must be additional geometric degrees of freedom associated to every particle in the form
of a representation of angular momentum, labelled by its spin quantum number (cf. Exer-
cise 3.7), and furthermore that there is a direct connection between spin and statistics; see
e.g. [Frö90] for review. We will return to some consequences of this theory in Section 5.2.

Remark* 3.29. The proper geometric setting to think about the above quantization prob-
lem for identical particles is in the language of fiber bundles and connections (see e.g.
[Nak03]). Namely, locally Ψ: Ω ⊆ RdN → C is a function, but globally Ψ is a section
of a complex line bundle over the configuration space Cd×Nsym . If assumed to be locally
flat (which physically means that if the particles are not moving too much then they are

certainly distinguishable and should thus have the usual free kinetic energy T̂ ) such bun-
dles/connections are fully classified by the maps (3.50). Furthermore, just as we may have
reason to consider a larger Hilbert space H = L2(RdN ;Cn) for distinguishable particles,
where Cn is called an internal space, containing additional degrees of freedom on top
of the spatial ones, the one-dimensional fiber C may also be changed to Cn (or possibly
even some infinite-dimensional Hilbert space). For d = 2 this leads then to the notion of
non-abelian anyons, which are classified by irreducible unitary representations

ρ : BN → U(n) (3.55)

(the ones considered in (3.50) with n = 1 are in fact abelian anyons since phases commute;
a similar generalization also exists in the case d ≥ 3 but one may then argue that it can be
incorporated into the frameworks of ordinary bosons and fermions [Frö90, DR90]).

Let us consider how the above notions arise starting strictly from the axioms of quantum
mechanics. We thus attempt to sketch the formal procedure here, although we are not
aware of it having been done in complete detail elsewhere (see however [MD93, DGH99,
DŠT01]). Assume generally that we have been given a configuration space manifold C which
contains the observable positions x ∈ C of the system and whose topology describes how such
positions are logically related. Consider the Borel subsets Ω ⊆ C, and the corresponding
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observables “x ∈ Ω” ∈ O. These should be represented by self-adjoint operators ̂“x ∈ Ω” ∈
L(H) on some Hilbert space H, and must have eigenvalues 0 (false) or 1 (true) to represent

the outcome of such a measurement. In other words, these ̂“x ∈ Ω” = P x̂
Ω ∈ B(H) are in

fact projection operators on H. Considering the ranges of such projection operators,

hΩ := P x̂
ΩH ⊆ H,

we thus have a correspondence
hΩ ⊆ H
l
P x̂

Ω ∈ B(H)
l
Ω ⊆ C

between Borel subsets of C and closed subspaces of H.
Now take a smaller subset Ω′ ⊆ Ω and observe that clearly

“x ∈ Ω′”⇒ “x ∈ Ω”

so that the information brought by the former observable is finer than that brought by the
latter, implying P x̂

Ω′P
x̂
Ω = P x̂

Ω′ , and therefore hΩ′ ↪→ hΩ. Also, one may consider two subsets
Ωi,Ωj ⊆ C, and in the case that they overlap Ωi ∩ Ωj 6= ∅ we have two diagrams

Ωi Ωj

⊆ ⊆

Ωi ∩ Ωj

and

hΩi hΩj

↪→ ↪→

hΩi∩Ωj

. (3.56)

Thus, one may relate the space hΩi to hΩj , and vice versa, via the intersecting space hΩi∩Ωj .

Consider now the particular system at hand, that is the configuration space C = Cd×Nsym of

N indistinguishable particles on Rd. We start from the classical expression for the kinetic
energy

T (p) =
1

2m

N∑
j=1

|pj |2 ∈ O,

where p ∈ T ∗x (C) ∼= RdN is the cotangent vector at x ∈ C, and wish to look for quantizations

T̂ represented on a corresponding Hilbert space H. We require that any such quantization
must reduce to the usual one (3.35) for distinguishable particles as soon as the particles
indeed are distinguishable. In other words, upon restricting to a small enough subset Ω ⊆ C
— thereby imposing the knowledge with certainty that the particles are distinguishable —
we may consider the corresponding subspace hΩ = P x̂

ΩH as sitting in some Hilbert space
Hdist of distinguishable particles. By the Stone–von Neumann uniqueness theorem (see
Remark 3.13), with x ∈ RdN and p ∈ RdN satisfying the CCR (3.3)/(3.18) and represented
as self-adjoint operators on Hdist, we must have Hdist

∼= L2(RdN ) ⊗ F for some Hilbert
space F on which any remaining observables a ∈ O of the system may be represented (we
are here relaxing the irreducibility requirement in the Schrödinger representation in order
to be as general as possible and allow for other observables).

More precisely, and in order to also take operator domain issues into account, we may
initially consider states Ψ ∈ H that are completely localized on topologically trivial subsets
C ⊇ Ωj ↪→ RdN \44 of configurations of distinguishable particles. We thus take such Ψ ∈ hΩj
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and furthermore demand that 0 ≤ 〈T (p̂)〉Ψ < ∞ in order for such states to be physical.
The Hilbert space on which we represent x̂ as a multiplication operator and p̂ = −i~∇ as
a differentiation operator, in order to implement the CCR and the Weyl algebra, is then
L2(Ωj ;Fj) ∼= L2(Ωj) ⊗ Fj ⊆ Hdist for some undetermined space Fj ⊆ F . Taking the
minimal domain, Ψ ∈ C∞c (Ωj ;Fj), certainly ensures that states are physical with finite
kinetic energy and amounts, upon taking the closure of such states, to a form domain
Q(T̂ ) = H1

0 (Ωj ;Fj), i.e. the Dirichlet realization of T̂ on Ωj . On the other hand, one may
also consider a maximal domain, namely any states Ψ ∈ L2(Ω;Fj) for which one can make

finite sense of the form 〈Ψ, T̂Ψ〉 = (2m)−1 ‖∇Ψ‖2, which is Q(T̂ ) = D(∇) = H1(Ωj ;Fj),
the Neumann realization for distinguishable particles on Ωj . Since the former domain sits
in the latter, and we should try to be as unrestrictive as possible in our choices, let us then
only require that hΩj

∼= L2(Ωj ;Fj) 3 Ψ with (x̂Ψ)(x) = xΨ(x) and (p̂Ψ)(x) = −i~∇Ψ(x)

s.t.
∫

Ωj
‖∇Ψ‖2F <∞ for any physical states Ψ.

Hence we have obtained for each topologically trivial Ωj ⊆ C an isomorphism hΩj
∼=

L2(Ωj)⊗Fj . Let us then cover C by a finite collection {Ωj}j∈J of suitable such subsets. In
the case of N = 2 we may for example choose as Ωj , in terms of relative coordinates (X, r),

Ωj =
{

[(x1,x2)] ∈ Cd×2
sym : X ∈ Rd, r = rω, r > 0, ω ∈ Bε(nj) ∩ Sd−1

}
where {nj} ⊆ Sd−1 is a finite collection of unit vectors and ε > 0 is small enough. Further-
more, we may impose the symmetry in the system on the collection {Ωj}j∈J by requiring

that the subsets are related Ωi = RijΩj via symmetry transformations Rij : RdN → RdN
which extend to unitary operators Uij : hΩj → hΩi . We must therefore for all i, j ∈ J have
that

L2(Ωi)⊗Fi ∼= hΩi
∼= hΩj

∼= L2(Ωj)⊗Fj
and hence, since L2(Ωi) ∼= L2(Ωj), we find that Fi ∼= Fj ∀i, j ∈ J . Let us therefore denote
this prototype fiber Hilbert space by F .

Coming back to the general observation (3.56), now with hΩj
∼= L2(Ωj) ⊗ F for each

subset of the covering {Ωj}, we must on the subspace

L2(Ωi;F) ⊇ L2(Ωi ∩ Ωj ;F)←↩ hΩi∩Ωj ↪→ L2(Ωi ∩ Ωj ;F) ⊆ L2(Ωj ;F)

have an isomorphism acting locally in the fiber F ,

tij : L2(Ωi ∩ Ωj ;F) ⊆ L2(Ωi;F)→ L2(Ωj ;F), tij(x) ∈ U(F).

The data ({Ωj}, {tij},F) defines a vector bundle E → C with structure group G = U(F)
whose geometry is encoded in the transition functions {tij} and the connection. Given
that the connection is flat on each local piece Ωj (the operator ip̂ is the usual gradient ∇
on a piece of flat RdN ) and that transitions ought to be trivial whenever particles remain
distinguishable, we thus have a locally flat bundle, whose only non-trivial geometry is
classified using the non-trivial topology of C, more precisely the fundamental group π1(C)
(a well-known correspondence; see e.g. [MD93] and [Mic13, Chapter 5] for details), by
homomorphisms (representations)

ρ : π1(C)→ U(F).

In the case that F ∼= C resp. F ∼= Cn this then reduces to (3.50) resp. (3.55). In general the
dimension n of the fiber F would depend on whether there are additional observables in O
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which could distinguish n. If there are no such observables, then we should, by demanding
that all states be distinguishable (irreducibility), simply take n = 1.

We considered above local sections Ψ ∈ L2(Ωj ;F) ⊆ Γ(Ωj , E) which should be extended
to continuous global sections on E, for example by taking the closure of smooth sections.
The full Hilbert space is then the space of square-integrable sections

H =

{
Ψ ∈ Γ(C;E) :

∫
C
‖Ψ‖2F <∞

}
,

with the local requirement
∫

Ωj
‖∇Ψ‖2F < ∞ for physical states Ψ ∈ Γ(Ωj , E) then lifting

globally to yield the form domain

Q(T̂ ) =

{
Ψ ∈ H :

∫
C
‖∇Ψ‖2F <∞

}
.

By its non-negativity, this form qT̂ : Q(T̂ ) → R+ finally defines for us a unique (given the

bundle E, i.e. the representation ρ) non-negative self-adjoint operator T̂ = T̂ρ ∈ L(H), which
reduces on each local domain Ωj to the usual free kinetic energy (3.35) for distinguishable

particles with domains Q(T̂ |hΩj
) = H1(Ωj ;F) and D(T̂ |hΩj

) ⊆ H2(Ωj ;F).

In the case d = 2 and F ∼= C with (3.52) one may further trivialize the transition functions
tij ∈ U(1) on the bundle by the (singular) gauge transformation [Wu84a, Wu84b, Dow85]

Ψ 7→ UαΨ,

where U = U(x) in (3.54), resulting in the magnetic gauge picture for abelian anyons defined

by the operator T̂α = U−αT̂ρU
α in (3.53).

Note that the procedure of defining T̂ by means of the form domain really does matter,
namely if we start for simplicity from the flat but punctured bundle of distinguishable
particles E = (RdN \ 44) × F with trivial transition functions and consider all possible
operator extensions from the minimal domain C∞c (RdN \ 44;F), then those may (if d ≤ 3)
include point interactions [AGHKH05, BS92]. However, by considering instead the form
domain as above one obtains for d ≥ 2 uniquely the extension corresponding to free particles,
with Q(T̂ ) = H1(RdN ;F) and D(T̂ ) = H2(RdN ;F) (see [LS14] for the critical case d = 2).

We should finally remark that the choice of observables employed above corresponds to
the usual Schrödinger representation over an exchange-symmetric geometry. However, one
could alternatively start from a different choice of exchange-symmetric observables, such as

A = x2, B = p2, C =
1

2
(xp+ px),

where x ∈ R is a relative coordinate and p its momentum, and actually arrive at a dif-
ferent family of quantizations. This approach has been referred to in the literature as the
Heisenberg representation for identical particles (see e.g. [Myr99]).

Exercise 3.13. The braid group BN can be defined as the abstract group generated by
elements τj, j = 1, 2, . . . , N − 1, (and their inverses) satisfying the braid relations

τjτk = τkτj , for |j − k| ≥ 2, and τjτj+1τj = τj+1τjτj+1, 1 ≤ j ≤ N − 2,

(the latter are also called Yang-Baxter relations). Show that these relations imply that
if ρ : BN → U(1) is a representation, i.e. a homomorphism ρ(xy) = ρ(x)ρ(y), then it is
uniquely defined by its values on the generators ρ(τj) = eiαjπ, j = 1, 2, . . . , N − 1, and
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1 2 . . . j . . . N
= =

Figure 1. Braid diagrams corresponding to the generator τj of BN , i.e. a
counterclockwise exchange of particles/strands j and j+1 with time running
upwards, and the relations τ1τ2τ1 = τ2τ1τ2 respectively τ1τ3 = τ3τ1 of B4.

furthermore that eiα1π = . . . = eiαN−1π =: eiαπ. Also, show that if the additional relations
τ2
j = 1, j = 1, . . . , N − 1, are added then the resulting group is SN and that the only

possibilities for ρ are then (3.51).

Exercise 3.14. We may represent a general particle exchange in two dimensions, or an
element of BN , using a braid diagram, i.e. an arbitrary composition of simple braids of
N strands, with each simple braid τj formed by taking the j:th strand over the j+1:st strand;
see Figure 3.7. Show using such braid diagrams that if the phase associated to a simple two-
particle exchange is ρ(τj) = eiαπ, then the phase that will arise as one particle encircles p
other particles in a simple loop is ei2pαπ, while if a pair of particles is exchanged once and
in the exchange loop they enclose p other particles then the phase must be ei(2p+1)απ.

Exercise 3.15. Consider the corresponding braid group defined with the particles situated
on the surface of the sphere S2 instead of R2. Show that in this case there is an extra
topological condition on the generators,

τ1τ2 . . . τN−1τN−1 . . . τ2τ1 = 1,

and determine the possible values of the statistics parameter α.
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4. Uncertainty principles

We will now investigate the most important feature of quantum mechanics as compared
to classical mechanics, namely the consequence of the non-commutativity of position and
momentum observables referred to as the uncertainty principle. Namely, as made famous
by Heisenberg, for two non-commuting observables a and b and a state ψ ∈ H, we have that〈(

â− 〈â〉ψ
)2〉

ψ

〈(
b̂− 〈b̂〉ψ

)2〉
ψ
≥ 1

4

∣∣∣∣〈[â, b̂]
〉
ψ

∣∣∣∣2 =
~2

4

∣∣∣∣〈{̂a, b}〉ψ
∣∣∣∣2 .

On the l.h.s. stands the product of the variances of a measurement of a and b, while the
r.h.s. depends on the quantization of the observable {a, b} and its expectation in ψ, which
in the case that {a, b} = const. 6= 0 is strictly positive independently of ψ. Therefore this
inequality has the physical interpretation that it is impossible to know the value of both
a and b simultaneously to arbitrary precision. The most important case is the canonical
position and momentum operators, x̂j and p̂k, and we will in this section formulate various
versions of the uncertainty principle involving these operators. We set ~ = 1 for simplicity.

Exercise 4.1. Prove the more general relation, known as the Robertson–Schrödinger
uncertainty relation, (with ψ in a common dense domain of all the operators)〈(

â− 〈â〉ψ
)2〉

ψ

〈(
b̂− 〈b̂〉ψ

)2〉
ψ
≥
∣∣∣∣12 〈âb̂+ b̂â

〉
ψ
− 〈â〉ψ〈b̂〉ψ

∣∣∣∣2 +

∣∣∣∣12 〈[â, b̂]
〉
ψ

∣∣∣∣2 ,
by considering 〈f, g〉 with f = (â− 〈â〉ψ)ψ and g = (b̂− 〈b̂〉ψ)ψ.

4.1. Heisenberg. Recall the canonical commutation relations (3.18),

[x̂j , p̂k] = iδjk1.

In particular,

i(p̂ · x̂− x̂ · p̂) = i

d∑
j=1

(p̂j x̂j − x̂j p̂j) =

d∑
j=1

δjj1 = d1,

or in the usual Schrödinger representation (∇ here acts as an operator on everything to the
right)

∇ · x− x · ∇ = d1. (4.1)

This identity can be used together with the Cauchy-Schwarz inequality to prove the most
famous version of the uncertainty principle of quantum mechanics:

Theorem 4.1 (Heisenberg’s uncertainty principle). For any ψ ∈ L2(Rd) with ‖ψ‖L2 =
1, we have

〈ψ, p̂2ψ〉〈ψ, x̂2ψ〉 ≥ d2

4
. (4.2)

Remark 4.2. By means of the Fourier transform, the l.h.s. should be understood to be∫
Rd
|∇ψ(x)|2dx

∫
Rd
|xψ(x)|2dx =

∫
Rd
|pψ̂(p)|2dp

∫
Rd
|xψ(x)|2dx,

which is finite if and only if both these integrals converge, i.e. ψ ∈ H1(Rd)∩D(x̂). Moreover,
by replacing ψ(x) by eix·p0ψ(x + x0), the inequality may also be written〈

(p̂− p0)2
〉
ψ

〈
(x̂− x0)2

〉
ψ
≥ d2

4
. (4.3)
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This formulation of the uncertainty principle is the original and most well-known one
[Hei27], and indeed it tells us that if the state ψ localizes around the origin so that the r.h.s.
of the inequality

〈ψ, p̂2ψ〉 ≥ d2

4
〈ψ, x̂2ψ〉−1 (4.4)

tends to infinity, then this also implies a large momentum. However, as stressed e.g. in
[Lie76] (see also [LS10]), this is unfortunately not sufficient for proving stability of the
hydrogenic atom. Namely, the expectation value

〈
ψ, x̂2ψ

〉
is a poor measure of how localized

the state is, since it is possible to make this value very large without changing the kinetic
energy much. Consider for example the state

ψ(x) =
√

1− ε2u(x) + εv(x− y),

with ε ∈ (0, 1), u, v ∈ C∞c (B1(0)) normalized in L2, and |y| > 2. Then
∫
Rd |ψ|

2 = 1 and∫
Rd
|x|2|ψ(x)|2 dx = (1− ε2)

∫
B1(0)

|x|2|u(x)|2 dx + ε2

∫
B1(0)

|y + z|2|v(z)|2 dz ≥ ε2(|y| − 1)2,

while ∫
Rd
|∇ψ(x)|2 dx = (1− ε2)

∫
B1(0)

|∇u(x)|2 dx + ε2

∫
B1(0)

|∇v(x)|2 dx.

Hence, we may take simultaneously ε � 1 and |y| � ε−1 to make the r.h.s. of (4.4) small
while the l.h.s. stays essentially the same.

Before considering formulations that are more useful for our stability problem, we note
that there is also the following version of the Heisenberg uncertainty principle which explains
that a state ψ ∈ H\{0} and its Fourier transform ψ̂ cannot both have compact support (see
e.g. [Tes14, Theorem 7.12] for a proof, and e.g. [Ben85, Hed12] for various generalizations):

Theorem 4.3. Suppose f ∈ L2(Rn). If both f and f̂ have compact support, then f = 0.

In other words, recalling our interpretations of |ψ(x)|2 respectively |ψ̂(p)|2 for a normalized
state ψ as probability densities for the observables x respectively p, this theorem tells us
that it is impossible to know with certainty that both x ∈ BR(0) and p ∈ BR′(0), regardless
of the size of the radii R,R′ > 0. Furthermore, in any possible state of the system at least
one of these conjugate observables must take arbitrarily large values.

Exercise 4.2. Prove (4.2) and (4.3) for ψ ∈ C∞c (Rd) by taking expectation values of the
relation (4.1). How can this be extended to L2(Rd)?

Exercise 4.3. Check that the Gaussian wave packet

ψ(x) = (λ/π)1/4e−
λ
2
|x−x0|2+ip0x,

for any λ > 0, is normalized and realizes the minimum of (4.3) in dimension d = 1.

4.2. Hardy. A more powerful version of the uncertainty principle is Hardy’s inequality:

Theorem 4.4 (The Hardy inequality). For any u ∈ H1(Rd) in dimension d ≥ 2, and
for any u ∈ H1

0 (R \ {0}) in dimension d = 1, we have that∫
Rd
|∇u(x)|2 dx ≥ (d− 2)2

4

∫
Rd

|u(x)|2

|x|2
dx. (4.5)
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Remark 4.5. The constant (d− 2)2/4 is sharp (and the inequality trivial for d = 2), in the
sense that for any larger constant there is a function u ∈ C∞c (Rd \ {0}) which violates it
(see below and e.g. [Lun15, Appendix B] for a continued discussion).

Remark 4.6. The inequality (4.5) of quadratic forms translates to the following operator
inequality:

−∆ ≥ (d− 2)2

4

1

|x|2
,

with both sides interpreted as non-negative operators on L2(Rd) having a common form
domain Q(−∆Rd) = H1(Rd), d ≥ 2, respectively Q(−∆R\{0}) = H1

0 (R \ {0}).

Many other types of Hardy inequalities exist, and their general defining characteristic
is that they provide a bound for the Laplacian (and hence for the kinetic energy T̂ ) from
below in terms of a positive potential V which scales in the same way, i.e. as an inverse-
square length or distance, and which is singular at some point of the configuration space
or its boundary. In other words, in case such a non-trivial inequality holds, we clearly
have that the kinetic energy is not only non-negative but it even tends to infinity if the
state is sufficiently localized close to such a singularity of V . We refer to the recent book
[BEL15] and the more classic references given in [Tid05] for general treatments of Hardy
inequalities. Although the basic inequality (4.5) is fairly straightforward to prove directly,
we will instead take a very general approach to proving Hardy inequalities, involving a
formulation referred to as the ‘ground state representation’. This approach is not covered
by the above standard references but has been discussed in various forms in for example
[Bir61, AHKS77, FS08, FSW08, Sei10, Lun15].

Exercise 4.4. Show that
〈
ψ, |x|−2ψ

〉
≥
〈
ψ, |x|2ψ

〉−1
if ‖ψ‖ = 1, and hence that Hardy

(4.5) directly implies Heisenberg (4.2) but with a slightly weaker constant.

4.2.1. The ground state representation. We consider the following identity involving the
quadratic form of the Dirichlet Laplacian on a domain in Rn, which we refer to as the
ground state representation (GSR):

Proposition 4.7 (GSR). Let Ω be an open set in Rn and let f : Ω→ R+ := (0,∞) be twice
differentiable. Then, for any u ∈ C∞c (Ω) and α ∈ R,∫

Ω
|∇u|2 =

∫
Ω

(
α(1− α)

|∇f |2

f2
+ α
−∆f

f

)
|u|2 +

∫
Ω
|∇v|2f2α, (4.6)

where v = f−αu.

Proof. We have for u = fαv that ∇u = αfα−1(∇f)v + fα∇v, and hence

|∇u|2 = α2f2(α−1)|∇f |2|v|2 + αf2α−1(∇f) · ∇|v|2 + f2α|∇v|2.
Now let us integrate this expression over Ω, and note that the middle term on the r.h.s.
produces after a partial integration (note that v vanishes on ∂Ω)

−α
∫

Ω
|v|2∇ · (f2α−1∇f).

Finally, using that

∇ · (f2α−1∇f) = (2α− 1)f2α−2|∇f |2 + f2α−1∆f,
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and collecting the terms we arrive at (4.6). �

The idea of the ground state representation is to factor out a positive function fα from
the kinetic energy form, to the cost of a new potential

α(1− α)
|∇f |2

f2
+ α
−∆f

f
, (4.7)

which we will call the GSR potential. Note that if f is chosen to be an exact zero-
eigenfunction of the Laplacian, ∆f = 0, i.e. a harmonic function, or a generalized ground
state of the kinetic energy operator (not necessarily normalizable on L2(Ω) or in the form
domain), then the last term of (4.7) vanishes while the first is positive and maximal for
the choice α = 1/2. Since the last integral in (4.6) is also non-negative this then yields
a potentially useful estimate of the kinetic energy form in terms of this positive potential.
Also in the case that f is not an exact zero-eigenfunction but for example an approximation
to the true ground state, the first term in the potential (4.7) may still be able to control
the second one and produce a useful positive bound. The parameter α may then be used
in a variational sense to find the best possible bound given the ansatz f , which if the
exact ground state is unknown instead may be taken of a form which is convenient for
computations.

Exercise 4.5. Show that a modification of Proposition 4.7 to involve a product ground state
ansatz gαhβ (i.e. u = gαhβv) produces the corresponding GSR potential

α(1− α)
|∇g|2

g2
+ α
−∆g

g
+ β(1− β)

|∇h|2

h2
+ β
−∆h

h
− 2αβ

∇g · ∇h
gh

. (4.8)

Exercise 4.6. Apply the ground state approach to prove a Hardy inequality on [0, 1], i.e.
find functions g and h on [0, 1] s.t. g(0) = 0 and g′′ = 0, and h(1) = 0 and h′′ = 0, compute
the GSR potential (4.8) and try to optimize it w.r.t. α and β.

4.2.2. The standard Hardy inequalities in Rd. Our approach to prove the standard Hardy
inequality (4.5) is to first prove that it holds for all u ∈ C∞c (Rd \ {0}) (this is a minimal
domain respecting the singularity of the potential) using the above ground state represen-
tation, and then conclude that it also holds on the Sobolev space H1

0 (Rd \ {0}) by density.
Finally, we prove that actually H1

0 (Rd \ {0}) = H1(Rd) if the dimension d is large enough,
a result which is also very useful in itself.

A natural choice of ground states f for the Laplacian in Rd are the fundamental solu-
tions:

d 6= 2 : fd(x) := |x|−(d−2), ∆Rdfd = cdδ0, (4.9)

d = 2 : f2(x) := ln |x|, ∆R2f2 = c2δ0,

where δ0 are Dirac delta distributions supported at the origin and cd some constants which
only depend on d (see Exercise 4.7). These functions are smooth and strictly positive for
all x 6= 0 if d 6= 2, while for d = 2 we may cure the sign problem by taking absolute values,
but still need to avoid both the origin x = 0 and the circle |x| = 1 (a different nonzero
radius may be chosen by rescaling). Indeed we cannot expect to have a non-trivial Hardy
inequality on all of R2, as indicated by the vanishing constant in (4.5).

Hence, for d 6= 2 we consider the domain Ω := Rd \ {0}, on which f := fd > 0 and
∆f = 0, while |∇f |2/f2 = (d − 2)2/|x|2. The GSR potential (4.7) is therefore optimal for
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α = 1
2 , and (4.6) yields the ground state representation associated to the standard Hardy

inequality (4.5) in Rd:∫
Ω
|∇u(x)|2 dx− (d− 2)2

4

∫
Ω

|u(x)|2

|x|2
dx =

∫
Ω
|∇v(x)|2|x|−(d−2) dx ≥ 0. (4.10)

The inequality (4.10) thus holds for all u ∈ C∞c (Ω). Now, if we take an arbitrary function
u in the Sobolev space H1

0 (Ω), then we have by its definition a sequence (un) ⊂ C∞c (Ω) s.t.∫
Ω
|u− un|2 → 0, and

∫
Ω
|∇(u− un)|2 → 0.

We then find by (4.10) that this sequence is also Cauchy in the space L2(Ω, |x|−2dx) weighted
by the singular GSR potential:∫

Ω
|un − um|2 |x|−2dx ≤ 4

(d− 2)2

∫
Ω
|∇(un − um)|2 → 0,

which implies for the limit u ∈ L2(Ω, |x|−2dx). Furthermore, taking n→∞,∫
Ω
|u− um|2 |x|−2dx ≤ 4

(d− 2)2

∫
Ω
|∇(u− um)|2 → 0,

and therefore, by approximating both sides of the desired inequality in terms of um ∈ C∞c ,∫
Ω
|u|2 |x|−2dx ≤ 4

(d− 2)2

∫
Ω
|∇u|2,

which proves the Hardy inequality (4.5) on the space H1
0 (Rd \ {0}) ⊆ H1(Rd).

It remains then to prove that actually H1
0 (Rd \ {0}) = H1(Rd), so that the Hardy in-

equality indeed holds on the maximal form domain of the Laplacian.

Lemma 4.8. We have that H1
0 (Rd \ {0}) = H1(Rd) for d ≥ 2.

Remark 4.9. It is not true that H1
0 (R \ {0}) = H1(R), but one rather has a decomposition

H1
0 (R \ {0}) ∼= H1

0 (R−)⊕H1
0 (R+)

in one dimension.

Proof of Lemma 4.8. We aim to prove that C∞c (Rd\{0}) is dense in H1(Rd). Since C∞c (Rd)
is dense in H1(Rd) (recall from Section 2.4 that we have H1

0 (Rd) = H1(Rd)) it suffices to
prove that an arbitrary u ∈ C∞c (Rd) can be approximated arbitrarily well by a sequence
(un) ⊂ C∞c (Rd \ {0}) in the H1(Rd)-norm. For d ≥ 3 we take a cut-off function ϕ ∈
C∞(Rd; [0, 1]) such that ϕ(x) = 0 for |x| ≤ 1 and ϕ(x) = 1 for |x| ≥ 2, and let

uε(x) := ϕε(x)u(x), ϕε(x) := ϕ(x/ε),

for ε > 0. Then uε ∈ C∞c (Rd \Bε(0)) and, as ε→ 0,

‖u− uε‖2L2 =

∫
Rd
|u− uε|2 =

∫
Rd
|u|2|1− ϕε|2 ≤

∫
B2ε(0)\Bε(0)

C → 0.

Furthermore, by the product rule and the triangle inequality,

‖∇(u− uε)‖L2 ≤ ‖(1− ϕε)∇u‖L2 + ‖(∇ϕε)u‖L2 ,
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with ‖(1− ϕε)∇u‖2L2 → 0 as above and

‖(∇ϕε)u‖2L2 =

∫
Rd
|u|2|∇ϕε|2 ≤ C

∫
B2ε(0)\Bε(0)

|∇ϕε|2 ≤ Cε−2|B2ε(0)| ≤ Cεd−2 → 0,

as ε→ 0.
In the case d = 2 the above choice fails but we may instead take ϕε(x) = ϕ(ε ln |x|)

with ϕ ∈ C∞(R; [0, 1]) such that ϕ = 0 on (−∞,−2) and ϕ = 1 on (−1,∞). Then
uε := ϕεu ∈ C∞c (R2 \ Be−2/ε(0)), and again ‖u− uε‖L2 → 0 and ‖(1− ϕε)∇u‖L2 → 0 as
above. Moreover, by first switching to polar coordinates and then making the change of
variable r = es,

1

2π

∫
R2

|∇ϕε|2 dx = ε2

∫ ∞
0
|ϕ′(ε ln r)|2dr

r
= ε2

∫ −1/ε

−2/ε
|ϕ′(εs)|2 ds ≤ Cε→ 0,

as ε→ 0, which completes the proof. �

The above proves Theorem 4.4, and may also be straightforwardly generalized in numer-
ous directions. For d = 2 we can instead take the two-component domain Ω := R2\({0}∪S1)
and the ground state f := |f2|, so that f > 0 and ∆f = 0 on Ω. Also, |∇f(x)| = 1/|x|.
Proposition 4.7 then produces the corresponding two-dimensional GSR for u ∈ C∞c (Ω)∫

Ω
|∇u|2 dx− 1

4

∫
Ω

|u(x)|2

|x|2(ln |x|)2
dx =

∫
Ω
|∇v|2

∣∣ ln |x|∣∣ dx ≥ 0. (4.11)

By taking the closure of u ∈ C∞c (Ω) as above and using Lemma 4.8 locally around the point
0, the l.h.s. of (4.11) is non-negative for all u ∈ H1

0 (Ω) = H1
0 (R2 \S1). Hence we proved the

following two-dimensional Hardy inequality:

Theorem 4.10. For any u ∈ H1
0 (R2 \ S1) we have that∫

R2

|∇u|2 dx ≥ 1

4

∫
R2

|u(x)|2

|x|2(ln |x|)2
dx. (4.12)

Also note that we are free to choose the location of the singularity in the Hardy inequality,
namely by translation invariance of the kinetic energy we also have for example∫

Rd
|∇u(x)|2 dx ≥ (d− 2)2

4

∫
Rd

|u(x)|2

|x− x0|2
dx,

for any x0 ∈ Rd and u ∈ H1(Rd), d ≥ 3, respectively u ∈ H1
0 (R1 \ {x0}).

Exercise 4.7. Verify that (4.9) are the fundamental solutions, i.e. zero-eigenfunctions of
the Laplacian outside 0, and, if you know distribution theory, compute the constants cd (i.e.
consider

∫
Rd f∆ϕ for ϕ ∈ C∞c (Rd) and make partial integrations).

Exercise 4.8. Prove that the inequality (4.12) does not extend to H1(R2).

Exercise 4.9. Prove a Hardy inequality outside the hard-sphere potential of Example 3.20
in d = 3, by taking the ground state f(x) = 1 − R/|x|. Can it be improved by using an
additional ground state g(x) = 1/|x|?
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4.2.3. Many-body Hardy inequalities. In [Tid05, HOHOLT08] a number of interesting and
useful many-body versions of the Hardy inequality were derived. Some of these were ex-
tended geometrically in [Lun15]. We only mention the simplest, one-dimensional, case
here, and return to some other, fermionic as well as anyonic, versions in conjunction with
exclusion principles in Section 5.

Recall the definition (3.49) of the many-body configuration space diagonal 44.

Theorem 4.11. For any u ∈ H1
0 (RN \ 44) we have that∫

RN
|∇u|2 dx ≥ 1

2

∑
1≤j<k≤N

∫
RN

|u(x)|2

|xj − xk|2
dx.

This inequality is useful for the analysis of Calogero–Sutherland [Cal71, Sut71] and
similar models in many-body quantum mechanics involving inverse-square interactions. It
proves immediately that an interacting many-body Hamiltonian of the form

ĤN = T̂ + βŴ = −
N∑
j=1

∂2

∂x2
j

+ β
∑

1≤j<k≤N

1

|xj − xk|2
,

with form domain Q(ĤN ) = H1
0 (RN \ 44), is trivially stable (of both first and second

kind) if the interaction coupling strength parameter satisfies β ≥ −1/2, i.e. if it is not too
attractive.

Exercise 4.10. Prove that for any three distinct points x1, x2, x3 ∈ R,

(x1 − x2)−1(x1 − x3)−1 + (x2 − x3)−1(x2 − x1)−1 + (x3 − x1)−1(x3 − x2)−1 = 0.

Exercise 4.11. Use this identity and the ansatz f(x) :=
∏
j<k |xj − xk| on Ω := RN \44 to

prove the one-dimensional many-body GSR∫
Ω
|∇u|2 dx− 1

2

∑
j<k

∫
Ω

|u(x)|2

|xj − xk|2
dx =

∫
Ω
|∇(f−1/2u)|2f ≥ 0,

for u ∈ C∞c (Ω), and hence Theorem 4.11.

4.3. Sobolev. Another very powerful formulation of the uncertainty principle is given by
Sobolev’s inequality:

Theorem 4.12 (The Sobolev inequality). For d ≥ 3 and all u ∈ H1(Rd), it holds that∫
Rd
|∇u|2 ≥ Sd ‖u‖22d/(d−2) , (4.13)

with Sd = d(d−2)|Sd|2/d/4. For d = 2 and every 2 < p <∞ there exists a constant S2,p > 0
such that for any u ∈ H1(R2),∫

R2

|∇u|2 ≥ S2,p ‖u‖−4/(p−2)
2 ‖u‖2p/(p−2)

p . (4.14)

For d = 1 one has for u ∈ H1(R),∫
R
|u′|2 ≥ ‖u‖−2

2 ‖u‖
4
∞ . (4.15)
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Remark 4.13. In (4.13) the assumption u ∈ H1(Rd) may be weakened slightly but vanishing
at infinity is of course required; see [LL01, Section 8.2-8.3].

The constants Sd respectively S1 = 1 in the case d ≥ 3 and d = 1 are sharp (see

[Aub75, Tal76], and e.g. [LL01]), with S3 = 3(π/2)4/3 ≈ 5.478, while the value of the
optimal constant S2,p for d = 2 is presently unknown (a very rough but explicit estimate
may be obtained from [LL01, Theorem 8.5]). Also note as usual the necessary match of
dimensions in these inequalities (cf. the remark after Proposition 2.7) which not only helps
to remember them but also clarifies why an inequality of the simpler form (4.13) cannot
extend to d ≤ 2.

Proof for d = 1. By the fundamental theorem of calculus applied to an approximating se-
quence un ∈ C∞c (R) (see [LL01, Theorem 8.5] for details), one has for any u ∈ H1(R) and
a.e. x ∈ R

u(x)2 =

∫ x

−∞
u(y)u′(y) dy −

∫ ∞
x

u(y)u′(y) dy.

Therefore, by the triangle inequality,

|u(x)|2 ≤
∫ x

−∞
|u||u′|+

∫ ∞
x
|u||u′| =

∫ ∞
−∞
|u||u′|,

and thus by the Cauchy–Schwarz inequality,

‖u‖2∞ ≤ ‖u‖2‖u′‖2,

which is (4.15). �

We shall not give a proof of Theorem 4.12 for d = 2 for general p > 2 here, but refer
instead to e.g. [LL01, Theorem 8.5]. A proof for the important special case p = 4 will
be given below. For d ≥ 3 we follow a proof which is closer in spirit to those of upcoming
specializations of the uncertainty principle, and which was given in [Len13] based on [CX97].
It also generalizes straightforwardly to fractional Sobolev spaces but does not yield the
optimal constant Sd however.

Proof for d ≥ 3. Let u ∈ H1(Rd) and set q = 2d/(d− 2). Using the unitary Fourier trans-
form û = Fu we may decompose u into low- and high-frequency parts, u = u−P + u+

P ,
with

u−P := F−1
[
1BP (0) û

]
and u+

P := F−1
[
1BP (0)c û

]
,

for an arbitrary momentum/frequency P > 0 to be chosen below. We then use that

‖u‖qq =

∫ ∞
t=0

∣∣{|u| > t}
∣∣ d(tq), (4.16)

by the layer-cake representation (2.5), and that by the triangle inequality |u| ≤ |u−P |+ |u
+

P |,

{|u| > t} ⊆ {|u−P | > t/2} ∪ {|u+

P | > t/2}. (4.17)
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Now, note that by the Fourier inversion formula, ‖f‖∞ ≤ (2π)−d/2‖f̂‖1, so that

(2π)d/2‖u−P ‖∞ ≤
∥∥Fu−P∥∥1

=

∫
BP (0)

1

|p|
|pû(p)| dp ≤

(∫
BP (0)

dp

|p|2

)1/2

‖F(∇u)‖2

=

(
|Sd−1|
d− 2

)1/2

P
d−2

2 ‖∇u‖2 ,

by Cauchy–Schwarz. Hence, if we choose

P = P (t) :=

(
(d− 2)(2π)d

|Sd−1|‖∇u‖22
t2

4

) 1
d−2

=: Cd(t/‖∇u‖2)
2
d−2

then |{|u−P | > t/2}| = 0, and we obtain in (4.16)-(4.17)

‖u‖qq ≤
∫ ∞
t=0

∣∣{|u+

P (t)| > t/2}
∣∣ d(tq) ≤

∫ ∞
t=0

4‖u+

P (t)‖
2
2/t

2 d(tq),

by Chebyshev’s inequality (2.6). Thus,

‖u‖qq ≤ 4q

∫ ∞
0
‖Fu+

P (t)‖
2
2 t
q−3dt = 4q

∫ ∞
0

∫
BP (t)(0)c

|û(p)|2dp tq−3dt,

and by Fubini’s theorem and inverting the relation

|p| ≥ P (t) ⇔ t ≤ ‖∇u‖2(|p|/Cd)
d−2

2 =: Λ(p),

we have

‖u‖qq ≤ 4q

∫
Rd
|û(p)|2

∫ Λ(p)

0
tq−3dt dp =

4q

q − 2
C−2
d ‖∇u‖

q−2

∫
Rd
|û(p)|2|p|2 dp

= 2dC−2
d ‖∇u‖

q.

This proves the Sobolev inequality (4.13) with the constant

S′d = (2dC−2
d )−2/q =

(2π)2

(2d)
d−2
d

(
d− 2

4

) 2
d

|Sd−1|−
2
d ,

which for d = 3 is S′3 = π4/3/(2 · 31/3) ≈ 1.595. �

4.3.1. Sobolev from Hardy. Alternatively, the Sobolev inequality for d ≥ 3 actually also
follows from the Hardy inequality, by the method of rearrangements; see [FS08, Sei10].
Namely, for any radial, non-negative decreasing function u : Rd → R+ one has the inequality

‖u‖pp =

∫
Rd
u(y)p dy ≥ u(x)p|x|d|Bd|

for any x ∈ Rd and p > 2, where Bd = B1(0) denotes the unit ball in Rd. Taking both sides

to the power 1− 2/p, multiplying by u(x)2|x|−d(1−2/p) and integrating over x, one obtains∫
Rd

u(x)2

|x|d(1−2/p)
dx ≥ |Bd|1−2/p ‖u‖2p .

Taking p = 2d/(d− 2), the l.h.s. reduces to the r.h.s. of the Hardy inequality (4.5) and thus
Hardy implies Sobolev for such u ∈ H1(Rd). Finally, one may use a symmetric-decreasing
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rearrangement (we refer to e.g. [LL01, Chapter 3] for details) to reduce an arbitrary u ∈
H1(Rd) to such a non-negative decreasing radial function u∗, with the properties ‖u‖p =
‖u∗‖p and ‖∇u‖2 ≥ ‖∇u∗‖2. The first property follows by the layer-cake representation
while last property is the non-trivial one, and it would be too much of a detour to try to
cover this approach here.

4.4. Gagliardo–Nirenberg–Sobolev. Note that by an application of Hölder’s inequality,
for d ≥ 3, ∫

Rd
|u|2(1+2/d) ≤ ‖u‖4/d2 ‖u‖

2
2d/(d−2), (4.18)

and thus by the Sobolev inequality (4.13),(∫
Rd
|∇u|2

)(∫
Rd
|u|2
)2/d

≥ Sd
∫
Rd
|u|2(1+2/d). (4.19)

This is another formulation of the uncertainty principle known as a Gagliardo–Nirenberg–
Sobolev (GNS) inequality. Note that such an inequality also follows in d = 2 directly
from (4.14) with p = 4, and that in d = 1 one has from (4.15) that∫

R
|u|6 ≤ ‖u‖4∞‖u‖22 ≤ ‖u‖42‖u′‖22.

Hence (4.19) takes the same form in all dimensions d ≥ 1, and we shall here present an
independent and simple proof for it which also allows for many useful generalizations (this
is the one-body version of a proof due to Rumin of a more general kinetic energy inequality,
which will be given later in Theorem 6.1).

Theorem 4.14 (Gagliardo–Nirenberg–Sobolev inequality — one-body version). For any
d ≥ 1 there exists a constant Gd > 0 such that for all u ∈ H1(Rd)∫

Rd
|∇u|2 ≥ Gd

(∫
Rd
|u|2
)−2/d ∫

Rd
|u|2(1+2/d). (4.20)

Remark 4.15. The optimal constant satisfies G1 = π2/4 > 1, G2 = S2,4, respectively
Gd ≥ Sd for d ≥ 3, and for all d ≥ 1 we also have the explicit lower bound

Gd ≥ G′d :=
(2π)2d2+2/d|Sd−1|−2/d

(d+ 2)(d+ 4)
. (4.21)

The exact value of the optimal constant Gd≥2 is presently unknown but numerical work
suggests G3 ≈ 9.578, to be contrasted with S3 ≈ 5.478 and G′3 ≈ 3.907 (see [LT76, Lie76],
and also [Lev14] for more recent related numerical work, as well as [BVV18b, FHJN18]).

Proof. We decompose an arbitrary u ∈ H1(Rd) into parts corresponding to low respectively
high kinetic energy according to u = uE,− + uE,+, with an energy cut-off E > 0, and

uE,− := F−1
[
1{|p|2≤E} û

]
and uE,+ := F−1

[
1{|p|2>E} û

]
.
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Then by the unitarity of the Fourier transform, and Fubini,∫ ∞
0

∫
Rd
|uE,+(x)|2 dx dE =

∫ ∞
0

∫
Rd
|ûE,+(p)|2 dp dE =

∫
Rd

∫ |p|2
0
|û(p)|2 dE dp (4.22)

=

∫
Rd
|p|2|û(p)|2 dp =

∫
Rd
|∇u(x)|2 dx.

For the low-energy part we use that by Fourier inversion and Cauchy–Schwarz

|uE,−(x)| =
∣∣∣∣(2π)−d/2

∫
Rd
1{|p|2≤E}û(p)eip·x dp

∣∣∣∣ (4.23)

≤ (2π)−d/2|BE1/2(0)|1/2‖û‖2 = (2π)−d/2d−1/2|Sd−1|1/2Ed/4‖u‖2.

Now, combining (4.22) and (4.23) with the pointwise triangle inequality

|uE,+(x)| ≥
[
|u(x)| − |uE,−(x)|

]
+
, (4.24)

yields the bound∫
Rd
|∇u(x)|2 dx ≥

∫ ∞
0

∫
Rd

[
|u(x)| − (2π)−d/2d−1/2|Sd−1|1/2‖u‖2Ed/4

]2

+
dx dE.

Again changing the order of integration and then carrying out the integral over E, with∫ ∞
0

[
A−Btd/4

]2

+
dt =

d2A2+4/dB−4/d

(d+ 2)(d+ 4)
, (4.25)

one finally obtains∫
Rd
|∇u(x)|2 dx ≥ (2π)2d2+2/d|Sd−1|−2/d

(d+ 2)(d+ 4)
‖u‖−4/d

2

∫
Rd
|u|2(1+2/d).

This also produces the bound (4.21) for the optimal constant Gd while for d ≥ 3 this may
be improved by (4.19). �

We have also the following many-body version of the GNS inequality:

Theorem 4.16 (Gagliardo–Nirenberg–Sobolev inequality — many-body version). For any
d ≥ 1, N ≥ 1, and every L2-normalized N -body state Ψ ∈ H1(RdN ),

N∑
j=1

∫
RdN
|∇jΨ|2 ≥ GdN−2/d

∫
Rd
%

1+2/d
Ψ ,

where the constant Gd is the same as in Theorem 4.14.

This can be proved either by directly generalizing the above proof (Exercise 4.13) or by
using the following inequality and then an application of Theorem 4.14 to u =

√
%Ψ.

Lemma 4.17 (Hoffmann-Ostenhof inequality). For any d ≥ 1, N ≥ 1, and every
L2-normalized N -body state Ψ ∈ H1(RdN ),

N∑
j=1

∫
RdN
|∇jΨ|2 ≥

∫
Rd
|∇√%Ψ|2. (4.26)
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The inequality (4.26) is actually equivalent to its one-body version, i.e. the simple in-
equality ∫

Rd
|∇u|2 ≥

∫
Rd

∣∣∇|u|∣∣2. (4.27)

This is known as a diamagnetic inequality because it holds in greater generality also
involving magnetic fields, namely the gradient ∇u ≈ ei(arg u)∇|u| + iu∇(arg u) may be
replaced by (∇ + iA)u, where A ∈ L2

loc(Rd;Rd) is a magnetic vector potential (see e.g.
[LL01, Theorem 7.21] for a proof). The many-body version (4.26) was first proved in
[HH77] (see also e.g. [Lew15, Lemma 3.2] for a simple generalization and proof).

Exercise 4.12. Prove the inequality (4.18).

Exercise 4.13. Prove Theorem 4.16 by defining for each x = (x1, . . . ,xj−1,xj+1, . . . ,xN ) ∈
Rd(N−1) a collection of functions

uj(x, x
′) := Ψ(x1, . . . ,xj−1,x,xj+1, . . . ,xN )

and using instead of (4.24) the triangle inequality on L2(Rd(N−1);CN ),∫
Rd(N−1)

N∑
j=1

|uE,+j (x, x′)|2 dx′

1/2

≥


∫

Rd(N−1)

N∑
j=1

|uj(x, x′)|2 dx′

1/2

−

∫
Rd(N−1)

N∑
j=1

|uE,−j (x, x′)|2 dx′

1/2


+

.

4.5. Applications to stability. In this subsection we follow mainly [Lie76, LS10, Sei10].

4.5.1. The stability of the hydrogenic atom. We now return to the hydrogenic atom of Ex-
ample 3.19, which after factoring out the free center-of-mass kinetic energy leaves the more
relevant relative Hamiltonian operator on the space H = L2(Crel) = L2(R3):

Ĥrel = −∆− Z

|x|
. (4.28)

Here we have put for simplicity 2µ = 1 for the reduced mass or, equivalently, rescaled
the operator and the value of Z, which is no loss in generality. This operator should be
understood to be defined via the energy form

E [ψ] := qĤrel
(ψ) =

〈
ψ,

[
−∆− Z

|x|

]
ψ

〉
L2(R3)

=

∫
R3

|∇ψ|2 − Z
∫
R3

|ψ(x)|2

|x|
dx,

where we may take ψ in the minimal form domain C∞c (R3 \{0}) or the larger closed domain

Q(Ĥrel) = H1(R3) if we just require finite kinetic energy. The self-adjoint realization of Ĥrel

associated to this form (the Friedrichs extension) then has the ground-state energy

E0 = inf
{
E [ψ] : ψ ∈ H1(R3), ‖ψ‖2 = 1

}
.

Using Heisenberg’s uncertainty principle (4.4), one has the bound

E [ψ] ≥ 9

4

(∫
R3

|x|2|ψ(x)|2 dx
)−1

− Z
∫
R3

|ψ(x)|2

|x|
dx, (4.29)
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whose r.h.s. can be made arbitrarily negative (Exercise 4.14), therefore not being able to
settle the stability question. However, using instead the Hardy inequality (4.5), we obtain
the lower bound

E [ψ] ≥
∫
R3

[
1

4|x|2
− Z

|x|

]
|ψ(x)|2 dx. (4.30)

We may then proceed by minimizing the expression in brackets pointwise:

min
x∈R3

[
1

4|x|2
− Z

|x|

]
= −Z2, for |x| = 1

2Z
,

and by the normalization of ψ we therefore obtain the finite lower bound

E0 ≥ −Z2, (4.31)

and thus stability for the hydrogenic atom for any finite charge Z > 0 (and it is trivially
stable for Z ≤ 0 according to our definitions). In summary, we have thus found that the
uncertainty principle introduces an effective repulsion around the origin which overcomes
the attraction from the nucleus by its stronger scaling property, scaling quadratically in the
inverse distance as opposed to linearly, here resulting in an equilibrium around |x| = 1/(2Z).

Another approach is to use the Gagliardo–Nirenberg–Sobolev inequality (4.20), that is

E [ψ] ≥ G3

∫
R3

|ψ|10/3 − Z
∫
R3

|ψ(x)|2

|x|
dx, (4.32)

with the constant G3 ≥ S3 ≈ 5.478. In this case we are led to a constrained optimization
problem for the density % := |ψ|2,

E0 ≥ inf

{∫
R3

(
G3%(x)5/3 − Z %(x)

|x|

)
dx : % : R3 → R+,

∫
R3

% = 1

}
. (4.33)

The minimum can be shown (Exercise 4.16) to be

−9(π/2)4/3Z2/(5G3) ≥ −3Z2/5 (4.34)

for

%(x) =

(
3

5

Z

G3
(|x|−1 −R−1)+

)3/2

,

with R = 3
5(2/π)4/3G3/Z. Therefore the GNS inequality, which arose as a weaker implica-

tion of the Sobolev inequality (and thus a yet weaker implication of the Hardy inequality),
is still strong enough to enforce stability. One may even note that formally replacing the
exponent 10/3 in the kinetic term in (4.32) by anything strictly greater than 3, i.e. the 5/3
in (4.33) by any exponent p > 3/2 (which would require the constant G3 to be dimensionful
however), would have been sufficient for stability (exercise).

It is actually possible to solve for the complete spectrum σ(Ĥrel) of the hydrogenic atom,
which was indeed worked out shortly after the birth of quantum mechanics. In particular,
the exact ground state may be seen to be (with a normalization constant C > 0)

ψ0(x) = Ce−Z|x|/2,

since this function is positive, square-integrable, and solves the Schrödinger eigenvalue equa-
tion

Ĥrelψ0 =

(
−∆− Z

|x|

)
ψ0 = −Z

2

4
ψ0 (4.35)
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(see e.g. [LS10, Section 2.2.2] and [LL01, Section 11.10] for details). Thus, by the min-max
principle we have

E [ψ] =

∫
R3

|∇ψ|2 − Z
∫
R3

|ψ(x)|2

|x|
dx ≥ −Z

2

4

∫
R3

|ψ(x)|2dx

for all ψ ∈ Q(Ĥrel). We thus see that the above-obtained bounds using the Hardy and
Sobolev/GNS uncertainty principles are quite close to the actual ground-state energy E0 =
−Z2/4. Moreover, the entire spectrum of the operator (4.28) turns out to be (see e.g.
[Tes14, Chapter 10])

σ(Ĥrel) =

{
− Z2

4(n+ 1)2

}
n=0,1,2,...

∪ [0,∞).

The infinite sequence of negative eigenvalues of finite multiplicity are the energy levels of
the bound electron, with eigenstates corresponding to the ground state and the excited
orbitals of the atom, while the non-negative essential spectrum describes states where the
electron is not bound to the nucleus but rather scatters off of it, i.e. scattering states.

Exercise 4.14. Prove that the r.h.s. of (4.29) tends to −∞ for some sequence of L2-
normalized states ψ ∈ H1(Rd).

Exercise 4.15. Prove stability of (4.28) from Hardy in a different way than (4.30), using
Hölder on the negative term.

Exercise 4.16. Compute the minimizer for the variational problem (4.33) in the generalized
case with exponent p > 3/2 (why is this bound necessary?), and the minimum (4.34) in the
case p = 5/3.

Exercise 4.17. Verify the Schrödinger equation (4.35). How can we be sure that ψ0 is the
ground state?

4.5.2. General criteria for stability of the first kind. In the case of a one-body Schrödinger
Hamiltonian operator Ĥ = −∆ + V on H = L2(Rd) with a general potential V : Rd → R,
d ≥ 3, we have using Sobolev that for all ψ ∈ H1(Rd)

E [ψ] := qĤ(ψ) =

∫
Rd
|∇ψ|2 +

∫
Rd
V |ψ|2 ≥ Sd‖ψ‖22d/(d−2) +

∫
Rd

(V+ − |V−|)|ψ|2,

with V± := (V ± |V |)/2. Furthermore, if V− ∈ Ld/2(Rd) then we have using Hölder that∫
Rd
|V−||ψ|2 ≤ ‖V−‖d/2‖ψ‖22d/(d−2),

and therefore

E [ψ] ≥
(
Sd − ‖V−‖d/2

)
‖ψ‖22d/(d−2).

Assuming ‖V−‖d/2 ≤ Sd then implies E [ψ] ≥ 0, and hence clearly stability for such po-
tentials. However, one may also extract an arbitrary negative constant from the potential
without changing this conclusion. In general, if

V (x) = U(x) + v(x),



60 D. LUNDHOLM

where U ≥ −C, i.e. U− ∈ L∞(Rd), and v ∈ Ld/2(Rd), then by the layer-cake principle there
exists for any ε ∈ (0, 1) some constant Aε ≥ 0 such that ‖(Aε + v)−‖d/2 ≤ εSd, and thus

E [ψ] = T [ψ] + V [ψ] = (1− ε)T [ψ] + εT [ψ] +

∫ (
U −Aε + (Aε + v)

)
|ψ|2

≥ (1− ε)T [ψ] + εT [ψ]− ‖U−‖∞ −Aε −
∫ ∣∣(Aε + v)−

∣∣|ψ|2
≥ (1− ε)T [ψ]− ‖U−‖∞ −Aε +

(
εSd − ‖(Aε + v)−‖d/2

)
‖ψ‖22d/(d−2)

≥ (1− ε)T [ψ]− ‖U−‖∞ −Aε.
This is summarized in the following theorem, where the case d ≤ 2 is left as an exercise:

Theorem 4.18. Given a Schrödinger Hamiltonian (3.30) on Rd with quadratic form

E [ψ] =

∫
R3

(
|∇ψ|2 + V |ψ|2

)
,

for some potential V : Rd → R and finite kinetic energy, ψ ∈ H1(Rd), there is stability for
the corresponding quantum system, i.e.

E0 = inf
{
E [ψ] : ψ ∈ H1(Rd), ‖ψ‖2 = 1

}
> −∞,

if

V− ∈

 Ld/2(Rd) + L∞(Rd), d ≥ 3,
L1+ε(R2) + L∞(R2), d = 2,
L1(R1) + L∞(R1), d = 1.

The Hardy inequality can in fact be even stronger than the above theorem, namely we
have immediately by (4.5) that E0 > −∞ if

V (x) ≥ −(d− 2)2

4|x|2
− C,

(note that the r.h.s. is not in L
d/2
loc (Rd) for d ≥ 3 so Theorem 4.18 does not apply), or even

if (exercise)

V (x) ≥ −(d− 2)2

4

M∑
k=1

|x−Rk|−2 − C, (4.36)

for finitely many distinct points Rj 6= Rk in Rd.
If V− is not too singular then one may also obtain an explicit bound for E0 directly from

the GNS inequality (4.20), which even turns out to be equivalent to such a bound:

Theorem 4.19 (GNS—Schrödinger equivalence). The ground-state energy E0 of the Schrö-
dinger form E [ψ] in Theorem 4.18 is bounded from below by

E0 ≥ −L1
d

∫
Rd
|V−|1+d/2, (4.37)

with the positive constant L1
d = 2

d+2

(
d
d+2

)d/2
G
−d/2
d .

Conversely, if a bound of the form (4.37) holds for arbitrary potentials V and some
constant L1

d > 0, then the GNS inequality (4.20) holds for all u ∈ H1(Rd) with the positive

constant Gd = d
d+2

(
2
d+2

)2/d
(L1

d)
−2/d.
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Proof. To obtain (4.37), note that by GNS (4.20) and Hölder we have that for any L2-
normalized ψ ∈ H1(Rd)

E [ψ] ≥ Gd
∫
Rd
|ψ|2(1+2/d) −

(∫
Rd
|V−|(d+2)/2

)2/(d+2)(∫
Rd
|ψ|2(d+2)/d

)d/(d+2)

≥ −L1
d

∫
Rd
|V−|(d+2)/2,

where we used the fact that the function R+ 3 t 7→ At − Btd/(d+2) for A,B > 0 has the

minimal value − 2
d+2

(
d
d+2

)d/2
A−d/2B(d+2)/2.

On the other hand, if (4.37) holds, then assume first that ψ ∈ H1(Rd) with ‖ψ‖2 = 1
and let us write for an arbitrary potential V :

T [ψ] = T [ψ] + V [ψ]− V [ψ] ≥ E0 −
∫
Rd
V |ψ|2 ≥ −L1

d

∫
Rd
|V−|1+d/2 −

∫
Rd
V |ψ|2.

Now, take V (x) := −c|ψ(x)|α and choose α such that the above integrals involving |ψ|
match modulo constants, i.e. α(1 + d/2) = α+ 2, or equivalently, α = 4/d. Thus,

T [ψ] ≥
(
c− c1+d/2L1

d

)∫
Rd
|ψ|2(1+2/d),

and we may finally optimize in c > 0 to obtain (4.20) with the claimed relationship between
Gd and L1

d. Finally, the homogeneous GNS inequality (4.20) is obtained by simple rescaling

ψ = λψ̃, in the case that λ := ‖ψ‖2 6= 1. �

Exercise 4.18. Prove Theorem 4.18 in the case d = 1 and d = 2.

Exercise 4.19. Prove that E0 > −∞ for (4.36).

4.6. Poincaré. The Heisenberg, Hardy and Sobolev inequalities were all global in the sense
that they involved the full configuration space Rn (or Dirichlet restrictions of it, by simple
restriction of the domain to H1

0 (Ω) ⊆ H1(Rn)). We shall now consider some local for-
mulations of uncertainty principles (amounting to Neumann restrictions which potentially
increase the domain), the prime example being the Poincaré inequality.

Definition 4.20 (Poincaré inequality). A Poincaré inequality on a domain Ω ⊆ Rn with
finite measure |Ω| is a lower bound of the form∫

Ω
|∇u|2 ≥ CP

∫
Ω
|u− uΩ|2 (4.38)

for some constant CP = CP(Ω) > 0 and for all u ∈ H1(Ω), where in the r.h.s. we have
subtracted the average of u on Ω,

uΩ := |Ω|−1

∫
Ω
u. (4.39)

Remark 4.21. Note that if CP > 0 then Ω ⊆ Rd has to be a connected set, for otherwise
we may choose u to be a non-zero constant on each connected component and such that
uΩ = 0, for example u = |Ω1|−11Ω1 − |Ω2|−11Ω2 , so that the l.h.s. of (4.38) is zero but the

r.h.s. non-zero. Also note that by dimensional scaling, CP(Ω) = |Ω|−2/dCP(Ω/|Ω|), where
CP(Ω/|Ω|) only depends on the shape of Ω.



62 D. LUNDHOLM

It is useful to reformulate the inequality (4.38) as an operator relation for the Laplacian
on Ω. We note that, since ∇uΩ = 0, the l.h.s. of (4.38) can also be written∫

Ω
|∇u|2 =

∫
Ω
|∇(u− uΩ)|2 = 〈(u− uΩ),−∆N

Ω(u− uΩ)〉

and, with u0 := |Ω|−1/2 the L2-normalized zero-eigenfunction of the Neumann Laplacian
on Ω, we can write uΩ = u0〈u0, u〉, and thus

〈u0, u− uΩ〉 = 〈u0, u〉 − 〈u0, u0〉〈u0, u〉 = 0.

In other words, if we introduce P0 := u0〈u0, ·〉 the orthogonal projection operator on the
ground-state eigenspace W0 = Cu0 and P⊥0 = 1 − P0 the projection on the orthogonal
subspace W⊥0 , we have uΩ = P0u and u−uΩ = P⊥0 u. Hence, the Poincaré inequality (4.38)
equivalently says

〈P⊥0 u, (−∆N
Ω)P⊥0 u〉 ≥ CP〈P⊥0 u, P⊥0 u〉

or, as an operator inequality,

(−∆N
Ω)P⊥0 ≥ CPP

⊥
0 .

Hence, we see that finding the best possible constant CP for a given domain Ω is the same
as finding the second lowest eigenvalue λ1 ≥ λ0 = 0 for the Laplace operator −∆N

Ω (with
Neumann boundary conditions) on Ω,

−∆N
Ω =

∞∑
k=0

λkPk, P0 = u0 〈u0, ·〉 , P⊥0 =
∑
k≥1

Pk =
∑
k≥1

uk 〈uk, ·〉 .

This is actually just the content of the min-max theorem of Section 2.5.1, applied to the
form (4.38). Also, we see that CP = λ1−λ0 > 0 if and only if there is a gap in the spectrum
between the lowest eigenvalue λ0 = 0 (the ground-state energy) and the second-lowest one
(the first excited energy level) λ1.

Example 4.22. As a prototype case one may consider the Laplacian on the unit interval
[0, 1]. The eigenfunctions of the Neumann problem are uk(x) = C cos(πkx) with eigenvalues
λ = π2k2, k = 0, 1, 2, . . .. Hence we have a Poincaré inequality∫ 1

0
|u′|2 ≥ π2

∫ 1

0

∣∣∣u− ∫ 1
0 u
∣∣∣2 ,

for u ∈ H1([0, 1]), with the optimal Poincaré constant CP = π2. In the case of the Dirichlet
problem, with uk(x) = C sin(πkx), λ = π2k2, k = 1, 2, . . ., one has an inequality∫ 1

0
|u′|2 ≥ π2

∫ 1

0
|u|2,

for any u ∈ H1
0 ([0, 1]), without any projection in this case.

Example 4.23. A Poincaré inequality of the form (4.38) cannot hold on the unbounded
interval R or R+, not only because of the lack of an integrable ground state u0 to project
out as in (4.39), but more crucially because of the lack of a spectral gap in this case. We
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have already seen and used that σ(−∆R) = σ(p̂2
1) = [0,∞), but also on the half-line R+ one

may consider a sequence of trial states such as

uL(x) =
√

2/L sin(πx/L)1[0,L] ∈ H1
0 (R+) ⊆ H1(R+).

By taking L → ∞, such states have an arbitrarily low energy, and one may furthermore
pick an orthogonal sequence such as {uL(·+nL)}n=0,1,2,... and use the min-max principle to

find that the essential spectrum σess(−∆
N/D
R+

) starts at zero (such a sequence is known as a

Weyl sequence). Furthermore, by e.g. multiplying uL with a phase eiκx, any λ = κ2 ≥ 0

may be seen to be a point of the essential spectrum as well, so σ(−∆
N/D
R+

) = [0,∞).

Note that the existence of a gap in the spectrum of the Laplacian on a domain Ω can also
be interpreted as a form of the uncertainty principle of x̂j and p̂j , since the corresponding
Hamiltonian describing the free kinetic energy of a particle on Ω of mass m = 1/2 is actually

Ĥ = p̂2
Ω = ~2(−∆Ω), which then has a gap of size proportional to ~2. If x̂j and p̂j would

be made to commute, as they do classically, by formally taking ~→ 0 in (3.18), then

σ(Ĥ) = ~2{λ0, λ1, . . .} → [0,∞)

and the gap would therefore close(17). Another way to think about this limit is that ~ may
be compensated for by rescaling the domain, Ω 7→ Ω/~, and Ω/~→ Rd as ~→ 0, so that

σ(Ĥ) = σ(−∆Ω/~)
~→0−−−→ σ(−∆Rd) = σ(p̂2

Rd) = σ(p̌2
Rd) = [0,∞),

by Fourier transform.

Example 4.24. Poincaré inequalities also extend to other contexts where there is a gap in
the spectrum, such as on compact, connected manifolds. One has for example the following
Poincaré inequality on the unit sphere Sd−1 in Rd:∫

Sd−1

|∇u|2 ≥ (d− 1)

∫
Sd−1

∣∣∣u− |Sd−1|−1
∫
Sd−1u

∣∣∣2 , (4.40)

for u ∈ H1(Sd−1). This follows from the following theorem concerning the spectrum of
the Laplace-Beltrami operator on Sd−1, i.e. the operator −∆Sd−1 associated to the
non-negative quadratic form of the l.h.s. of (4.40) (see e.g. [Shu01, Chapter 22] for further
details and proofs).

Theorem 4.25 (Spectrum of the Laplacian on the sphere; see e.g. [Shu01, Theorem 22.1
and Corollary 22.2]). The spectrum of the operator −∆Sd−1 is discrete and its eigenvalues
are given by λ = k(k+d−2), k = 0, 1, 2, . . ., with multiplicity given by the dimension of the

space of homogeneous, harmonic polynomials on Rd of degree k, which is
(
k+d−1
d−1

)
−
(
k+d−3
d−1

)
for k ≥ 2 (and 1 for k = 0 respectively d for k = 1).

Exercise 4.20. Prove the Poincaré inequality (4.40) on the unit circle S1, by treating it as
an interval [0, 2π] with periodic boundary conditions, u(0) = u(2π), u′(0) = u′(2π).

Exercise 4.21. Prove a Poincaré inequality on an annulus ΩR1,R2 = BR2(0) \ B̄R1(0) and
give some explicit non-zero lower bound for the constant CP depending on R2 > R1 > 0.

(17)In fact any gap in the spectrum will close in this limit because the eigenvalues λk are distributed
rather uniformly; they can on bounded regular domains Ω be shown to satisfy (λk+1 − λk)/λk+1 → 0 as
k →∞ (cf. Exercise 5.2).
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4.7. Local Sobolev-type inequalities. There is a family of important inequalities which
combine the properties of the global Sobolev inequality of Section 4.3 with the local proper-
ties of the Poincaré inequality of Section 4.6, and which are thus called Poincaré-Sobolev
inequalities. However, these are typically a little more involved to prove and we shall
therefore instead take a more direct route to obtain the inequalities that we will need, of
the form of the Gagliardo-Nirenberg-Sobolev inequalities of Theorems 4.14 and 4.16, and
which only relies on knowledge of the eigenvalues for the Laplacian on a cube Q. They
could be considered variants of the above-mentioned Poincaré-Sobolev inequalities though.
See [BVV18b, BVV18a] for very recent generalizations and improvements of the bounds
given below.

4.7.1. Laplacian eigenvalues on the cube. Consider the Neumann Laplacian on a cube
Q = [0, L]d ⊆ Rd and the number N(E) of its eigenvalues λk, ordered accoring to their
multiplicity, below an energy E > 0 (note that since λ0 = 0 we always have N(E) ≥ 1). In
the case d = 1,

λk =
π2

|Q|2
k2, k = 0, 1, 2, . . . ,

and

N(E)− 1 = #{k : 0 < λk < E} = #{k ∈ Z : 0 < k < E1/2|Q|/π} ≤ E1/2|Q|/π.

In the case d ≥ 2 we have

λk =
π2

|Q|2/d
|k|2, k ∈ Zd≥0,

and

N(E)− 1 = #{k : 0 < λk < E} = #
{
k ∈ Zd≥0 : 0 < |k| < E1/2|Q|1/d/π

}
≤ 2d(E1/2|Q|1/d/π)d,

where we for E1/2|Q|1/d/π ≥ 1 (otherwise it is zero) very roughly bounded the number of
integer points of the first quadrant inside a sphere of radius R by the volume of an enclosing
cube of side length R+ 1 ≤ 2R. Hence, as a uniform bound

N(E) ≤ 1 + 2d|Q|/πd · Ed/2 (4.41)

for all d ≥ 1. Also note that the orthonormal eigenfunctions are given explicitly by

uk(x) = |Q|−1/2
d∏
j=1

ckj cos
πkjxj

|Q|1/d
,

with c0 = 1 and ck≥1 =
√

2, so that

‖uk‖∞ ≤ |Q|−1/2
d∏
j=1

ckj ≤ 2d/2|Q|−1/2. (4.42)
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4.7.2. Poincaré-Sobolev-type bound. The following is a local version of the Gagliardo–Nirenberg–
Sobolev inequality of Theorem 4.14 (it was given in this form as Theorem 13 in [LS13a]):

Theorem 4.26. For any d ≥ 1 there exists a constant Cd > 0 such that for any d-cube
Q ⊆ Rd and every u ∈ H1(Q)

∫
Q
|∇u|2 ≥ Cd

(∫
Q
|u|2
)−2/d ∫

Q

|u| −(∫Q|u|2
|Q|

)1/2
2(1+2/d)

+

.

Proof. We make a decomposition of u similar to the one in the proof of Theorem 4.14, but
this time w.r.t. the Neumann kinetic energy on Q. Namely, we define u = uE,−+uE,+ with
an energy cut-off E > 0 and the spectral projections

uE,− := P
−∆N

Q

[0,E) u and uE,+ := P
−∆N

Q

[E,∞)u.

In this case we have by the spectral theorem and the properties of the projection-valued
measures that ∫ ∞

0
‖uE,+‖22 dE =

∫ ∞
0

〈
u, P

−∆N
Q

[E,∞)u

〉
dE =

〈
u,−∆N

Qu
〉
,

since PA[E,∞) =
∫
R 1{λ≥E}dP

A(λ) and thus
∫∞

0 PA[E,∞)dE =
∫
R λ dP

A(λ) = A for any self-

adjoint operator A (a reader worried about such formal manipulation may note that it is
applied here in the form sense with non-negative integrands).

Let us denote the eigenvalues and orthonormal eigenfunctions of −∆N
Q, ordered according

to their multiplicity, as usual by {λk}∞k=0 and {uk}∞k=0 For the low-energy part we have then
for each x ∈ Q

|uE,−(x)|2 =

∣∣∣∣P−∆N
Q

[0,E) u(x)

∣∣∣∣2 =

∣∣∣∣∣∣
∑
λk<E

〈uk, u〉uk(x)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
〈 ∑
λk<E

uk(x)uk, u

〉∣∣∣∣∣∣
2

≤

∑
λk<E

|uk(x)|2
 ‖u‖22,

by Cauchy–Schwarz and the orthonormality of {uk}. Furthermore, by (4.41) and (4.42), we
have that

∑
λk<E

|uk(x)|2 ≤ 1

|Q|
+

∑
0<λk<E

2d

|Q|
≤ 1

|Q|
+

22d

πd
Ed/2.
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After these preparations we may finally use the triangle inequality (4.24) and the integral
identity (4.25) to obtain∫

Q
|∇u|2 =

∫
Q

∫ ∞
0
|uE,+(x)|2 dE dx

≥
∫
Q

∫ ∞
0

[
|u(x)| −

(
|Q|−1 + 22dπ−dEd/2

)1/2
‖u‖2

]2

+

dE dx

≥
∫
Q

∫ ∞
0

[
|u(x)| − |Q|−1/2‖u‖2 − 2dπ−d/2‖u‖2Ed/4

]2

+
dE dx

= Cd‖u‖
−4/d
2

∫
Q

[
|u(x)| − |Q|−1/2‖u‖2

]2(1+2/d)

+
dx,

with Cd = d2(2−4π2)/((d+ 2)(d+ 4)). �

Exercise 4.22 (Suggested by Rafael Benguria). Prove a corresponding local GNS inequality
on the interval [−1/2, 1/2] on the subspace of odd functions. By how much would you expect
the optimal constant to improve in this case?

4.8. Local uncertainty and density formulations. We finish this chapter on uncer-
tainty principles with some local many-body formulations involving the one-body density
%Ψ. These will in later chapters be supplemented with local formulations of the exclusion
principle to prove powerful global kinetic energy inequalities of wide applicability.

The following is a local version of the many-body GNS inequality of Theorem 4.16 (it
was given in this form as Theorem 14 in [LS13a]):

Theorem 4.27. For any d ≥ 1 there exists a constant Cd > 0 (same as in Theorem 4.26)
such that for any d-cube Q ⊆ Rd, all N ≥ 1, and L2-normalized Ψ ∈ H1(RdN )

N∑
j=1

∫
RdN
|∇jΨ|21Q(xj) dx ≥ Cd

(∫
Q
%Ψ

)−2/d ∫
Q

%1/2
Ψ −

(∫
Q%Ψ

|Q|

)1/2
2(1+2/d)

+

.

The proof is a straightforward modification of the one-body Theorem 4.26, using

N∑
j=1

∫
RdN
|∇jΨ|21Q(xj) dx =

N∑
j=1

∫
Rd(N−1)

∫
Q
|∇jΨ|2 dxj dx′ =

N∑
j=1

∫
Rd(N−1)

∫ ∞
0

∥∥∥uE,+j

∥∥∥2
dE

as in Exercise 4.13, with
∫
Rd(N−1)

∑N
j=1 |uj(x, x′)|2 dx′ = %Ψ(x) and∫

Rd(N−1)

N∑
j=1

|uE,−j (x, x′)|2 dx′ ≤
(

1

|Q|
+

22d

πd
Ed/2

)∫
Rd(N−1)

N∑
j=1

‖uj(·, x′)‖2L2(Q) dx′.

Similarly as in the global case, one could alternatively have used a local version of the
Hoffmann-Ostenhof inequality (cf. Lemma 4.17) together with Theorem 4.26 directly.

Now, let us write for the total expected kinetic energy of an N -body wave function
Ψ ∈ H1(RdN )

T [Ψ] =
〈
T̂
〉

Ψ
=

∫
RdN
|∇Ψ|2.
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We also introduce the local expected kinetic energy on the cube Q ⊆ Rd (which may
of course also be replaced by a general subdomain Ω)

TQ[Ψ] :=
N∑
j=1

∫
RdN
|∇jΨ|2 1Q(xj) dx =

N∑
j=1

∥∥1xj∈Q p̂jΨ
∥∥2
.

Using the above inequality we may obtain a bound for this quantity of the particularly
convenient form

TQ[Ψ] ≥ C1

∫
Q %

1+2/d
Ψ

(
∫
Q %Ψ)2/d

− C2

∫
Q %Ψ

|Q|2/d
,

for some constants C1, C2 > 0, which we shall refer to as a local uncertainty principle.

Lemma 4.28 (Local uncertainty principle). For any d-cube Q and any ε ∈ (0, 1) we have

TQ[Ψ] ≥ Cdε
1+4/d

∫
Q %

1+2/d
Ψ

(
∫
Q %Ψ)2/d

− Cd

(
1 +

(
ε

1− ε

)1+4/d
) ∫

Q %Ψ

|Q|2/d
, (4.43)

with Cd as in Theorems 4.26 and 4.27.

Proof. By Theorem 4.27 we have that

TQ[Ψ] ≥ Cd
(
∫
Q %Ψ)2/d

∫
Q

%Ψ(x)
1
2 −

(∫
Q %Ψ

|Q|

) 1
2

2+4/d

+

dx,

with ∫
Q

%Ψ(x)
1
2 −

(∫
Q %Ψ

|Q|

) 1
2

2+4/d

+

dx

≥
∫
Q

∣∣∣∣∣∣%Ψ(x)
1
2 −

(∫
Q %Ψ

|Q|

) 1
2

∣∣∣∣∣∣
2+4/d

dx −
∫
Q

(∫
Q %Ψ

|Q|

)1+2/d

=

∥∥∥∥∥∥%
1
2
Ψ −

(∫
Q %Ψ

|Q|

) 1
2

∥∥∥∥∥∥
2+4/d

2+4/d

−
(
∫
Q %Ψ)1+2/d

|Q|2/d
.

The first term is bounded below by(
‖%

1
2
Ψ‖2+4/d − ‖(

∫
Q%Ψ/|Q|)

1
2 ‖2+4/d

)2+4/d

using the triangle inequality on Lp(Q). Furthermore, by convexity of the function t 7→ tp

for t ≥ 0, p ≥ 1 we have for any a, b ≥ 0 and ε ∈ (0, 1) that

εap + (1− ε)bp ≥ (εa+ (1− ε)b)p ,
and hence with a = A−B and b = ε

1−εB,

(A−B)p ≥ εp−1Ap −
(

ε

1− ε

)p−1

Bp.
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Applying this inequality to the norms above with p = 2+4/d, we finally arrive at (4.43). �

Finally, given a partition P of the one-particle configuration space Rd into disjoint cubes,

Rd =
⋃
Q∈P

Q̄, Q ∩Q′ = ∅ ∀Q,Q′ ∈ P s.t. Q 6= Q′,

we have, with 1 =
∑

Q∈P 1Q, that

T [Ψ] =
∑
Q∈P

TQ[Ψ] ≥
∑
Q∈P

C1

∫
Q %

1+2/d
Ψ

(
∫
Q %Ψ)2/d

− C2

∫
Q %Ψ

|Q|2/d

 . (4.44)

This bound for the total expected kinetic energy of Ψ can only be useful if the positive terms
are stronger than the negative ones, in other words, if the expected number of particles∑N

j=1

〈
1xj∈Q

〉
Ψ

=
∫
Q %Ψ on each cube Q is not too large, and if the density is sufficiently

localized on Q,

1

|Q|

∫
Q
%

1+2/d
Ψ �

(
1

|Q|

∫
Q
%Ψ

)1+2/d

.

For the case of rather homogeneous density distributions the above inequality fails, and
the local uncertainty principle (4.44) will for example have to be supplemented with an
exclusion principle in order to yield a non-trivial global bound. This will be the topic of
the next section.
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5. Exclusion principles

In this section we consider consequences of the theory for identical particles and exchange
phases that was outlined in Section 3.7, as well as related concepts, both locally and globally
on the configuration space.

Recall that in general we have a division of the full N -particle Hilbert spaceH ∼=
⊗N H of

distinguishable particles into subspaces of symmetric (bosonic) respectively antisymmetric
(fermionic) states of indistinguishable particles,

Hsym
∼=
⊗N

sym
H, Hasym

∼=
∧N

H,

where H denotes the one-particle Hilbert space. For illustration let us consider here the usual
space H = L2(Rd) of a particle in Rd, but other spaces will be of interest as well. When
acting with the non-interacting N -body Hamiltonian operator (as given e.g. in (3.36))

Ĥ =
N∑
j=1

ĥj , ĥj = ĥ(x̂j , p̂j) = −∆xj + V (xj) ∈ L(H),

on Hsym respectively Hasym, we may observe a crucial difference in the resulting spectra.

Namely, let us assume for simplicity that we can diagonalize the one-body operator ĥ into
a complete discrete set of real eigenvalues σ(ĥ) = {λn}∞n=0 and a corresponding basis of
orthonormal one-body eigenstates {un}∞n=0 in H, with an ordering λ0 ≤ λ1 ≤ . . . according

to multiplicity. Then the corresponding N -body eigenstates Ψ ∈ H of Ĥ are simply the
tensor products

Ψ = Ψ{nj} := un1 ⊗ un2 ⊗ . . .⊗ unN , nj ∈ N0, (5.1)

with

ĤΨ{nj} =
N∑
j=1

un1 ⊗ . . .⊗ ĥunj ⊗ . . .⊗ unN =
N∑
j=1

λnjΨ{nj}.

In other words, the N -body energy eigenvalues in the case of distinguishable particles are

E{nj} =
N∑
j=1

λnj , {nj} ∈ NN0 .

However, with the symmetry restriction in Hasym, the basis (5.1) reduces to the antisym-
metric product (also known as a Slater determinant)

Ψasym = un1 ∧ un2 ∧ . . . ∧ unN :=
1√
N !

∑
σ∈SN

sign(σ)uσ(n1) ⊗ uσ(n2) ⊗ . . .⊗ uσ(nN ),

with n1 < n2 < . . . < nN . Because of the antisymmetry we cannot use the same one-
body state un more than once in the expression, namely un ∧ un = 0, and this symmetry
restriction is known in physics as the Pauli principle and is thus obeyed by fermions, such
as the electrons of an atom [Pau47].

On the other hand, in a basis of the bosonic space Hsym we must take symmetric tensor
products, and for example the following state is allowed:

Ψsym = ⊗Nu0 := u0 ⊗ u0 ⊗ . . .⊗ u0 (N factors),
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that is Ψsym(x) =
∏N
j=1 u0(xj), with u0 corresponding to the lowest eigenvalue λ0 of ĥ. This

will in fact be the ground state of Ĥ (both when considered as an operator on H and on
Hsym, but not on Hasym /∈Ψsym). Namely, we note that the energy eigenvalue of this state
Ψsym is

E0,sym(N) = Nλ0 ≤
N∑
j=1

λnj = E{nj},

for any multi-index {nj} ∈ NN0 , and hence this is the ground-state energy. In contrast, on
states Ψasym we necessarily obtain a sum of higher and higher energies, and the smallest
possible value is

E0,asym(N) =

N−1∑
k=0

λk ≤
N∑
j=1

λnj = E{nj}, (5.2)

for any admissible {nj}, i.e. n1 < n2 < . . . < nN . Because of this symmetry restriction
the fermionic g.s. energy must (unless the lowest eigenvalue λ0 is infinitely degenerate) be
strictly larger than the bosonic (or the distinguishable) one for large enough N , and in
realistic systems with finite degeneracies it will actually be significantly larger as N →∞.

These differences in the rules for distributing bosons and fermions into one-body states,
enforced by the Pauli principle, has remarkable macroscopic consequences as one considers
large ensembles of particles, which is the aim of quantum statistical mechanics. Bosons
are then said to obey Bose–Einstein statistics while fermions are subject to Fermi–
Dirac statistics. Distinguishable particles on the other hand obey Maxwell–Boltzmann
statistics and are sometimes called boltzons.

We shall in this chapter also consider exclusion principles in a more general context. In
particular, we allow for a weakening of the above Pauli principle — which is actually relevant
for real fermions appearing in nature such as electrons with spin — and we also extend the
notion of the exclusion of points in the many-body configuration space to encompass other
important cases such as bosons subject to repulsive pair interactions, as well as anyons in
two dimensions. The relatively straightforward generalization of quantum statistics to allow
for several particles in each one-body state (beyond spin) has a long history, going back at
least to Gentile [Gen40, Gen42] and is thus known as Gentile statistics or intermediate
(exclusion) statistics. More recent and less trivial generalizations of such concepts have
been reviewed in [Hal91, Isa94, Wu94, Myr99, Pol99, Kha05].

Exercise 5.1. Compute the ground-state energy E0,asym for N fermions in a harmonic trap
Vosc(x) = 1

2mω
2|x|2 in d = 1 and in d = 2 (see Example 3.16). Note that in the latter case

there are certain “magic numbers” N = n(n+ 1)/2, n ∈ N, such that

E0,asym(N) = (1 + 22 + . . .+ n2)~ω =
1

3
N
√

8N + 1~ω.

Exercise 5.2. Consider N fermions in a cube Q ⊆ Rd. Use the values in Section 4.7.1 and
an integral approximation of a Riemann sum to show that, as a leading-order approximation,

E0,asym(N) =
N−1∑
k=0

λk(−∆
N/D
Q ) ≈ Kcl

d

N1+2/d

|Q|2/d
, Kcl

d := 4π
d

d+ 2

(
2

d+ 2

) 2
d

Γ

(
2 +

d

2

) 2
d

.

(5.3)
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This is known as Weyl’s asymptotic formula for the sum of eigenvalues, and it thus
determines the g.s. energy of a free Fermi gas confined to a box, with the constants

Kcl
1 =

π2

3
, Kcl

2 = 2π, Kcl
3 =

3

5
(6π2)

2
3 .

Exercise 5.3. Compute an upper bound to E0,asym(N) of the correct order (5.3) in d =
1, 2, 3 by constructing a trial state Ψasym by localizing each particle to a separate cube, e.g.
taking uj ∈ L2(Qj) to be Dirichlet ground states on the respective cubes Qj, and then
antisymmetrizing the full expression. Does one gain anything by localizing on balls instead?
(Hint: the optimal packing density of circles is π/(2

√
3) and of spheres is π/(3

√
2).)

5.1. Fermions. Let us first consider some local consequences of the Pauli principle for
fermions that will turn out to be particularly usful in our context of stability. We denote
H1

asym = H1 ∩Hasym, and so on.

5.1.1. The Pauli principle. One has the following simple consequence of the Pauli principle
for fermions on a cube Q:

Proposition 5.1. Let Q ⊆ Rd be a d-cube, d ≥ 1. For any N ≥ 1 and Ψ ∈ H1
asym(QN ),

we have ∫
QN
|∇Ψ|2 ≥ (N − 1)

π2

|Q|2/d

∫
QN
|Ψ|2. (5.4)

Proof. Using the same argument of simple eigenvalue estimation as in (5.2), but now locally

with the one-particle space H = L2(Q) and 0 6= Ψ ∈
∧N H, we find in this case∫

QN |∇Ψ|2∫
QN |Ψ|2

≥ E0

(
−∆N

QN

∣∣∣∧N H

)
=

N−1∑
k=0

λk(−∆N
Q).

Now recall the energy levels λk of the Neumann Laplacian −∆N
Q given in Section 4.7.1:

λ0 = 0 (here k = 0), λk≥1 ≥ λ1 =
π2

|Q|2/d
(here |k| ≥ 1),

which proves the proposition. �

The above bound gives a concrete local measure of the exclusion principle, as it tells
us that, while a single particle may have zero energy on a finite domain (as is possible
here due to the Neumann b.c.), as soon as there are two or more particles on the same
domain, the energy must be strictly positive. However, if the particles were bosons or
distinguishable then one could have chosen all particles to be in the ground state on the
domain, i.e. the constant function, and thus obtained zero energy. The domain considered
above was a cube but similar bounds are naturally valid on other domains as well, and in
fact the corresponding bound on a ball (see (5.5) below) was used by Dyson and Lenard
in their original proof of stability of fermionic matter [DL67, Lemma 5]. Indeed the only
property of fermionic systems (compared to bosonic or boltzonic) used in their proof was
this remarkably weak implication of the exclusion principle, with an energy which only
grows linearly with N , as opposed to the true energy which grows much faster with N
according to the Weyl asymptotics as we saw above (Exercise 5.2). This curious fact, that
matter turns out to be stabilized sufficiently by the exclusion principle acting effectively
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between pairs (and to a lesser extent triplets etc.) of neighboring electrons, was discussed
briefly in [Dys68] and [Len73], and will be further clarified in the coming sections.

One may alternatively prove (5.4) resp. (5.5) directly via the Poincaré inequality on the
domain; see [Len73, Theorem 8]. See also [LNP16, Lemma 11] for an extension of this type
of exclusion bound to kinetic energy operators involving arbitrary powers of the momentum
(even fractional, which is relevant for relativistic stability).

Exercise 5.4. Prove a corresponding Pauli bound on a disk or a ball B = BR(0) of radius
R, Ψ ∈ H1

asym(BN ), ∫
BN
|∇Ψ|2 ≥ (N − 1)

ξ2

R2

∫
BN
|Ψ|2, (5.5)

where for the two-dimensional disk, ξ ≈ 1.841 denotes the first non-trivial zero of the
derivative of the Bessel function J1, and for the three-dimensional ball, ξ ≈ 2.082 denotes

the smallest positive root x of the equation d2

dx2
sinx
x = 0. (Hint: You may use that the

eigenvalue problem on the ball separates according to Theorem 4.25.)

5.1.2. Fermionic uncertainty and statistical repulsion. Another useful and concrete measure
of the exclusion principle betweeen fermions comes in the form of a strengthened uncertainty
principle. Namely, as we shall see below, fermions turn out to satisfy an effective pairwise
repulsion, and the corresponding mathematical statement may be referred to as a fermionic
many-body Hardy inequality. Inequalities of this form were introduced in [HOHOLT08]
in the global case, and were subsequently generalized to anyons in two dimensions and to
local formulations in [LS13a, LL18]. The optimal constant in the inequality for fermions
in the global case for d ≥ 3 was also discussed in [FHOLS06]. We will here only discuss
the simpler global case, although it is important to stress that the repulsion persists also
locally, which is not the case with the usual Hardy inequality without antisymmetry.

Let us start with the following simple one-body version of the inequality (which has been
pointed out already in [Bir61]):

Lemma 5.2 (One-body Hardy with antisymmetry). If u ∈ H1(Rd) is antipodal-
antisymmetric, i.e. u(−x) = −u(x), then∫

Rd
|∇u(x)|2 dx ≥ d2

4

∫
Rd

|u(x)|2

|x|2
dx.

Remark 5.3. Note that this improves upon the constant of the standard Hardy inequality
of Theorem 4.4 for d ≥ 2, and that for d = 1 antisymmetry and continuity implies u(0) = 0
and hence u ∈ H1

0 (R \ {0}), reducing therefore to the standard inequality.

Proof. We may write in terms of spherical coordinates x = x(r, ω), r ≥ 0, ω ∈ Sd−1,∫
Rd
|∇u(x)|2 dx =

∫ ∞
r=0

∫
Sd−1

(
|∂ru|2 +

|∇ωu|2

r2

)
rd−1drdω (5.6)

and change the order of integration by Fubini. The usual Hardy inequality (4.5) actually
concerns the radial part here (exercise), namely for any ω ∈ Sd−1,∫ ∞

0
|∂ru(r, ω)|2 rd−1dr ≥ (d− 2)2

4

∫ ∞
0

|u(r, ω)|2

r2
rd−1dr. (5.7)
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For the angular part of the derivative we may use the Poincaré inequality on Sd−1 given in
(4.40), ∫

Sd−1

|∇ωu(r, ω)|2 dω ≥ (d− 1)

∫
Sd−1

|u(r, ω)|2 dω, (5.8)

since, by antipodal antisymmetry,
∫
Sd−1 u(r, ω) dω = 0 for all r ≥ 0. The lemma then follows

by combining these two inequalities. �

By applying this lemma in pairwise relative coordinates, one obtains the following many-
body Hardy inequality [HOHOLT08, Theorem 2.8]:

Theorem 5.4 (Many-body Hardy with antisymmetry). If Ψ ∈ H1
asym(RdN ) then

∫
RdN

N∑
j=1

|∇jΨ|2 dx ≥ d2

N

∫
RdN

∑
1≤j<k≤N

|Ψ(x)|2

|xj − xk|2
dx +

1

N

∫
RdN

∣∣∣∣∣∣
N∑
j=1

∇jΨ

∣∣∣∣∣∣
2

dx. (5.9)

Proof. We first use the many-body parallelogram identity (3.38)

N∑
j=1

|∇jΨ|2 =
1

N

∑
1≤j<k≤N

∣∣∇jΨ−∇kΨ∣∣2 +
1

N

∣∣∣∣∣
N∑
j=1

∇jΨ

∣∣∣∣∣
2

,

and then for each pair (j, k) of particles we introduce relative coordinates,

rjk := xj − xk, Xjk := 1
2(xj + xk), ∇rjk = 1

2(∇j −∇k), ∇Xjk
= ∇j +∇k.

Thus, splitting the coordinates according to x = (xj ,xk; x′), with x′ ∈ Rd(N−2) and j < k
fixed, we may define the relative function

u(r,X) := Ψ
(
x1,x2, . . . ,xj = X + 1

2r, . . . ,xk = X− 1
2r, . . . ,xN

)
,

for which we have that u(−r,X) = −u(r,X) for any X ∈ Rd by the antisymmetry of Ψ,
and

∇ru = 1
2(∇j −∇k)Ψ.

Then, by the 1-to-1 change of variables on R2d, with dxjdxk = drdX, and Lemma 5.2,∫
Rd(N−2)

∫
Rd×Rd

|(∇j −∇k)Ψ|2 dxjdxk dx′ = 4

∫
Rd(N−2)

∫
Rd×Rd

|∇ru|2 drdX dx′

≥ d2

∫
Rd(N−2)

∫
Rd×Rd

|u|2

|r|2
drdX dx′ = d2

∫
Rd(N−2)

∫
Rd×Rd

|Ψ|2

|xj − xk|2
dxjdxk dx′,

which proves the theorem. �

The above theorem shows that fermionic particles always feel an inverse-square pair-
wise repulsion, which is not just due to the energy cost of localization as encoded in the
usual uncertainty principle, but which is strictly stronger (and in two dimensions therefore
non-trivial in contrast to the standard Hardy inequality). Its origin is the relative antipo-
dal antisymmetry and thereby the Poincaré inequality (5.8) which comes weighted by the
inverse-square of the distance rjk = |rjk| between each pair of particles. The repulsion per-
sists also locally, i.e. in tubular domains around the diagonals 44 of the configuration space,
and independently of the considered boundary conditions. Indeed, an alternative version of
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(5.9), without having applied the Rd-global Hardy inequality in (5.6) but instead the local
(diamagnetic) inequality |∂rΨ| ≥

∣∣∂r|Ψ|∣∣, and (5.8), is∫
RdN

N∑
j=1

|∇jΨ|2 dx ≥ 4

N

∫
RdN

∑
1≤j<k≤N

(∣∣∂rjk |Ψ|∣∣2 + (d− 1)
|Ψ(x)|2

|xj − xk|2

)
dx (5.10)

+
1

N

∫
RdN

∣∣∣∣∣∣
N∑
j=1

∇jΨ

∣∣∣∣∣∣
2

dx.

Although the first integral of the r.h.s. involves the bosonic function |Ψ| ∈ L2
sym(RdN ),

the singular repulsive term forces the probability amplitude |Ψ|2 to be smaller (and even
to vanish for d = 2) where particles meet, and we will therefore refer to this effect as a

statistical repulsion(18). One may note however that the constant in (5.9) resp. (5.10)
and the number of terms in the sum combine to yield an overall linear growth in N , which
matches the number of terms of the kinetic energy, but differs from the case of a usual pair
interaction of fixed strength, such as in (3.37). Also, the last integral term in (5.9) resp.
(5.10) involves the total center-of-mass motion and will typically only contribute to a lower
order and may thus often be discarded in applications.

Local, but necessarily more complicated, versions of these inequalities were given for d = 2
in [LS13a, LL18]. These may be applied to eventually yield the same type of exclusion
bounds as (5.4) and (5.5), with a slightly weaker constant, but with the advantage of
opening up for generalizations of the statistical repulsion such as to anyons as discussed
in Section 5.6 below. Also note that for dimension d = 1 where H1

asym(RN ) ⊆ H1
0 (RN \

44) we actually have a much better inequality from before, namely the many-body Hardy
inequality of Theorem 4.11, for which the overall dependence of the r.h.s. is rather quadratic
in N . Furthermore, in the one-dimensional case with bosons, a vanishing condition on the
diagonals 44 is actually sufficient to impose the usual Pauli principle, since there is an
equivalence between symmetric functions in H1

0 (RN \ 44) and antisymmetric functions in
H1(RN ) [Gir60], however this is not the case in d ≥ 2.

Exercise 5.5. Prove the radial Hardy inequality (5.7) in two ways: by reducing the usual
Hardy inequality to radial functions, and, by modifying the GSR approach of Proposition 4.7.

5.1.3. Fermions and determinantal point processes. Lambert’s bonus material...

5.2. Weaker exclusion. In the case that one would need to weaken the Pauli principle a
bit to allow for, say, up to q particles occupying each one-body state, this could be modeled
using a modified N -particle Hilbert space. Let us take

Hasym(q) :=
⊗q

(∧K
H

)
, N = qK,

which may be thought of as having q different (distinguishable) flavors (or species) of
fermions, with each such flavor being subject to the Pauli principle. In the context of the
non-interacting Hamiltonian Ĥ =

∑N
j=1 ĥj discussed in the beginning of this chapter, the

(18)Though, as discussed in [MB03], the term should perhaps be used with some caution.
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typical ground state would then be

Ψ = (u0 ∧ . . . ∧ uK−1)⊗ . . .⊗ (u0 ∧ . . . ∧ uK−1)

with energy E0 = q
∑K−1

k=0 λk. We consider here N to be a multiple of q for simplicity, but
this assumption may be relaxed with a slightly more involved framework to specify which
flavors are being added. An equivalent and more flexible way to characterize the elements
of Hasym(q) is as functions Ψ(x1, . . . ,xN ) in L2(RdN ) for which there is a partition of the
variables xj into q groups, with the variables in each such group being antisymmetric under
permutations of the labels.

Because there is also a notion of spin in quantum mechanics (recall Exercise 3.7 and
Remark 3.28) it is in fact a realistic assumption that each particle comes equipped with such
an additional flavor degree of freedom, modeled using an internal space Cq, where q ≥ 1
is the spin dimension of the particle (while the number s = (d−1)/2 ∈ Z≥0/2 is called its
spin), and the full Hilbert space may then be modeled correctly using Hasym(q). Although
the introduction of spin appears a bit ad hoc here in our context of non-relativistic quantum
mechanics, it turns out to be a non-trivial consequence of relativistic quantum theory that
in nature, i.e. for elementary particles moving in R3, bosons always have q odd (integer
spin) while fermions have q even (half-integer spin). In the case of electrons we have q = 2,
with a basis of C2 modeling spin-up respectively spin-down states. The fermions that we
have considered previously and modeled by the simpler antisymmetric space Hasym with
q = 1 are therefore known as spinless fermions and may seem a bit artificial from this
perspective, however such particles may become manifest in certain spin-polarized systems.

A simple modification of the proof of Proposition 5.1 to the case Hasym(q) yields:

Proposition 5.5. Let Q ⊆ Rd be a d-cube, d ≥ 1. For any N = qK with q,K ≥ 1, and
Ψ ∈ H1

asym(q)(Q
N ), we have∫

QN
|∇Ψ|2 ≥ (N − q)+

π2

|Q|2/d

∫
QN
|Ψ|2.

Again, N being a multiple of q is not important for the proof and may thus be relaxed,
as illustrated by the following version (see also [FS12, Lemma 3] for generalizations):

Proposition 5.6. Let Ψ ∈ H1(RdN ) be an N -body wave function for which there is a
partition of labels into q groups and antisymmetry holds between all variables xj in each

such group, and let Q ⊆ Rd be a d-cube, d ≥ 1. For any subset A ⊆ {1, . . . , N} of the

particles, x = (xA; xAc), n = |A| ≥ 0, and a.e. xAc ∈ Rd(N−n), we have∫
Qn

∑
j∈A
|∇jΨ(xA; xAc)|2 dxA ≥ (n− q)+

π2

|Q|2/d

∫
Qn
|Ψ(xA; xAc)|2 dxA.

Exercise 5.6. The expression (5.3) approximates the ground-state energy for the free
Fermi gas (spinless, non-interacting and homogeneous) on a box Q, i.e. the infimum

E0,asym(N) := inf
{
T [Ψ] : Ψ ∈ H1

asym(QN ), ‖Ψ‖2 = 1
}
≈ Kcl

d ρ
2/dN,
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where ρ = N/|Q| is the density. Obtain the approximation for the g.s. energy for the Fermi
gas with a fixed number q species of fermions (or q-dimensional spin)

E0,asym(q)(N) := inf
{
T [Ψ] : Ψ ∈ H1

asym(q)(Q
N ), ‖Ψ‖2 = 1

}
≈ q−2/dKcl

d ρ
2/dN. (5.11)

Show also that boundary conditions (Dirichlet/Neumann/periodic) on ∂Q are unimportant
for the leading-order approximation of the energy.

5.3. Local exclusion and density formulations. We may define the local n-particle
kinetic energy on a cube Q for fermions, i.e. particles obeying the Pauli principle,

en(Q; asym) := inf
ψ∈H1

asym(Qn)∫
Qn |ψ|

2=1

∫
Qn

n∑
j=1

|∇jψ|2,

and in general, allowing for q particles to occupy the same state and taking an arbitrary
subset n of N total particles on Rd, those n being localized on Q and the remaining N − n
residing anywhere on Qc,

en(Q; asym(q)) := inf
Ψ∈H1

asym(q)
(RdN )

Ψ|
Qn×(Qc)N−n 6=0

ess inf
x′∈(Qc)N−n

Ψ|Qn×{x′} 6=0

∫
Qn
∑n

j=1 |∇jΨ(·; x′)|2∫
Qn |Ψ(·; x′)|2

.

We found from Proposition 5.1 respectively 5.6 that for these energies

en(Q; asym(q)) ≥ π2

|Q|2/d
(n− q)+. (5.12)

Also note that by translation and permutation symmetries, the above energies are indepen-
dent of which cube and which subset of particles are considered, thus depending only on
the volume (length scale) |Q| and n.

Now, consider an N -body wave function of particles on Rd, Ψ ∈ H1
asym(q)(R

dN ), and a

partition P of the configuration space into d-cubes Q with a corresponding kinetic energy〈
Ψ, T̂Ψ

〉
= T [Ψ] =

∑
Q∈P

TQ[Ψ],

where we recall the local expected kinetic energy on the domain Q (see Section 4.8)

TQ[Ψ] :=
N∑
j=1

∫
RdN
|∇jΨ|2 1Q(xj) dx. (5.13)

Lemma 5.7 (Local exclusion principle). For any d-cube Q and L2-normalized N -body
state Ψ ∈ H1

asym(q)(R
dN ) we have

TQ[Ψ] ≥ π2

|Q|2/d

(∫
Q
%Ψ(x) dx − q

)
+

. (5.14)
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Proof. We insert the partition of unity (3.44) into the definition (5.13), producing

TQ[Ψ] =
∑

A⊆{1,...,N}

∫
(Qc)N−|A|

∫
Q|A|

∑
j∈A
|∇jΨ|2

∏
k∈A

dxk
∏
k/∈A

dxk

≥
∑

A⊆{1,...,N}

∫
(Qc)N−|A|

e|A|(Q; asym(q))

∫
Q|A|
|Ψ|2

∏
k∈A

dxk
∏
k/∈A

dxk

=

N∑
n=0

en(Q; asym(q)) pn,Q[Ψ],

that is the least possible energy weighted over the particle distribution induced from Ψ.
Now, we simply apply the bound (5.12) and use convexity of the function x 7→ (x− q)+,

TQ[Ψ] ≥
N∑
n=0

π2

|Q|2/d
(n− q)+ pn,Q[Ψ] ≥ π2

|Q|2/d

(
N∑
n=0

npn,Q[Ψ]− q

)
+

,

which by (3.43) is exactly the r.h.s. of (5.14). �

Example 5.8 (The free Fermi gas). As a simple application of this local bound we may
prove a global lower bound for the ground-state energy of the ideal Fermi gas which matches
the approximation (5.11) apart from the explicit value of the constant, i.e. proving that the
fermionic energy indeed is extensive in the number of particles, with only the simple bound
(5.12) as input. Namely, consider an arbitrary wave function of N fermions confined to a
large cube Q0 = [0, L]d,

Ψ ∈ H1
asym(q)(Q

N
0 ) ⇒ %Ψ ∈ L1(Q0;R+).

Taking a partition P ofQ0 into exactlyMd smaller cubesQ ∈ P, of equal size |Q| = |Q0|/Md,
M ∈ N, the energy is by Lemma 5.7 bounded as

T [Ψ] =
∑
Q∈P

TQ[Ψ] ≥
∑
Q∈P

π2

|Q|2/d

(∫
Q
%Ψ(x) dx − q

)
=

π2

|Q|2/d

(∫
Q0

%Ψ(x) dx − qMd

)

=
π2

|Q0|2/d
(
NM2 − qMd+2

)
.

Optimizing this expression in M gives M ∼
(

2N
(d+2)q

)1/d
(rounded to the nearest integer)

and thus

E0,asym(q)(N) := inf
Ψ∈L2

asym(q)
(QN0 )

‖Ψ‖=1

T [Ψ] ≥ d

d+ 2

(
2

d+ 2

)2/d π2

q2/d

N1+2/d

|Q0|2/d
+
O(N1+1/d)

|Q0|2/d
.

Hence, with q fixed and taking both N → ∞ and |Q0| → ∞ at fixed density ρ := N/|Q0|,
what may commonly be referred to as the thermodynamic limit, the energy per particle
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is(19)

lim inf
N,|Q0|→∞
ρ=N/|Q0|

E0,asym(q)(N)

N
≥ d

d+ 2

(
2

d+ 2

)2/d

π2 ρ
2/d

q2/d
,

to be compared with (5.11) and (5.3). Note that when q = N , i.e. for bosons, M cannot
be chosen large and in fact the local bound (5.14) is trivial for any Q. This reflects the
fact that the energy for the ideal Bose gas on Q0 is E0,sym(N) = Nλ0(−∆Q0) which is
linear in N and also depends crucially on the boundary conditions chosen on ∂Q0. In the
thermodynamic limit one obtains in any case E0,sym(N)/N → 0 for noninteracting bosons.

Exercise 5.7. Compute the n-particle probability distribution pn,Q[Ψ0] for the bosonic Neu-

mann ground state Ψ0 on QN0 in terms of t = |Q|/|Q0|. What can be said about the cor-
responding problem for the fermionic ground state (difficult, but perhaps with a change of
geometry and selection of states)?

5.4. Repulsive bosons. We will now use a formal analogy and treat a repulsive interaction
between bosons or distinguishable particles as a form of exclusion principle. Indeed the effect
of such an interaction will typically be to reduce the probability density |Ψ(x)|2 around
the 2-particle diagonals 44, and strong enough interactions could even enforce a vanishing
condition

Ψ(x1, . . . ,xN ) = 0 if xj = xk for some j 6= k, (5.15)

thereby embodying a weak Pauli-type exclusion principle on the configuration space Cd×N
or Cd×Nsym . Another motivation for considering this type of generalization comes from the
fermionic Hardy inequality in Theorem 5.4, which shows that effects of the exchange statis-
tics of the particles may actually be estimated concretely by some sort of repulsive interac-
tion. This approach also turns out to be useful for anyons which can be treated as bosons
with magnetic repulsive interactions.

5.4.1. Pairwise interactions. In the case that there is a given pair-interaction potential W
between particles, we define the corresponding n-particle energy on the box Q,

en(Q;W ) := inf∫
Qn |ψ|2=1

∫
Qn

 n∑
j=1

|∇jψ|2 +
∑

1≤j<k≤n
W (xj − xk)|ψ|2

 dx.

Note that en with n ≥ 2 can be reduced to a bound in terms of only e2, namely:

Lemma 5.9. For any pair-interaction potential W and any d-cube Q, and n ≥ 2, we have

en(Q;W ) ≥ n

2
e2(Q; (n− 1)W ).

Proof. Use the simple identity

(n− 1)

n∑
j=1

|∇jψ|2 =
∑

1≤j<k≤n

(
|∇jψ|2 + |∇kψ|2

)
(19)Here we take the lim inf for generality, though the limit actually exists by the Weyl asymptotic formula

(cf. Exercise 5.2).
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to bound the n-body energy in terms of a sum of two-body energies:

en(Q;W ) = inf∫
Qn |ψ|2=1

1

n− 1

∑
j<k

∫
Qn

(
|∇jψ|2 + |∇kψ|2 + (n− 1)W (xj − xk)|ψ|2

)
dx,

where each term of the sum is bounded below by e2(Q; (n− 1)W )
∫
Qn |ψ|

2. �

This tells us that, as soon as the two-particle energy is strictly positive, such as for
repulsive pair interactions, there will be positive energy also for n ≥ 2 particles, analogously
to the Pauli principle. We also note that for any n and non-negative pair potential W the
function f(µ) := en(Q;µW ) is monotone increasing and concave in µ ≥ 0 (an infimum of
affine functions), and f(0) = 0.

Let us consider some examples.

5.4.2. The stupid bound. In the case that W (x) = Wβ(x) := β|x|−2, β ≥ 0, that is an
inverse-square repulsion, we may use the following very crude bound for en:

en(Q;Wβ) ≥
∑
j<k

inf∫
Qn |ψ|2=1

∫
Qn
Wβ(xj − xk)|ψ|2 ≥

(
n

2

)
inf

x1,x2∈Q
Wβ(x1 − x2) ≥ βn(n− 1)

2d|Q|2/d

(in fact we don’t even need the kinetic energy in this case). In particular,

en(Q;Wβ) ≥ β

d|Q|2/d
(n− 1)+. (5.16)

5.4.3. Hard-core bosons. For the case of a hard-sphere interaction W hs
R in d = 3 (see Ex-

ample 3.20), one can derive the rough bound [LPS15, Proposition 10]

e2(Q;W hs
R ) ≥ 2√

3

R

|Q|
(2−R/|Q|1/3)−2

+ .

Note that it vanishes as R→ 0 (the dilute limit; cf. Exercise 5.8).

5.4.4. The Lieb–Liniger model. In one dimension, the value of a function at a point may be
controlled by the kinetic energy and the overall normalization (recall (4.15)), and thus it is
possible to define a point interaction of the type WLL(x) = δ(x) in the form sense, that is

en(Q; ηWLL) = inf∫
Qn |ψ|2=1

∫
Qn

 n∑
j=1

∣∣∣∣ ∂ψ∂xj
∣∣∣∣2 + η

∑
1≤j<k≤n

δ(xj − xk)|ψ|2
 dx.

This is also known as the Lieb–Liniger model [LL63], and for any η ≥ 0 one has (exercise)

e2(Q; ηWLL) = 4ξLL(η|Q|/4)2/|Q|2, (5.17)

where ξLL(x) is defined as the smallest root ξ ≥ 0 of ξ tan ξ = x,

ξLL(x) ≈ arctan
√
x+ 4x2/π2 ∼

{√
x, x→ 0+,

π/2, x→∞.

Note that this model interpolates continuously between non-interacting bosons with e2 = 0
for η = 0 and hard-core bosons (or fermions; cf. remarks in Section 5.1.2) with e2 = π2/|Q|2
for η = +∞. Indeed it has been considered as a model for intermediate statistics in one
dimension; see e.g. [LM77, Myr99, LS13b, LS14].
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5.4.5. Local exclusion for pairwise interacting bosons. Define the corresponding expected
interaction energy on Q,

WQ[Ψ] :=
1

2

N∑
j=1

N∑
(j 6=)k=1

∫
RdN

W (xj − xk)|Ψ|21Q(xj) dx,

as well as the combined energies

(T +W )Q[Ψ] := TQ[Ψ] +WQ[Ψ].

Then, for a partition P of Rd,

T [Ψ] +W [Ψ] =
∑
Q∈P

(T +W )Q[Ψ].

Lemma 5.10 (Local exclusion principle for pairwise repulsion). Let W ≥ 0 be a
repulsive pair interaction. For any d-cube Q and N -body wave function Ψ ∈ H1(RdN ) we
have

(T +W )Q[Ψ] ≥ 1

2
e2(Q;W )

(∫
Q
%Ψ(x) dx − 1

)
+

.

Proof. The proof is a straightforward extension of the proof of Lemma 5.7 where we use
Lemma 5.9, monotonicity e2(Q; (n − 1)W ) ≥ e2(Q;W ), and that |A|/2 ≥ (|A| − 1)+/2 for
|A| ≥ 2. Non-negativity of W is used in order to estimate the interactions between particles
inside and outside Q trivially,

TQ[Ψ] =
1

2

∑
A⊆{1,...,N}

∑
j∈A

N∑
k=1
k 6=j

∫
RdN

W (xj − xk)|Ψ(x)|21xl∈A∈Q1xl/∈A∈Qc dx

≥ 1

2

∑
A⊆{1,...,N}

∑
j,k∈A
j 6=k

∫
RdN

W (xj − xk)|Ψ(x)|21xl∈A∈Q1xl/∈A∈Qc dx,

which is only a significant loss if the support of W is relatively large. �

Application: just as a local application of Lemma 5.7 gave rise to bounds for the homo-
geneous Fermi gas as in Example 5.8, Lemma 5.10 can be used to prove lower bounds for
homogeneous interacting Bose gases; see [LPS15] for examples.

Exercise 5.8. Consider the strength of the hard-core repulsion as the size of the core goes
to zero, in different dimensions d = 1, 2, 3. For simplicity, pass to the relative coordinate r
only and consider the g.s. energy on B1(0) with a vanishing condition on Bε(0), 0 < ε < 1.
Note that for d = 1 it stays bounded in the limit ε→ 0 while for d ≥ 2 it vanishes, reflecting
Lemma 4.8. (Hint: consider trial states of the form u(r) = (r − ε)+ resp. u(r) = ln+(r/ε)
and constant for some r > a > ε.)

Exercise 5.9. Prove (5.17) by considering the function on Q2 = [0, L]2

ψ(x1, x2) = cos

[
2ξLL(ηL/4)

(
X

L
− 1

2

)]
cos

[
ξLL(ηL/4)

(
|x|
L
− 1

)]
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in the relative coordinates X = (x1 + x2)/2 ∈ [0, L], x = x1 − x2. Note that it is positive,
symmetric and satisfies the corresponding boundary conditions

∂xψ|x=0+ =
η

4
ψ|x=0+ , ∂x1ψ|x1=0 =

(
1

2
∂X + ∂x

)
ψ|X+x

2
=0 = 0, etc.

5.5. Scale-covariant systems. In the case of still weaker notions of exclusion, such as only
the vanishing condition (5.15) (whenever it can be formalized as a nontrivial condition; cf.
Exercise 5.8), we cannot simply rely on the number of terms of the interaction as above to
yield a sufficient bound. The following lemma (introduced in [LLN19] as a refinement of
a strategy in [LS18]) shows that if the corresponding energy en satisfies a scale-covariance
property, such as en(λQ;Wβ) = λ−2en(Q;Wβ), λ > 0, for inverse-square repulsion, and
eventually becomes strictly positive with n large enough (thus accommodating interactions
not only between pairs of particles), then it will necessarily grow superlinearly with n.

Lemma 5.11 (Covariant energy bound; [LLN19, Lemma 4.1]). Assume that to any
n ∈ N0 and any cube Q ⊂ Rd there is associated a non-negative number (‘energy’) en(Q)
satisfying the following properties, for some constant s > 0:

• (scale-covariance) en(λQ) = λ−2sen(Q) for all λ > 0;
• (translation-invariance) en(Q+ x) = en(Q) for all x ∈ Rd;
• (superadditivity) For any collection of disjoint cubes {Qj}Jj=1 such that their union

is a cube,

en

( J⋃
j=1

Qj

)
≥ min
{nj}∈NJ0 s.t.

∑
j nj=n

J∑
j=1

enj (Qj);

• (a priori positivity) There exists q ≥ 0 such that en(Q) > 0 for all n ≥ q.
Then there exists a constant C > 0 independent of n and Q such that

en(Q) ≥ C|Q|−2s/dn1+2s/d, ∀n ≥ q. (5.18)

Proof. Note that for q ≤ n ≤ N , (5.18) holds for some C = CN > 0 by the a priori positivity.
What we aim to do is to remove the N -dependence of this constant.

Denote En := en(Q0) with Q0 = [0, 1]d. Assume by induction in N that

En ≥ Cn1+2s/d, ∀q ≤ n ≤ N − 1 (5.19)

with a uniform constant C > 0 and consider n = N . Split Q0 into 2d subcubes of half side
length and obtain by the superadditivity, translation-invariance and scale-covariance

EN ≥ 22s min
{nj} s.t.

∑
j nj=N

2d∑
j=1

Enj . (5.20)

Consider a configuration {nj} ⊂ N2d
0 such that the minimum in (5.20) is attained. The a

priori positivity EN > 0 ensures that none of the nj can be N (in the same way we deduce

that E0 = 0). Assume that there exist exactly M numbers nj < q with 0 ≤M ≤ 2d. Then∑
nj≥q

1 = 2d −M and
∑
nj≥q

nj = N −
∑
nj<q

nj ≥ N − qM.
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Therefore, from (5.20), (5.19) and Hölder’s inequality we deduce that

EN ≥ C22s
∑
nj≥q

n
1+2s/d
j ≥ C22s

(∑
nj≥q nj

)1+2s/d

(∑
nj≥q 1

)2s/d
≥ CN1+2s/d (1− qMN−1)1+2s/d

(1−M2−d)2s/d

(5.21)
with the same constant C as in (5.19). If we take

N ≥ q2d
(

1 +
d

2s

)
,

so that also qMN−1 ≤ 1, then by Bernoulli’s inequality

(1− qMN−1)1+d/(2s) ≥ 1− qMN−1
(

1 +
d

2s

)
≥ 1−M2−d,

and hence (5.21) reduces to

EN ≥ CN1+2s/d (5.22)

with the same constant C as in (5.19).
By induction we obtain (5.22) for all N ≥ q, with a constant C independent of N . This

is the desired bound (5.18) for the unit cube Q0. The result for the general cube follows
from scale-covariance and translation-invariance. �

With a superlinear growth in the energy by the number of particles we may obtain local
exclusion principles of the previous form. The following is a version of [LLN19, Lemma 4.4].

Lemma 5.12 (Local exclusion principle for scale-covariant systems). Assume that

to each n ∈ N0 we have an n-body energy operator T̂n resp. form Tn[Ψ] = 〈Ψ, T̂nΨ〉 =∑n
j=1 Tn,j [Ψ] on L2(Rdn) which restricts to a local operator T̂n|Qn resp. form on L2(Qn)

such that its corresponding local n-particle energies

en(Q) := inf
ψ∈Q(T̂n|Qn )\{0}

〈T̂n|Qn〉ψ = inf
ψ∈Q(T̂n|Qn )\{0}

∑n
j=1 Tn,j [ψ]

‖ψ‖2

satisfy the assumptions of Lemma 5.11. Furthermore, assume that for any d-cube Q and
L2-normalized N -body wave function Ψ ∈ Q(T̂N ) the expected energy on Q,

TQN [Ψ] :=
N∑
j=1

TN,j [Ψ1xj∈Q],

admits a decomposition or lower bound of the form

TQN [Ψ] ≥
∑

A⊆{1,...,N}

∫
(Qc)N−|A|

〈Ψ(·; xAc), T̂|A||Q|A|Ψ(·; xAc)〉L2(Q|A|) dxAc . (5.23)

Then

TQN [Ψ] ≥ Cq2s/d|Q|−2s/d

(∫
Q
%Ψ(x) dx − q

)
+

,

with the same constant C as in (5.18).
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Proof. The proof follows exactly as the proof of Lemma 5.7: by (5.23),

TQN [Ψ] ≥
N∑
n=0

en(Q)pn,Q[Ψ],

where, by Lemma 5.11,

en(Q) ≥ C|Q|−2s/dn1+2s/d1n≥q ≥ C|Q|−2s/dq2s/d[n− q]+
for all n ≥ 0. �

Superadditivity for the usual kinetic energy with s = 1, and also its fractional version
with arbitrary s > 0, essentially follows immediately from the form decomposition

(−∆)s|Q ≥
J∑
j=1

(−∆)s|Qj , Q = ∪Jj=1Qj ,

where in the purely fractional (non-local) case s /∈ N there may be some loss in the in-
teraction between different cubes. Compare to the proof of Lemma 5.10, and see [LLN19,
Lemma 4.3] for details.

Exercise 5.10. It is in Lemma 5.11 possible to allow for En < 0 for finitely many n > 0
under a small refinement of the assumption concerning a priori positivity. Show that it is
sufficient that there exists q > 0 and c > 1 such that for all n ≥ q

En > c
d

2s
2d+2sE−, E− := max

0≤n<q
(−En).

Namely, with this assumption, the bound in (5.21) may again be used for all nj ≥ q, and

one obtains EN ≥ CN1+2s/df(M/2d), C = minq≤n≤N−1En/n
1+2s/d, where the function

f(x) :=
(1− q2dN−1x)1+2s/d

(1− x)2s/d
− E−2d+2s

CN1+2s/d
x, x ∈ [0, 1),

is strictly increasing if N is large enough.

5.6. Anyons. We end this chapter with a short discussion on the exclusion properties of
anyons in two dimensions (recall their definition in Section 3.7). Two-particle energies
and other pairwise statistics-dependent properties for anyons have been known since the
original works [LM77, Wil82, ASWZ85] in the abelian case, and at least since [Ver91, LO94]
for certain non-abelian anyons, however the method outlined below to account for statistical
repulsion in the full many-body context is fairly recent and developed in [LS13a, LS13b,
LS14, LL18, Lun17, Qva17, LS18].

For (ideal abelian) anyons one has the following many-body Hardy inequality, which was
generalized from the fermionic one (5.10) in [LS13a, Theorem 4] and [LL18, Theorem 1.3]:

Theorem 5.13 (Many-anyon Hardy). For any α ∈ R, N ≥ 1, and Ψ ∈ Q(T̂α), one has
the many-body Hardy inequality〈

Ψ, T̂αΨ
〉
≥ 4

N

∫
RdN

∑
1≤j<k≤N

(∣∣∂rjk |Ψ|∣∣2 + α2
N

|Ψ(x)|2

r2
jk

)
dx +

1

N

∫
RdN

∣∣∣∣∣∣
N∑
j=1

∇jΨ

∣∣∣∣∣∣
2

dx,

(5.24)
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where rjk = |xj − xk|, and the strength of the statistical repulsion term depends on the
anyonic statistics parameter α via

αN := min
p∈{0,1,...,N−2}

min
q∈Z
|(2p+ 1)α− 2q|. (5.25)

The expression (5.25) is a piecewise linear and 2-periodic function of α (in accordance
with the periodicity of the exchange phase) and for N = 2 it reduces to the simple form of
a saw-tooth wave with α2 = |α| for α ∈ [−1, 1], having maxima at α ∈ 2Z + 1 (fermions)
and minima at α ∈ 2Z (bosons). However, in the limit as N → ∞ the expression depends
non-trivially on arithmetic properties of α (see [LS13a, Proposition 5]):

α∗ := lim
N→∞

αN = inf
N≥2

αN =

{
1
ν , if α = µ

ν ∈ Q reduced, µ odd and ν ≥ 1,
0, otherwise.

In other words, it is supported only on the rationals with odd numerator, with a magni-
tude inversely proportional to the denominator, and may thus be considered a variant of a
function known as the Thomae, or popcorn function.

Remark* 5.14. In order to understand the origin of the above expressions and their peculiar
dependence on α, recall that anyons may be modeled rigorously using connections on fiber
bundles; cf. (3.53) and Remark 3.29. The kinetic energy for N anyons may in fact be written
as

T̂α =
N∑
j=1

(
−i∇Aα

xj

)2
,

where Aα denotes a connection one-form (gauge potential) on the bundle which implements
the statistics, i.e. which is such that the holonomies produced under continuous exchanges
of the particles yield the corresponding representation of the braid group, ρ : BN → U(F), of
the anyon model. For abelian anyons, with fiber F = C and statistics parameter α ∈ [0, 2),
this is thus the phase ρ(τn1 . . . τnk) = eiαπk of the exchange as discussed in Exercises 3.13-
3.14.

The Poincaré inequality (5.8) that was used for the statistical repulsion of fermions is
here replaced by the inequality∫

rS1

∣∣∇Aα
r Ψ

∣∣2 ≥ ∫
rS1

(∣∣∂r|Ψ|∣∣2 + min
q∈Z
|Φ(r)− 2q|2 1

r2
|Ψ|2

)
, (5.26)

where the integration is performed over the circle |r| = r in the relative coordinates r = rjk
of a fixed pair xj , xk of particles, and 2πΦ(r) is defined as the statistics phase (i.e. the
holonomy on the bundle) obtained under exchange of this pair as r→ −r→ r continuously
along the full circle rS1. Note that already after half of the circle has been traversed one
has actually completed a full particle exchange, r → −r ∼ r, and thus the corresponding
phase factor in this case must be (see Exercise 3.14)

eiπΦ(r), Φ(r) =
(
1 + 2p(r)

)
α,

where p(r) ∈ {0, 1, . . . , N − 2} denotes the number of other particles that are enclosed
under such an exchange. This depends both on the positions of the other N − 2 particles
x′ = (xl)l 6=j,k, on the center of mass X of the particle pair, and on the radius r of the
circle. However, recall that the phase is only determined uniquely up to multiples of 2π, i.e.
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eiπΦ(r) = eiπ(Φ(r)−2q) for any q ∈ Z. Let us for definiteness take the representative closest
to the identity,

eiπβ0 , β0 = β0(r) := ±min
q∈Z
|Φ(r)− 2q|,

where one of the signs apply and β0 ∈ (−1, 1]. This phase factor may be considered as a
non-trivial boundary condition that the function u(ϕ) := Ψ

(
r(r;ϕ),X; x′

)
of the relative

angle ϕ (with r, X and x′ fixed) must satisfy:

u(π) = eiπβ0u(0). (5.27)

It is a straightforward exercise (see below) to show that the Poincaré inequality∫ π

0
|u′(ϕ)|2 dϕ ≥ β2

0

∫ π

0
|u(ϕ)|2 dϕ (5.28)

holds for such semi-periodic functions on the (half) circle, by expanding in the basis of

energy eigenstates uq(ϕ) = ei(β0+2q)ϕ, q ∈ Z. Proceeding as in (5.6) one then obtains
(5.26), and finally (5.24) after minimizing over all possibilities for p(r), i.e. β0(r) ≥ αN
for all r. Note that in the case α = 0 one has β0 ≡ 0 and thus bosons and no Poincaré
inequality, while for α = 1 one has β0 = minq∈Z |1 + 2p(r)− 2q| ≡ 1 and thus the fermionic
Poincaré inequality (5.8). The above procedure may even be extended to certain families
of non-abelian anyons [Qva17, LQ18].

The following generalization of the diamagnetic inequality (4.27) holds despite the mag-
netic vector potentials in (3.53) not being locally square integrable around the diagonals:

Lemma 5.15 (Diamagnetic inequality for anyons [LS14, Lemma 4]). Given any α ∈ R
and Ψ ∈ Q(T̂α) we have |Ψ| ∈ Q(T̂0) = H1

sym and Tα[Ψ] ≥ T0[|Ψ|], and in particular the g.s.
energy for anyons is always greater than or equal to the corresponding bosonic g.s. energy.

Let us denote by (which needs to be interpreted in the correct form sense [LS14, LL18])

en(α) := inf∫
Qn0
|Ψ|2=1

〈
Ψ, T̂αΨ

〉
L2(Qn0 )

the local (Neumann) n-particle kinetic energy for anyons on the unit square Q0 = [0, 1]2

(the corresponding energy on a general square Q ⊆ R2 is obtained by simple scaling due to
homogeneity of the kinetic energy). A local version of Theorem 5.13 may be used to prove
that en satisfies a lower bound for all n of the form [LL18]

en(α) ≥ f
(
(j′αn)2

)
(n− 1)+,

where j′ν denotes the first positive zero of the derivative of the Bessel function Jν of the
first kind, √

2ν ≤ j′ν ≤
√

2ν(1 + ν) (and j′0 := 0),

and f : [0, (j′1)2]→ R+ is a function satisfying

t/6 ≤ f(t) ≤ 2πt and f(t) = 2πt
(
1−O(t1/3)

)
as t→ 0.
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Proceeding as in Example 5.8, one may then prove that the ground-state energy per particle
and unit density of the ideal anyon gas in the thermodynamic limit at fixed density ρ =
N/|Q|,

e(α) := lim inf
N→∞,|Q|→∞

|Q|−1eN (α)

Nρ
= lim inf

N→∞

eN (α)

N2
,

is bounded from below by
e(α) ≥ 1

24(j′α∗)
2 ≥ 1

12α∗,

and moreover, as α∗ → 0 the bound improves to

e(α) ≥ πα∗
(
1−O(α

1/3
∗ )

)
.

The dependence of the above expressions on α∗ comes about by assuming (as a lower
bound) that the measure of relative radii r = |xj − xk| such that the factor β0(r)2 of the
potential in (5.26) differs from its absolute minimum α2

∗ can be vanishingly small. This
requires the gas to be dilute and its particles arranged in tiny clusters [LL18, Lun17], and
it is not clear that such configurations will be beneficial with respect to the uncertainty
principle. Indeed, recently [LS18] the above bounds have been improved by using the scale
covariance of ideal anyons (cf. Lemma 5.12; for superadditivity see [LS18, Lemma 4.2]) and
the uncertainty principle, to yield a dependence only on the two-particle energy:

Lemma 5.16 (Local exclusion principle for anyons [LS18]). For any α ∈ R and n ≥ 2,
it holds

en(α) ≥ c(α)n,

where

c(α) :=
1

4
min{e2(α), e3(α), e4(α)} ≥ 1

4
min{e2(α), 0.147}.

Furthermore, for any N -anyon wave function Ψ ∈ Q(T̂α) and any square Q we have the
local exclusion principle

TQα [Ψ] ≥ c(α)

|Q|

(∫
Q
%Ψ(x) dx − 1

)
+

.

In fact, these lower bounds in terms of e2(α) ≥ 1
3α2 may be complemented with upper

bounds of the same form, and one has the following leading behavior for the ground state
energy of the ideal anyon gas, showing that it has a similar extensitivity as the Fermi gas
for all types of anyons except for bosons:

Theorem 5.17 (Extensivity of the ideal anyon gas energy [LS18]). There exist con-
stants 0 < C1 ≤ C2 <∞ such that for any α ∈ R

C1α2 ≤ e(α) ≤ C2α2,

and moreover, in the limit α2 → 0,

e(α) ≥ π

4
α2

(
1−O(α

1/3
2 )

)
.

However, the exact energy e(α) is still not known, and in fact a recent conjecture [CLR17,
CDLR19] in the context of a natural approximation, known as average-field theory (see
[LR15]), suggests that e(α) ≈ (2

√
π/3)2π|α| for small α, and would thus imply that the
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simple linear interpolation e(α) = 2πα2 (i.e. C1 = C2 = 2π) between bosons and fermions
cannot hold. Furthermore, the picture might change with an additional attraction between
the anyons which promotes clustering. Whether the true energy e(α) could be lower for
even-numerator rational α than for odd numerators due to the above form of statistical
repulsion is an interesting possibility, discussed in more detail in [Lun17].

Exercise 5.11. Prove the Poincaré inequality (5.28) for functions u ∈ H1([0, π]) subject to
the semi-periodic boundary condition (5.27).

Note that the self-adjoint operator corresponding to the form (5.28) is D2 = −∂2
ϕ, with

D = −i∂ϕ defined as a self-adjoint operator on L2([0, π]) with the b.c. (5.27). Then the
natural domain of D2 is the space of functions u ∈ H2([0, π]) satisfying both

u(π) = eiπβ0u(0) and u′(π) = eiπβ0u′(0).
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6. The Lieb–Thirring inequality

In Section 4 we found that the kinetic energy of an arbitrary L2-normalized N -body state
Ψ ∈ Q(T̂ ) = H1(RdN ) is bounded from below by (as usual we assume ~2/(2m) = 1)

T [Ψ] :=

〈
Ψ,

N∑
j=1

(−∆j)Ψ

〉
≥ GdN−2/d

∫
Rd
%

1+2/d
Ψ ,

which encodes the uncertainty principle by yielding an increase in the kinetic energy for
localized densities, but unfortunately becomes overall very weak with N →∞. It turns out
however that if one restricts to fermionic, i.e. antisymmetric, states Ψ ∈ Hasym, then this
inequality can be improved to

T [Ψ] ≥ Kd

∫
Rd
%

1+2/d
Ψ , (6.1)

with a constant Kd > 0 that is independent of N . This fermionic kinetic energy
inequality, which encodes both the uncertainty principle and the exclusion principle, is
also known as a Lieb–Thirring inequality and it was introduced by Lieb and Thirring
in 1975 [LT75, LT76] in order to give a new and drastically simplified proof of stability of
matter, as compared to the original tour-de-force proof due to Dyson and Lenard in 1967.

We will apart from proving the celebrated inequality (6.1) for fermions also prove that
the assumption on antisymmetry, i.e. the Pauli principle, may be replaced by a strong
enough repulsive interaction which then effectively imposes an exclusion principle on the
states Ψ as discussed in the previous chapter. In particular, for an inverse-square pair
interaction W (x) = β|x|−2, and for any Ψ ∈ H1(RdN ) (hence also for bosons Ψ ∈ Hsym or
distinguishable particles), the following Lieb–Thirring-type inequality holds:

T [Ψ] +W [Ψ] ≥ Kd(β)

∫
Rd
%

1+2/d
Ψ , (6.2)

with a constant Kd(β) > 0 for any β > 0. Also other forms of LT inequalities are valid if
for instance there is some local statistical repulsion, such as for anyons in two dimensions.

6.1. One-body and Schrödinger formulations. Note that for a fermionic basis state
Ψ = u1 ∧ u2 ∧ . . . ∧ uN , i.e. a simple Slater determinant, where {uj}Nj=1 ⊂ H = L2(Rd)
denotes an orthonormal set of one-body states, we have that (exercise)

T [Ψ] =

N∑
j=1

∫
Rd
|∇uj |2, (6.3)

and furthermore (exercise)

%Ψ(x) =

N∑
j=1

|uj(x)|2. (6.4)

The inequality (6.1) on such a state then follows straightforwardly from the following simple
generalization of the Gagliardo–Nirenberg–Sobolev inequality of Theorem 4.14. This very
simple approach to proving Lieb–Thirring inequalities directly by means of the kinetic
energy inequality is quite recent and due to Rumin [Rum10, Rum11] (see also e.g. [Sol11,
Fra14, FHJN18] for generalizations).
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Theorem 6.1 (Kinetic energy inequality). Given an L2-orthonormal set {uj}Nj=1 ⊂
H1(Rd), we have that

N∑
j=1

∫
Rd
|∇uj(x)|2 dx ≥ Kd

∫
Rd

 N∑
j=1

|uj(x)|2
1+ 2

d

dx,

with a constant satisfying G′d ≤ Kd ≤ min{Gd,Kcl
d }.

Remark 6.2. See Remark 4.15 concerning the constants G′d ≤ Gd. The presently known best

bound for the optimal constant Kd is Kd ≥ (1.456)−2/dKcl
d [FHJN18], and it is conjectured

that Kd = Gd < Kcl
d for d ≤ 2 while Kd = Kcl

d < Gd for d ≥ 3 [LT76]. See also
[DLL08, Lap12].

Proof. We follow the proof of Theorem 4.14, with the crucial difference that we use the
Bessel inequality in the bound corresponding to (4.23). Namely, we have for the orthonormal
system of functions {uj}j that

N∑
j=1

∫
Rd
|∇uj(x)|2 dx =

N∑
j=1

∫ ∞
0

∫
Rd
|uE,+j (x)|2 dx dE,

and by the triangle inequality on CN ,

N∑
j=1

∣∣uE,+j (x)
∣∣2 ≥


 N∑
j=1

|uj(x)|2
1/2

−

 N∑
j=1

∣∣uE,−j (x)
∣∣21/2


2

+

.

The bound on the low-energy part is then done using Fourier transform and Bessel’s in-
equality (2.2) (note that {ûj}j are also orthonormal by the unitarity of F) according to

N∑
j=1

∣∣uE,−j (x)
∣∣2 =

N∑
j=1

∣∣∣∣(2π)−d/2
∫
Rd
1{|p|2≤E}ûj(p)eip·x dp

∣∣∣∣2

= (2π)−d
N∑
j=1

∣∣∣〈ûj ,1{|p|≤E1/2}e
ip·x
〉∣∣∣2 ≤ (2π)−d|BE1/2(0)|,

after which the remainder of the previous proof goes through with the replacement ‖u‖ = 1,
and Kd ≥ G′d of (4.21). Also, since for N = 1 the inequality is exactly GNS, we cannot
have Kd > Gd for the optimal constants. Furthermore, taking as uj the eigenfunctions of
the Dirichlet Laplacian on a cube, we may as N → ∞ compare to the Weyl asymptotics
(5.3), see e.g. [Krö94], and in fact one may thus prove that also Kd ≤ Kcl

d . �

Theorem 6.3 (Many-body kinetic energy inequality). The inequality∫
RdN
|∇Ψ|2 ≥ Kd

∫
Rd
%

1+2/d
Ψ (6.5)

holds for any Ψ ∈ H1
asym((Rd)N ).

Proof. The proof in the many-body case would again be a straightforward modification
of the above one-body case, along the lines of Exercise 4.13, if we only knew that the
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corresponding partial traces of Ψ are orthonormal. This is the case for pure product states,
i.e. Slater determinants (see Exercise 6.1), but not necessarily so for a general Ψ. What
we may do instead is to use a diagonalization trick from the abstract theory of density
matrices (which goes slightly outside the course, cf. Remark 3.24, but we nevertheless give
here for the interested reader). Alternatively, we will find below that the theorem also
follows directly from the above one-body theorem together with the equivalence between
the kinetic energy and Schrödinger forms of the inequality; Theorem 6.4 and Corollary 6.6.

Given Ψ ∈ Hasym we may form the corresponding one-body density matrix γΨ : H → H,

H = L2(Rd), defined via the integral kernel

γΨ(x,y) :=
N∑
j=1

∫
Rd(N−1)

Ψ(x1, . . . ,xj−1,x,xj+1, . . . ,xN )×

×Ψ(x1, . . . ,xj−1,y,xj+1, . . . ,xN )
∏
k 6=j

dxk,

which turns out to be a bounded self-adjoint trace-class operator, with 0 ≤ γΨ ≤ 1 and
Tr γΨ = N . It may thus be diagonalized,

γΨ =
∞∑
j=1

λjuj 〈uj , ·〉

with λj ∈ [0, 1] and {uj}j ⊂ H orthonormal. Furthermore,

%Ψ(x) = γΨ(x,x) =
∞∑
j=1

λj |uj(x)|2.

Then

T [Ψ] =
∞∑
j=1

〈Ψ, (−∆j)Ψ〉 =
∞∑
j=1

λj 〈uj , (−∆)uj〉 =
∞∑
j=1

λj

∫
Rd
|∇uj |2 ≥

M∑
j=1

λj

∫
Rd
|∇uj |2,

for any M ∈ N. Now we may modify the proof of Theorem 6.1 slightly by attaching
√
λj

to each uj (or taking the triangle inequality on CM weighted with λ), with

M∑
j=1

∣∣∣〈√λj ûj , v〉∣∣∣2 =
M∑
j=1

λj
∣∣〈ûj , v〉∣∣2 ≤ M∑

j=1

∣∣〈ûj , v〉∣∣2 ≤ ‖v‖2,
again by Bessel’s inequality for the orthonormal set {ûj}, and λj ≤ 1. Thus,

T [Ψ] ≥
M∑
j=1

∫
Rd
λj |∇uj(x)|2 dx ≥ Kd

∫
Rd

 M∑
j=1

λj |uj(x)|2
1+ 2

d

dx,

and taking M →∞ this proves the theorem. �

Exercise 6.1. Show (6.3), (6.4) and thus that (6.5) holds for all such basis states Ψ imme-
diately by Theorem 6.1.
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6.1.1. Equivalent Schrödinger operator formulation. A common and indeed very useful
equivalent reformulation of the inequality (6.5) is in the form of an operator inequality
involving the negative eigenvalues of the one-body Schrödinger operator on Rd

ĥ = −∆ + V.

Both of these formulations are referred to as Lieb–Thirring inequalities. We will be a bit
more general here, however, allowing to replace the exclusion principle for fermions with a
repulsive pair interaction W or some other statistical repulsion. We denote as usual

T [Ψ] =

∫
RdN
|∇Ψ|2 =

∫
RdN

N∑
j=1

|∇jΨ|2,

V [Ψ] =

∫
RdN

V |Ψ|2 =

∫
RdN

N∑
j=1

V (xj)|Ψ(x)|2 dx, and

W [Ψ] =

∫
RdN

W |Ψ|2 =

∫
RdN

∑
1≤j<k≤N

W (xj − xk)|Ψ(x)|2 dx,

so that

T [Ψ]+V [Ψ] =
N∑
j=1

∫
RdN

(
|∇jΨ|2 + V (xj)|Ψ|2

)
=

N∑
j=1

〈Ψ, (−∆j + V (xj))Ψ〉 =
N∑
j=1

〈
Ψ, ĥjΨ

〉
.

Theorem 6.4 (Lieb–Thirring inequalities). There is an equivalence between exclusion-
kinetic energy inequalities of the form

T [Ψ] +W [Ψ] ≥ Kd(W )

∫
Rd
%

1+2/d
Ψ , (6.6)

and inequalities for Schrödinger operators of the form

T [Ψ] + V [Ψ] +W [Ψ] ≥ −Ld(W )

∫
Rd
|V−|1+d/2, (6.7)

with the relationship between the constants

Ld(W ) =
2

d+ 2

(
d

d+ 2

)d/2
Kd(W )−d/2. (6.8)

In the above, the interaction W may be replaced by a restriction of the domain of T̂ such
as to H1

asym(q), or by a different many-body operator such as T̂α for anyons.

Remark 6.5. For N = 1 (for which W = 0 and H = Hsym = Hasym) the equivalence is
Theorem 4.19 concerning only the uncertainty principle.
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Proof. The proof is completely analogous to that of Theorem 4.19, namely, assuming that
(6.6) holds, we obtain by Hölder and optimization

T [Ψ] +W [Ψ] + V [Ψ] = T [Ψ] +W [Ψ] +

∫
Rd
|V+|%Ψ −

∫
Rd
|V−|%Ψ

≥ Kd

∫
Rd
%

1+2/d
Ψ −

(∫
Rd
|V−|1+d/2

)2/(d+2)(∫
Rd
%

1+2/d
Ψ

)d/(d+2)

≥ −Ld
∫
Rd
|V−|1+d/2.

On the other hand, if (6.7) holds, then by taking the one-body potential V (x) := −c%2/d
Ψ

we obtain that

T [Ψ] +W [Ψ] = T [Ψ] +W [Ψ] + V [Ψ]− V [Ψ] ≥ −Ld
∫
Rd
|V−|1+d/2 −

∫
Rd
V %Ψ

=
(
c− c1+d/2Ld

)∫
Rd
%

1+2/d
Ψ ,

which after optimization in c > 0 again yields (6.6). �

Since for fermions Ψ ∈ H1
asym(RdN ) (with W = 0) one has

inf
‖Ψ‖=1

(T [Ψ] + V [Ψ]) =

N−1∑
k=0

λk(ĥ),

the above equivalence then implies the following inequality for the negative eigenvalues λ−k
of the one-body Schrödinger operator ĥ = −∆ + V on Rd:

Corollary 6.6 (Inequality for the sum of Schrödinger eigenvalues). Let {µk}∞k=0 denote the

min-max values of the Schrödinger operator ĥ = −∆ + V on Rd. Then

∞∑
k=0

|[µk]−| ≤ Ld
∫
Rd
|V−(x)|1+d/2 dx. (6.9)

Remark 6.7. Note that if the r.h.s. of (6.9) is finite then the bottom of the essential spectrum

of ĥ must satisfy inf σess(ĥ) ≥ 0, because otherwise all µk(ĥ) ≤ inf σess(ĥ) < 0 and thus∑∞
k=0 |[µk]−| =∞. It follows that the negative min-max values are actually eigenvalues and

hence that (6.9) is an inequality for the sum of negative eigenvalues of ĥ.
In the spectral theory literature it is usually this inequality that one refers to as the Lieb–

Thirring inequality. Also note that it can be generalized to other powers of the eigenvalues
as well as to other powers of the Laplacian, including fractional [LS10, Lap12].

Proof. Let n ≤ D := dimP ĥ(−∞,0)H be finite, and denote by {uk}n−1
k=0 an orthonormal

sequence of C2
c (Rd) functions corresponding to n lowest negative min-max values µ̃k :=

〈uk, ĥuk〉 (approximating µk), and %(x) :=
∑n−1

k=0 |uk(x)|2. The one-body kinetic energy
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inequality of Theorem 6.1 then yields

−
n−1∑
k=0

|µ̃k| =
n−1∑
k=0

〈
uk, ĥuk

〉
=

n−1∑
k=0

∫
Rd

(
|∇uk|2 + V %

)
≥ Kd

∫
Rd
%1+2/d −

∫
Rd
|V−|% ≥ −Ld

∫
Rd
|V−|1+d/2,

where we again estimated by Hölder and optimized as in Theorem 6.4. Taking n→ D and
using that the bound is uniform in the approximation µ̃k → µk, this proves (6.9). �

Given the inequality (6.9), one obtains the lower bound

inf
Ψ∈Hasym

‖Ψ‖=1

(T [Ψ] + V [Ψ]) =

N−1∑
k=0

λk(ĥ) ≥ −
D−1∑
k=0

|λ−k (ĥ)| ≥ −Ld
∫
Rd
|V−|1+d/2,

which by the equivalence of Theorem 6.4 proves the many-body kinetic energy inequalty of
Theorem 6.3.

Corollary 6.8 (LT with weaker exclusion). For any Ψ ∈ H1
asym(q)((R

d)N ), the exclusion-

kinetic energy inequality ∫
RdN
|∇Ψ|2 ≥ q−2/dKd

∫
Rd
%

1+2/d
Ψ

holds, and is equivalent to the uniform bound

T [Ψ] + V [Ψ] ≥ −qLd
∫
Rd
|V−|1+d/2.

Proof. One may use the relationship Ld(asym(q)) = qLd(asym(1)) = qLd, following from

inf
Ψ∈Hasym(q)

‖Ψ‖=1

(T [Ψ] + V [Ψ]) = q

N/q−1∑
k=0

λk(ĥ),

and hence Kd(asym(q)) = q−2/dKd(asym(1)) = q−2/dKd by the correspondence (6.8). �

6.2. Local approach to Lieb–Thirring inequalities. The above formulations of LT
were global in the sense that they always involved the full one-body configuration space Rd.
We shall now consider a local approach to proving LT inequalities, which was first devel-
oped in [LS13a] for anyons, and has since been generalized in various directions, including
point-interacting fermions [FS12], other types of generalized statistics [LS13b, LS14], inho-
mogeneously scaling repulsive interactions [LPS15], operators involving fractional powers
and critical Hardy terms [LNP16], and most recently gradient corrections to TF [Nam18]
as well as vanishing conditions on arbitrary diagonals of the configuration space [LLN19].

6.2.1. Covering lemma. For the local approach it is convenient to use the following lemma
which originates in the construction used in [LS13a], and was generalized in [LNP16, Lem-
mas 9 and 12] and in [Nam18]. The following version includes all those as special cases,
though not with the optimal constant.
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Q0

G1

G2

G3

Figure 2. Example in d = 2 of a division of a squareQ0 and a corresponding
tree with three disjoint groups Gj , together covering all subsquares Q ∈ Q.

Lemma 6.9 (Covering lemma). Let Q0 be a d-cube in Rd, d ≥ 1, and let Λ > 0. Let
0 ≤ f ∈ L1(Q0) satisfy

∫
Q0
f ≥ Λ > 0. Then Q0 can be partitioned into a collection Q of

disjoint sub-cubes Q ∈ Q, i.e. Q0 =
⊔
Q, such that:

• For all Q ∈ Q, ∫
Q
f ≤ Λ.

• For all α, β > 0 and γ ≥ 0,∑
Q∈Q

1

|Q|α

[(∫
Q
f

)β
− Λβ−γ

Cd,α,β

(∫
Q
f

)γ]
≥ 0, (6.10)

where

Cd,α,β :=
2d(α+β+1)

2dα − 1
.

Proof. Note that if
∫
Q0
f = Λ then there is nothing to prove since Cd,α,β > 1, hence we

may assume
∫
Q0
f > Λ. We then start by dividing Q0 into 2d subcubes Q of equal size,

|Q| = 2−d|Q0|, and consider the mass
∫
Q f on each such subcube. If

∫
Q f ≤ Λ we do

nothing, while if
∫
Q f > Λ then we may iterate the procedure on Q and divide that cube

into 2d smaller cubes, and so on. This procedure stops after finitely many iterations since
f is integrable. We may organize the resulting divisions of cubes into a 2d-ary tree rooted
at Q0 and with the leaves of the tree representing the resulting disjoint cubes Q that form
the sought collection Q, with ∪Q∈QQ̄ = Q0 and

∫
Q f ≤ Λ. See Figure 2 for an example.

Moreover, we note that the cubes Q ∈ Q may be distributed into a finite number of
disjoint groups G ⊆ Q, such that in each group:

• There is a smallest size of cubes in G, denoted m := minQ∈G |Q|, and the total mass
of such cubes is ∑

Q∈G:|Q|=m

∫
Q
f ≥ Λ. (6.11)

• There are at most 2d cubes in G of every given size.
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Such a grouping may be constructed for example by starting with each collection of 2d

leaves which stem from a final split of a cube with
∫
Q f > Λ, and then add leaves to the

group by going back in the tree (arbitrarily many times, possibly all the way to the root
Q0) and then one step forward. Note that all leaves will then be covered by at least one
such group, and if several, we may choose one arbitrarily.

Now, consider an arbitrary group G. Because of (6.11), there must be at least one cube
Q ∈ G with |Q| = m and

∫
Q f ≥ Λ/2d. Hence,

max
Q∈G
|Q|=m

1

|Q|α

(∫
Q
f

)β
≥ 1

mα

(
Λ

2d

)β
=

Λβ

2dβmα
.

Furthermore,∑
Q∈G

1

|Q|α

(∫
Q
f

)γ
≤
∞∑
k=0

∑
Q∈G

|Q|=m2dk

1

|Q|α
Λγ ≤

∞∑
k=0

2dΛγ

mα2dkα
=

2dΛγ

mα

1

1− 2−dα
=
Cd,α,β
Λβ−γ

Λβ

2dβmα
,

which proves (6.10) on the group G, and since every cube Q ∈ Q belongs to some group,
therefore also the lemma. �

One obtains from this also the following version, which was proven directly and with a
slightly different constant in [LNP16, Lemma 12]:

Corollary 6.10 (Weaker exclusion version). Under the same conditions as in Lemma 6.9,
the cube Q0 may be partitioned into a finite collection Q of disjoint sub-cubes Q ∈ Q, such
that:

• For all Q ∈ Q, ∫
Q
f ≤ Λ.

• For any q ≥ 0, ∑
Q∈Q

1

|Q|α

([∫
Q
f − q

]
+

− b
∫
Q
f

)
≥ 0, (6.12)

where

b := 1− q

Λ

2d(α+2)

2dα − 1
. (6.13)

Proof. Note that for any collection Q of cubes Q∑
Q∈Q

1

|Q|α

([∫
Q
f − q

]
+

− b
∫
Q
f

)
≥
∑
Q∈Q

1

|Q|α

(
(1− b)

∫
Q
f − q

)

= (1− b)
∑
Q∈Q

1

|Q|α

(∫
Q
f − q/Λ

1− b
Λ

)
. (6.14)

By choosing Q as in Lemma 6.9, with β = 1 and γ = 0, the r.h.s. of (6.14) is non-negative
if b ≤ 1 and if

q/Λ

1− b
= C−1

d,α,1 =
2dα − 1

2d(α+2)
,
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that is (6.13). This proves (6.12) (the inequality is trivially true for b ≤ 0). �

Exercise 6.2. Extend the covering lemma to a split into kd subcubes, with k ≥ 2. (One
practical usefulness of this version for k = 3 (or any k odd) is that there is always a cube
in Q whose centerpoint coincides with the centerpoint of Q0.)

6.2.2. Local proof of LT for fermions. Let us now use the above covering lemma to prove the
fermionic LT inequality of Theorems 6.3 and 6.8 directly by means of the local formulations
of the uncertainty and the exclusion principle, although with a weaker constant.

Namely, take Ψ ∈ H1
asym(q)(R

dN ), and recall that for any partition P of Rd into cubes Q

we have by the local uncertainty principle (4.44) that

T [Ψ] =
∑
Q∈P

TQ[Ψ] ≥
∑
Q∈P

C1

∫
Q %

1+2/d
Ψ

(
∫
Q %Ψ)2/d

− C2

∫
Q %Ψ

|Q|2/d

 , (6.15)

for some positive constants C1, C2 > 0, and that the local exclusion principle of Lemma 5.7
yields

TQ[Ψ] ≥ π2

|Q|2/d

[∫
Q
%Ψ − q

]
+

. (6.16)

By the GNS inequality on the full space,

T [Ψ] ≥ GdN−2/d

∫
Rd
%

1+2/d
Ψ ,

we see that
∫
Rd\Q0

%
1+2/d
Ψ can be made arbitrarily small by taking some large enough cube

Q0, and thus in a standard approximation argument we may in fact assume supp Ψ ⊆ QN0 .
We then take a partition P = Q of Q0 according to Corollary 6.10, and combine the

energies (6.15) and (6.16) with T = εT + (1− ε)T and an arbitrary ε ∈ [0, 1], to obtain

T [Ψ] ≥
∑
Q∈Q

εC1

∫
Q %

1+2/d
Ψ

(
∫
Q %Ψ)2/d

− εC2

∫
Q %Ψ

|Q|2/d
+ (1− ε) π2

|Q|2/d

[∫
Q
%Ψ − q

]
+


≥
∑
Q∈Q

εC1

∫
Q %

1+2/d
Ψ

Λ2/d
+
(
(1− ε)π2b− εC2

) ∫Q %Ψ

|Q|2/d

 ,

with b = 1− 4
34dq/Λ (here α = 2/d). Taking Λ = 8

34dq so that b = 1/2, and ε = π2/(4C2),
the last term becomes nonnegative and

T [Ψ] ≥ Cq−2/d
∑
Q

∫
Q
%

1+2/d
Ψ = Cq−2/d

∫
Rd
%

1+2/d
Ψ ,

which proves the theorem. �

6.2.3. Local proof of LT for inverse-square repulsion. Using the above local approach we
may also prove the Lieb–Thirring inequality (6.2) for the repulsive pair potential Wβ(x) =
β|x|−2. In this case the natural form domain to be considered is

H1
d,N :=

Ψ ∈ H1(RdN ) :
∑

1≤j<k≤N

∫
RdN

|Ψ(x)|2

|xj − xk|2
dx <∞

 , (6.17)
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and 0 ≤ T [Ψ]+Wβ[Ψ] <∞ for such Ψ ∈ H1
d,N . The following theorem was proved in [LPS15]

(see also [LS14] concerning d = 1 and the Calogero–Sutherland model; cf. Section 4.2.3)
and generalized to fractional kinetic energy operators in [LNP16]:

Theorem 6.11 (BLT with inverse-square repulsion). For any d ≥ 1, β > 0 there exists a
constant Kd(β) > 0 such that for any N ≥ 1 and Ψ ∈ H1

d,N , the exclusion-kinetic energy
inequality

T [Ψ] +Wβ[Ψ] ≥ Kd(β)

∫
Rd
%

1+2/d
Ψ (6.18)

holds. Furthermore, for any external one-body potential V : Rd → R,

T [Ψ] + V [Ψ] +Wβ[Ψ] ≥ −Ld(β)

∫
Rd
|V−|1+d/2, (6.19)

with the correspondence (6.8) between the constants.

Remark 6.12. The domain H1
d,N imposes no symmetry on the wave function Ψ, but in fact

it may be shown [LS10, Corollary 3.1] that the minimizers of the l.h.s. of (6.18) respectively
(6.19) must nevertheless be positive and symmetric, i.e. bosonic. We will therefore refer to
such an inequality as an (interacting) bosonic Lieb–Thirring (BLT) inequality.

Remark 6.13. The behavior of the optimal constant Kd(β) in (6.18) as a function of β was
discussed in [LNP16, Section 3.5]. One has for all d ≥ 1 that Kd(β) is monotone increasing
and concave, and

Cd min{1, β2/d} ≤ Kd(β) ≤ Gd,
for some constant Cd > 0, while for

d = 1 : limβ→0K1(β) = K1 > 0,
d = 2 : limβ→0K2(β) = 0,

d ≥ 3 : Kd(β) ∼ β2/d as β → 0,

where K1 is the usual fermionic LT constant for d = 1. This is because H1
1,N = H1

0 (RN \44)
by the Hardy inequality of Theorem 4.11, and due to our remarks on symmetry as we may
multiply the function by a phase (see Section 5.1.2). It is furthermore conjectured that
limβ→∞Kd(β) = Gd for all d ≥ 1, and hence that the conjecture on the optimal constant
in the fermionic LT (Remark 6.2) for d = 1 is equivalent to proving that K1(β) is constant
in β. See also [LLN19] for further details concerning β → 0 and recent generalizations.

Proof. We proceed similarly to the previous proof, starting from the same formulation of
the local uncertainty principle (6.15). However, (6.16) is now replaced by Lemma 5.10:

(T +Wβ)Q[Ψ] ≥ 1

2
e2(Q;Wβ)

(∫
Q
%Ψ − 1

)
+

, (6.20)

with e2(Q;Wβ) ≥ βd−1|Q|−2/d by (5.16). Thus, we may just take q = 1 and replace π2 with
β/(2d) in the previous proof, to obtain

T [Ψ] +Wβ[Ψ] ≥
∑
Q∈Q

εC1

∫
Q %

1+2/d
Ψ

Λ2/d
+

(
(1− ε)βb

2d
− εC2

) ∫
Q %Ψ

|Q|2/d

 ≥ εC ∫
Rd
%

1+2/d
Ψ ,

with Λ fixed and ε ∼ β as β → 0.
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In order to get an improved dependence for small β, one may instead use the convexity

in n of the bound en(|Q|;Wβ) ≥ βn(n−1)+

2d|Q|2/d to replace (6.20) by the improved local exclusion

principle

(T +Wβ)Q[Ψ] ≥ β

2d|Q|2/d

((∫
Q
%Ψ

)2

−
(∫

Q
%Ψ

))
+

.

Then, by Lemma 6.9 with α = 2/d, β = 2 (different β), and γ = 1,

T [Ψ] +Wβ[Ψ] ≥
∑
Q∈Q

εC1

∫
Q %

1+2/d
Ψ

Λ2/d
+

(
(1− ε) β

2d

Λ

Cd,2/d,2
− (1− ε) β

2d
− εC2

) ∫
Q %Ψ

|Q|2/d


≥ εC1Λ−2/d

∫
Rd
%

1+2/d
Ψ ,

with suitable fixed ε > 0 and Λ ∼ β−1 as β → 0. �

6.2.4. Local proof of LT for anyons. We may furthermore extend the Lieb–Thirring in-
equality straightforwardly to anyons in two dimensions using their local exclusion prin-
ciple given in Lemma 5.16 [LS18]. Recall the periodization of the statistics parameter
α2 = minq∈Z |α− 2q| ∈ [0, 1].

Theorem 6.14 (LT for anyons). There exists a constant K2 > 0 such that for any α ∈ R,

any N ≥ 1 and Ψ ∈ Q(T̂α), the exclusion-kinetic energy inequality

Tα[Ψ] ≥ K2α2

∫
R2

%2
Ψ

holds. Furthermore, for any external one-body potential V : R2 → R,

Tα[Ψ] + V [Ψ] ≥ −L2α
−1
2

∫
Rd
|V−|2,

with the correspondence (6.8) between the constants K2 and L2.

Proof. For local uncertainty we use the diamagnetic inequality of Lemma 5.15,

Tα[Ψ] ≥ Tα=0[|Ψ|] =
∑
Q∈P

TQα=0[|Ψ|] ≥
∑
Q∈P

(
C1

∫
Q %

2
Ψ∫

Q %Ψ
− C2

∫
Q %Ψ

|Q|

)
.

The proof then goes through exactly as in Section 6.2.2, replacing π2 in (6.16) with c(α) ≥
α2/12 from Lemma 5.16. �

6.2.5. Local LT with semiclassical constant. Recently, Nam has considered improvements
w.r.t. the constant in the local approach, getting arbitrarily close to the semiclassical one,
to the cost of a gradient error term [Nam18]. Namely, using the Weyl asymptotics on cubes
one may first prove the following:

Lemma 6.15 (Local density approximation). Given any Ψ ∈ H1
asym((Rd)N ) and d-cube

Q0 such that
∫
Q0
%Ψ ≥ Λ > 0, there exists a partition Q of Q0 into sub-cubes Q such that
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Q %Ψ ≤ Λ and ∫

RdN
|∇Ψ|2 ≥ Kcl

d

(
1− CdΛ−1/d

) ∑
Q∈Q
|Q|

(∫
Q %Ψ

|Q|

)1+2/d

, (6.21)

where Cd is a constant depending only on d.

Proof. The Weyl asymptotics (5.3) for the sum of Laplacian eigenvalues on a cube Q can
be rigorously justified with a uniform lower bound (see e.g. [Krö94])

eN (|Q|; asym) =

N−1∑
k=0

λk(−∆N
Q) ≥

Kcl
d

|Q|2/d
(
N1+2/d − CN1+1/d

)
+

for some constant C > 0 and all N ∈ N. Using that the r.h.s. is convex in N > 0, one may
then also prove the following improvement of the local exclusion principle of Lemma 5.7:

TQ[Ψ] ≥
Kcl
d

|Q|2/d

((∫
Q
%Ψ

)1+2/d

− C
(∫

Q
%Ψ

)1+1/d
)

+

.

Now, applying Lemma 6.9 in the second term with α = 2/d, β = 1 + 2/d and γ = 1 + 1/d,
one obtains

T [Ψ] ≥
∑
Q∈Q

TQ[Ψ] ≥
∑
Q∈Q

Kcl
d

|Q|2/d

((∫
Q
%Ψ

)1+2/d

− C
Cd,α,β

Λ1/d

(∫
Q
%Ψ

)1+2/d
)
,

for the corresponding partition Q of Q0, which proves (6.21). �

Lemma 6.15 is a local density approximation for the Thomas-Fermi energy. In fact, Nam
proved the following consequence, which shows that if the density is sufficiently constant
then one indeed obtains the Thomas-Fermi energy as a lower bound, with the semiclassical
constant:

Theorem 6.16 (LT with gradient correction). There exists a constant Cd > 0 s.t. the
inequality ∫

RdN
|∇Ψ|2 ≥ (1− ε)Kcl

d

∫
Rd
%

1+2/d
Ψ − Cd

ε3+4/d

∫
Rd
|∇√%Ψ|2

holds for any ε > 0 and Ψ ∈ H1
asym((Rd)N ).

See also [LLS19] for recent related results concerning the electron gas.

6.3. Some direct applications of LT. As a direct application of the above kinetic energy
inequalities one may consider the ground-state energy of a system of N particles with a
given external potential V . Namely, given a bound of the form (6.6), one may estimate the
N -body energy in terms of the density,

T [Ψ] + V [Ψ] +W [Ψ] ≥
∫
Rd

(
Kd(W )%

1+2/d
Ψ (x) + V %Ψ(x)

)
dx =: Ẽ [%Ψ], (6.22)

with %Ψ ∈ L1+2/d(Rd;R+),
∫
Rd %Ψ = N , and therefore the simple minimization problem

E0(N) ≥ inf

{
Ẽ [%] : % ∈ L1+2/d(Rd;R+),

∫
Rd
% = N

}
.
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Another bound for E0 is given directly in terms of an integral of V− by (6.7), but note that
the above bound is also valid for arbitrary, even non-negative, one-body potentials V .

Example 6.17 (The homogeneous gas). We model the case of a homogeneous gas on
a finite domain Ω ⊆ Rd by formally taking for the one-body potential a flat external trap
with infinite walls,

V (x) =

{
0, on Ω,
+∞, on Ωc.

More precisely, we take Dirichlet boundary conditions, Ψ ∈ H1
0 (ΩN ). Then also supp %Ψ ⊆

Ω,
∫

Ω %Ψ = N , and since we have by Hölder that

Ẽ [%] = Kd(W )

∫
Ω
%1+2/d ≥ Kd(W )|Ω|−2/d

(∫
Ω
%

)1+2/d

for any % ∈ L1(Ω;R+), we then obtain by (6.22), for the ground state energy per particle
of the homogeneous gas with density ρ = N/|Ω|,

E0(N)

N
= inf

Ψ∈H1
0 (ΩN )

‖Ψ‖=1

1

N
(T [Ψ] + V [Ψ] +W [Ψ]) ≥ Kd(W )ρ2/d.

In the case of fermions (compare Example 5.8) this lower bound will exactly match the
correct energy given by the Weyl asymptotics (5.3), even including the conjectured optimal

constant Kd(asym)
conj.
= Kcl

d in higher dimensions d ≥ 3 (see Remark 6.2).

Exercise 6.3 (Harmonic traps). Apply the bound (6.22) to a harmonic oscillator potential

Vosc(x) = 1
4ω

2|x|2. Show that %min(x) = Kd(W )−d/2
(

d
d+2

)d/2 (
λ− ω2

4 |x|
2
)d/2

+
for some

constant λ = λ(d,N) ∼ N1/d. Compute a lower bound Ẽ [%min] ∼ N1+1/d to the energy, and
compare to Exercise 5.1 when W is replaced by antisymmetry.
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7. The stability of matter

Recall from Section 3.6.1 that we consider the following many-body Hamiltonian for
matter consisting of N particles of one type (‘electrons’) and M particles of another type
(‘nuclei’) moving in R3:

ĤN,M :=

N∑
j=1

~2

2me
(−∆xj ) +

M∑
k=1

~2

2mn
(−∆Rk

) +WC(x,R), (7.1)

with the full Coulomb interaction

WC(x,R) :=
∑

1≤i<j≤N

1

|xi − xj |
−

N∑
j=1

M∑
k=1

Z

|xj −Rk|
+

∑
1≤k<l≤M

Z2

|Rk −Rl|
. (7.2)

As usual we assume that the electrons have charge −1 and the nuclei charge Z > 0, and put
~ = 1 by a change of mass scale. One may also have different masses and charges for the
nuclei but we will stick to this technically simplifying assumption here. Furthermore, we
could also consider the nuclei to be fixed at the positions R = (Rk)

M
k=1 by formally taking

mn = +∞, or equivalently, just remove their kinetic energy terms in (7.1):

ĤN (R) :=
N∑
j=1

1

2me
(−∆xj ) +WC(x,R). (7.3)

Since ĤN,M ≥ ĤN (R) as quadratic forms on H1(R3(N+M)), obtaining a lower bound for

(7.3) which is uniform in R will then also be valid as a lower bound for ĤN,M .

7.1. Stability of the first kind. That the Hamiltonian operators (7.1) and (7.3) are
bounded from below, i.e. stability of the first kind in the terminology of Definition 3.21, is
a simple consequence of the uncertainty principle. Namely, recall the stability of the single
hydrogenic atom,

− 1

2m
∆R3 −

Z

|x|
≥ −1

2
mZ2, (7.4)

which is the sharp lower bound from the ground-state solution (4.35) or, with just a slightly
worse constant, from Hardy (4.31) or Sobolev (4.33).

Theorem 7.1 (Stability of the first kind). For any number of particles N,M ≥ 1, for
any positions of the nuclei R ∈ R3M , and for any mass me > 0 and charge Z > 0, we have

ĤN (R) ≥ −1

2
meZ

2NM2, (7.5)

with respect to the form domain H1(R3N ) (with unrestricted symmetry), from which ĤN (R)
extends to a bounded-from-below (uniformly in R) self-adjoint operator on HN = L2(R3N ).
Hence,

ĤN,M ≥ inf
R∈R3M

ĤN (R) ≥ −1

2
meZ

2NM2, (7.6)

in the sense of forms on H1(R3(N+M)), from which ĤN,M extends to a bounded-from-below

self-adjoint operator on HN,M = L2(R3(N+M)).
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Proof. Let us simply throw away the positive terms in WC and write in terms of forms

ĤN (R) ≥
N∑
j=1

M∑
k=1

[
1

2meM
(−∆xj )−

Z

|xj −Rk|

]
≥ −

N∑
j=1

M∑
k=1

1

2
meMZ2 = −1

2
meZ

2NM2,

by (7.4). This proves (7.5), and by the inequality〈
Ψ, ĤN,MΨ

〉
L2(R3(N+M))

≥
∫
R3M

〈
Ψ(·,R), ĤN (R)Ψ(·,R)

〉
L2(R3N)

dR

applied on arbitrary Ψ ∈ H1(R3(N+M)), also (7.6). �

7.2. Some electrostatics. In order to improve the above bound to a linear one in N +M ,
i.e. prove stability of the second kind, we also need some important results on electrostatics.

7.2.1. Baxter’s inequality. The main result that we need for the proof of stability is the
following inequality due to Baxter [Bax80], which replaces all theN2+NM+M2 terms of the
full Coulomb interaction (7.2) by only N +M nearest-neighbor terms [LS10, Theorem 5.4]:

Theorem 7.2 (Baxter’s inequality). For any x ∈ R3N , R ∈ R3M , and Z ≥ 0 we have

WC(x,R) ≥ −(2Z + 1)

N∑
j=1

1

dist(xj ,R)
+
Z2

4

M∑
k=1

1

dist(Rk,R\k)
, (7.7)

where dist(x,R) = mink∈{1,...,M} |x−Rk| and dist(R,R\k) = minl∈{1,...,k−1,k+2,...,M} |R−Rl|.

To reach this bound, which is an example of electrostatic screening, we first introduce
a few basic electrostatic notions. We closely follow [Sei10] and [LS10] in this section.

7.2.2. Coulomb technology and Newton’s theorem. Let us consider a general charge distri-
bution, that is a signed Borel measure µ = µ+−µ− on R3 (µ± ≥ 0), and its corresponding
Coulomb potential function

Φµ(x) =

∫
R3

1

|x− y|
dµ(y), x ∈ R3.

We also define its Coulomb self-energy(20)

D(µ, µ) :=
1

2

∫
R3×R3

1

|x− y|
dµ(x)dµ(y) =

1

2

∫
R3

Φµ(x)dµ(x).

Note that for the point charge µ = δx0 we have D(µ, µ) = Φµ(x0) = +∞ and indeed we
could allow infinite values for charge distributions of definite sign. However, to make these
expressions well defined also in the case of indefinite sign we consider the class of measures

C =

{
µ = µ+ − µ− :

∫
R3

dµ±(x)

1 + |x|
<∞ and D(µ±, µ±) <∞

}
.

For two such charge distributions µ, ν ∈ C, their Coulomb interaction energy is

D(µ, ν) :=
1

2

∫
R3×R3

1

|x− y|
dµ(x)dν(y).

(20)The conventional factor 1/2 matches the conventional symmetrized pair-interaction energy.
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Lemma 7.3. The Coulomb self-energy is positive semidefinite, i.e. 0 ≤ D(µ, µ) < ∞ for
any µ ∈ C, and furthermore the interaction energy is bounded in terms of the self-energy,

D(µ, ν)2 ≤ D(µ, µ)D(ν, ν), µ, ν ∈ C.

Proof. We use that (exercise)

1

|x− y|
= C

∫
R3

1

|x− z|2
1

|y − z|2
dz (7.8)

for some constant C > 0 (in fact one may compute C = π−3). This follows simply by the
observation that both sides are functions of x− y and scale homogeneously to degree −1.

Thus, by Fubini,

D(µ, µ) =
C

2

∫
R3

(∫
R3

1

|x− z|2
dµ(x)

)2

dz ≥ 0,

and similarly, by Cauchy-Schwarz,

D(µ, ν) =
C

2

∫
R3

[∫
R3

1

|x− z|2
dµ(x)

∫
R3

1

|y − z|2
dν(y)

]
dz ≤ D(µ, µ)1/2D(ν, ν)1/2.

We also have the triangle inequality

(D(µ+, µ+)1/2−D(µ−, µ−)1/2)2 ≤ D(µ+−µ−, µ+−µ−) ≤ (D(µ+, µ+)1/2 +D(µ−, µ−)1/2)2,

and in particular finiteness of D(µ, µ) for µ ∈ C. �

Theorem 7.4 (Newton’s Theorem). Let µ ∈ C be rotationally symmetric with respect to
the origin (i.e. µ(RΩ) = µ(Ω) for any rotation R ∈ SO(R3) and measurable set Ω ⊆ R3).
Then

Φµ(x) =
1

|x|

∫
|y|≤|x|

dµ(y) +

∫
|y|>|x|

1

|y|
dµ(y), x ∈ R3.

Proof. The rotational symmetry of µ carries over to Φµ, with

Φµ(x) =
1

4π

∫
S2

Φµ(|x|ω) dω =

∫
R3

1

4π

∫
S2

1∣∣|x|ω − y
∣∣ dω dµ(y).

We use Fubini and calculate

1

4π

∫
S2

1∣∣|x|ω − y
∣∣ dω =

1

2

∫ 1

−1

1√
|x|2 + |y|2 − 2|x||y|t

dt

=
1

2|x||y|

(√
|x|2 + |y|2 + 2|x||y| −

√
|x|2 + |y|2 − 2|x||y|

)
=

1

2|x||y|
(
|x|+ |y| −

∣∣|x| − |y|∣∣) = min

{
1

|x|
,

1

|y|

}
,

which proves the theorem. �
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7.2.3. Basic Electrostatic Inequality. Given distinct points R1, . . . ,RM ∈ R3, define their
corresponding Voronoi cells Γ1, . . . ,ΓM as the sets

Γk :=
{
x ∈ R3 : |x−Rk| < |x−Rl| for all l 6= k

}
.

Note that {Γk} partitions R3 into M disjoint pieces (up to a null set ∪k∂Γk), and that each
such cell Γk is convex, being the intersection of M − 1 half-spaces in R3.

Let

Φ(x) =
M∑
k=1

Z

|x−Rk|
− Z

dist(x,R)
,

that is the potential from all the nuclei except the nearest one, that is on each Voronoi cell
Γk it is the Coulomb potential seen from all nuclei outside Γk.

Theorem 7.5 (Basic Electrostatic Inequality). If µ ∈ C is a charge distribution then

D(µ, µ)−
∫
R3

Φ(x)dµ(x) +
∑
k<l

Z2

|Rk −Rl|
≥ 1

4

M∑
k=1

Z2

dist(Rk,R\k)
.

Proof. We claim that the second term may be written −2D(µ, ν) for some ν ∈ C, so that
the l.h.s. equals

D(µ− ν, µ− ν)−D(ν, ν) +
∑
k<l

Z2

|Rk −Rl|
≥ −D(ν, ν) +

∑
k<l

Z2

|Rk −Rl|
. (7.9)

To prove the claim and find such ν, note that if
∫
R3 Φ(x)dµ(x) = 2D(µ, ν) =

∫
R3 Φν(x)dµ(x)

for all µ ∈ C i.e. if Φ = Φν for some ν ∈ C, then equivalently −∆Φ = 4πν. Note first that
Φ is continuous on R3 and moreover since the singularity has been cancelled inside each Γk
it is smooth and harmonic on R3 \ (∪k∂Γk). Hence the measure ν must be supported on
the boundaries of the Voronoi cells. We compute for any test function f ∈ C∞c (R3;R)∫

R3

Φ(x)∆f(x) dx =
∑
k

∫
Γk

Φ∆f =
∑
k

∫
Γk

∇ · (Φ∇f)−
∑
k

∫
Γk

∇Φ · ∇f

=
∑
k

∫
∂Γk

Φ(x)∇f(x) · nk dS −
∑
k

∫
Γk

∇f · ∇Φ,

by the divergence theorem, where nk denotes the outward unit normal to ∂Γk. The first set
of boundary terms vanish by the continuity of Φ and ∇f and the fact that each boundary
segment is visited twice with opposite directions of the normal. For the second set of terms
we obtain

−
∫

Γk

∇f · ∇Φ = −
∫

Γk

∇ · (f∇Φ) +

∫
Γk

f∆Φ = −
∫
∂Γk

f(x)∇Φ(x) · nk dS,

by the harmonicity of Φ on Γk. We have thus on each ∂Γk = ∂Γl, where l is numbers a
neighboring Voronoi cell, actually two terms (and on even smaller measure possibly more
terms)

nk · ∇Φ|∂Γk + nl · ∇Φ|∂Γl = nk · ∇
−Z

|x−Rk|
+ nl · ∇

−Z
|x−Rl|

= −2Znk · ∇
1

|x−Rk|
,
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that is ν = − 1
4π∆Φ is the measure supported on ∪k∂Γk with density

− Z
2π

nk · ∇
1

|x−Rk|
on ∂Γk.

Moreover, ν ≥ 0, because the Voronoi cells Γk are convex and thus nk · (x−Rk) ≥ 0 for all
x ∈ ∂Γk.

It remains to compute D(ν, ν):

D(ν, ν) =
1

2

∫
R3

Φ(x)dν(x) =
1

2

∑
k

∫
R3

Z

|x−Rk|
dν(x)− 1

2

∫
R3

Z

dist(x,R)
dν(x),

where ∫
R3

Z

|x−Rk|
dν(x) = ZΦν(Rk) = ZΦ(Rk) =

∑
l 6=k

Z2

|Rk −Rl|

exactly matches the last term of (7.9), and

1

2

∫
R3

Z

dist(x,R)
dν(x) = −

∑
k

Z2

8π

∫
∂Γk

1

|x−Rk|
nk · ∇

1

|x−Rk|
dS,

by the definition of the measure ν. Using that 2|x|−1∇|x|−1 = ∇|x|−2 the r.h.s. is

−
∑
k

Z2

16π

∫
∂Γk

nk · ∇
1

|x−Rk|2
dS =

∑
k

Z2

16π

∫
Γck

∆
1

|x−Rk|2
dx

(note that we are now considering the exterior domain). We also compute

∆
1

|x−Rk|2
=

2

|x−Rk|4

and finally estimate the integral

Z2

8π

∫
Γck

dx

|x−Rk|4
≥ Z2

8π

∫ ∞
z=−∞

∫ ∞
y=−∞

∫ ∞
x=Dk

dxdydz

(x2 + y2 + z2)2
=

Z2

8Dk
,

where Dk := dist(Rk, ∂Γk) = 1
2 minl 6=k |Rk −Rl| = 1

2dist(Rk,R\k), and we w.l.o.g. trans-
lated to Rk = 0 and rotated part of ∂Γk to the half-plane parallel to the yz-plane. The
remaining three integrals may then be evaluated in cylinder coordinates. �

7.2.4. Proof of Baxter’s inequality. We reduce the original interaction potential WC to the
form of the Basic Electrostatic Inequality by first regularizing the charge distribution of the
electrons from points to spherical shells of about the size of the Voronoi cells.

For given R = (R1, . . . ,RM ) ∈ R3M and x = (x1, . . . ,xN ) ∈ R3N we denote dj :=
dist(xj ,R) and let

µj(dx) := (πd2
j )
−1δ(|x− xj | − dj/2) dx,

and µ :=
∑N

j=1 µj . Note that the interaction energy of two spheres is less than that of two
points, which follows from Newton’s Theorem: for i 6= j,

1

|xi − xj |
=

∫
R3

Φδxi
(x)δxj (x)dx ≥

∫
R3

Φµi(x)δxj (x)dx =

∫
R3

Φδxj
(x)dµi(x)dx ≥ 2D(µj , µi)
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(with equality if the points are far away). Also, for any j ∈ {1, . . . , N} and k ∈ {1, . . . ,M},

1

|xj −Rk|
= Φδxj

(Rk) = Φµj (Rk) =

∫
R3

1

|x−Rk|
dµj(x).

Therefore,

WC(x,R) ≥
∑
i 6=j

D(µi, µj)−
∑
j

∑
k

∫
R3

Z

|x−Rk|
dµj(x) +

∑
k<l

Z2

|Rk −Rl|

= D(µ, µ)−
∫
R3

Φ(x)dµ(x) +
∑
k<l

Z2

|Rk −Rl|
−
∫
R3

Z

dist(x,R)
dµ(x)−

N∑
j=1

1

dj
,

where we used that D(µj , µj) = 1/dj (exercise). For the first three terms we may now use
the Basic Electrostatic Inequality, while for the last two we use that∫

R3

Z

dist(x,R)
dµj(x) +

1

dj
≤ (2Z + 1)

1

dj
,

since for any x on the support of µj and any k ∈ {1, . . . ,M}

|x−Rk| ≥ |xj −Rk| − |xj − x| ≥ dj − dj/2 = dj/2.

This finishes the proof of Theorem 7.2.

Exercise 7.1. Prove that (7.8) holds for some C > 0. You may also use the identity∫ ∞
0

t
α
2
−1e−πt|x−y|

2
dt = π−

α
2 Γ(α2 )|x− y|−α, α > 0,

to prove that C = π−3 (for further hints see e.g. [LL01, Chapter 5]).

Exercise 7.2. Compute D(µj , µj) = 1/dj.

7.3. Proof of stability of the second kind. We will now apply the Lieb–Thirring in-
equality in the simplest available proof of stability for fermions, due to Solovej [Sol06a] (see
also [LS10, Section 7.2]), as well as in a straightforward generalization for inverse-square
repulsive bosons [LPS15] in three dimensions. We also briefly discuss the situation in lower
dimensions.

7.3.1. Fermions. We consider first fermions, possibly with q different species or spin states.

Theorem 7.6 (Stability for fermionic matter). For any number of particles N,M ≥ 1,
for any positions of the nuclei R ∈ R3M , and for any mass m > 0 and charge Z > 0, we
have

ĤN (R) :=

N∑
j=1

1

2m
(−∆xj ) +WC(x,R) ≥ −0.62 q2/3m(2Z + 1)2(N +M),

where the domain of the operator ĤN (R) is defined w.r.t. q-antisymmetric functions with
the form domain H1

asym(q)(R
3N ).
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Remark 7.7. Note that the result concerns only the symmetry type of one of the species
of particles involved (here the electrons), and that the other particles at Rk may thus be
of any type: quantum mechanical bosons, distinguishable particles, or even fixed classical
charges. The only property we use for them is their Coulomb interaction and the overall
screening among all particles.

Proof. We only need the simpler lower bound given by Baxter’s inequality, Theorem 7.2,

WC(x,R) ≥ −(2Z + 1)

N∑
j=1

1

dist(xj ,R)
.

The trick is then just to add and subtract a constant b > 0 to the Hamiltonian, writing for
simplicity

ĤN (R) ≥ 1

2m

N∑
j=1

[
−∆xj − 2m(2Z + 1)

(
1

dist(xj ,R)
− b
)]
− (2Z + 1)Nb

≥ − 1

2m
qL3

(
2m(2Z + 1)

)5/2 ∫
R3

[
1

dist(x,R)
− b
]5/2

+

dx− (2Z + 1)Nb,

where in the second step we crucially used the q-antisymmetric domain of the operator and
the fermionic Lieb–Thirring inequality of Corollary 6.8. Furthermore, using that[

1

dist(x,R)
− b
]5/2

+

= max
1≤k≤M

[
1

|x−Rk|
− b
]5/2

+

≤
M∑
k=1

[
1

|x−Rk|
− b
]5/2

+

,

one may bound∫
R3

[
1

dist(x,R)
− b
]5/2

+

dx ≤M
∫
|x|≤1/b

(
1

|x|
− b
)5/2

dx =
5π2

4
Mb−1/2.

Hence,

ĤN (R) ≥ −qL3
5π2

4
(2m)3/2(2Z + 1)5/2Mb−1/2 − (2Z + 1)Nb,

and after optimizing in b > 0,

ĤN (R) ≥ −3

2
(5π2L3)2/3q2/3m(2Z + 1)2M2/3N1/3 ≥ −0.62 q2/3m(2Z + 1)2(N +M),

where in the final step we used the best presently known value for L3 (see Remark 6.2) and
Young’s inequality (2.4). �

7.3.2. Inverse-square repulsive bosons. We now consider a system of N + M charged par-
ticles, subject to the usual Coulomb interaction WC, but N of which also experience an
additional inverse-square repulsive interaction with coupling parameter β. If we do not
impose any symmetry conditions on the particles, the ground state is known to be bosonic.
However, thanks to the bosonic Lieb–Thirring inequality of Theorem 6.11, we nevertheless
do have stability for β > 0:

Theorem 7.8 (Stability for inverse-square repulsive bosons). For any coupling

strength β > 0 there exists a positive constant C(β) = CL3(β)2/3 > 0, such that for any
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number of particles N,M ≥ 1, for any positions R ∈ R3M , and for any mass m > 0 and
charge Z > 0, we have

ĤN
β (R) :=

1

2m

 N∑
j=1

(−∆xj ) +
∑

1≤j<k≤N

β

|xj − xk|2

+WC(x,R)

≥ −C(β)m(2Z + 1)2(N +M),

where the operator ĤN
β (R) is defined as the Friedrichs extension w.r.t. the form domain

H1
d=3,N in (6.17) (with no symmetry assumptions on the wave functions).

Remark 7.9. We note that since Kd(β) ∼ β2/d or equivalently Ld(β) ∼ β−1 as β → 0 for

d ≥ 3 (see Remark 6.13), one has C(β) ∼ β−2/3 → ∞ in the limit of weak interactions.
Taking β ∼ N−1 for example corresponds to a mean-field scaling of the interaction, and
evidently leads to bound similar to q ∼ N for fermions, which is too weak for stability.
Also note that it may be more natural to incorporate the mass factor 2m by rescaling the
parameter β.

Proof. We mimic the proof of Theorem 7.6, replacing the fermionic LT with the BLT (6.19)
of Theorem 6.11. Thus,

ĤN
β (R) ≥ 1

2m

[
T̂ + Ŵβ + V̂

]
− (2Z + 1)Nb

≥ − 1

2m
L3(β)

∫
R3

|V−|5/2 − (2Z + 1)Nb,

where

V (x) := −2m(2Z + 1)

(
1

dist(x,R)
− b
)
.

The remainder of the proof then goes through exactly as before, with the replacement
qL3 → L3(β). �

7.3.3. Lower dimensions. Consider particles that have been confined to a thin layer, for
example by means of a strong transverse external potential, such as

V (x, y, z) = V2(x, y) + C3|z|2, C3 � 1.

Hence they may effectively only move in the two-dimensional plane z = 0, but their interac-
tions could still be the usual Coulomb interactions due to electromagnetism that propagates
freely in three dimensions. (If electromagnetism would instead be propagating in only two
dimensions, one could argue to instead use the logarithmic 2D analog of the Coulomb po-
tential; see [MS06] for this case.) We may thus keep the interaction term WC as it is and
consider stability under the assumption that all particles are situated in the plane R2:

ĤN,M :=
N∑
j=1

~2

2me
(−∆xj ) +

M∑
k=1

~2

2mn
(−∆Rk

) +WC(x,R),

or, in the case of fixed ‘nuclei’ (or charged impurities in the layer),

ĤN (R) :=

N∑
j=1

~2

2me
(−∆xj ) +WC(x,R),
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with x = (x1, . . . ,xN ) ∈ R2N and R = (R1, . . . ,RM ) ∈ R2M .
In this case there are some additional technical complications due to the dimensionality,

and one needs to use the positive terms in Baxter’s inequality (7.7) as well; see e.g. [LS14,
Section 6.2] for details, leading to the following theorem:

Theorem 7.10 (Stability for fermions in 2D). There exists a constant C > 0 such that
for any number of particles N,M ≥ 1, for any positions of the nuclei R ∈ R2M , and for
any mass m > 0 and charge Z > 0, we have

ĤN (R) :=
N∑
j=1

1

2m
(−∆xj ) +WC(x,R) ≥ −C qm(2Z + 1)2(N +M), (7.10)

where the domain of the operator ĤN (R) is defined w.r.t. q-antisymmetric functions with
the form domain H1

asym(q)(R
2N ).

Stability has also been extended to anyons in [LS14, Theorem 21] and [LS18], i.e. replacing

the fermionic kinetic energy by T̂α from (3.53), where the resulting difference is just to
replace q in the r.h.s. of (7.10) with 1/α2 as of Theorem 6.14. In other words, one has
stability for any type of (ideal) anyons except for bosons for which α2 = α = 0.

Theorem 7.11 (Stability for anyons in 2D). There exists a constant C > 0 such that
for any number of particles N,M ≥ 1, for any positions of nuclei R ∈ R2M , and for any
mass m > 0 and charge Z > 0, and statistics parameter α ∈ R, we have

ĤN
α (R) :=

1

2m
T̂α +WC(x,R) ≥ −C α−1

2 m(2Z + 1)2(N +M),

where the N -anyon kinetic energy T̂α is defined as the Friedrichs extension w.r.t. functions
C∞c (R2N \ 44) ∩ L2

sym(R2N ).

For bosons in two dimensions with inverse-square repulsion one may proceed in the same
way and use the BLT of Theorem 6.11 to prove stability for any fixed coupling β > 0.
However the bound diverges as β → 0 since K2(β)→ 0 implies L2(β)→ +∞.

In one dimension we have, as previously discussed, a correspondence between fermions
and bosons in the form domain H1

0 (RN \ 44). Therefore any repulsive interaction which
forces such a hard-core vanishing condition will be at least as strong as for non-interacting
fermions. Note also that the Hardy inequality of Theorem 4.11 is then available, so that we
get an inverse-square repulsion for free. Unfortunately, however, the attractive 3D Coulomb
potential −|x|−1 is too singular in one dimension to ensure stability even for a single “atom”.

Exercise 7.3. Fill in the details above to prove stability for fermions in 2D.

Exercise 7.4. What is the situation concerning stability in 1D if one puts a hard-core
vanishing condition for the electrons at each of the nuclei?

7.4. Instability of matter. We have seen that bulk matter in 3D consisting to at least
one part (a nonvanishing fraction) of fermions is stable, and that stability also holds if the
particles are bosons with an additional inverse-square repulsion. However, switching off this
repulsion with β → 0 according to Remark 7.9, or relaxing the Pauli principle to allow for
arbitrarily many particles q = N →∞ in each one-body state, seems to lead to instability,
and indeed this may be shown to be the correct conclusion.
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7.4.1. Instability for charged bosons. We define two purely bosonic ground-state energies
for N electrons and M nuclei; one with the nuclei being fixed, classical particles but at
their worst possible positions,

E0(N,M) := inf
R∈R3M

inf σ
(
ĤN (R)|HN

)
,

and one where they are true quantum particles with a finite mass mn > 0,

Ẽ0(N,M) := inf σ
(
ĤN,M |HN,M

)
.

In the first case, which was settled early on by [LD68] (lower bound) and [Lie79] (upper
bound), one has the following instability result, matching the lower bound of Theorem 7.6
with q = N :

Theorem 7.12 (Instability for bosons with fixed nuclei). There exist constants C− >
C+ > 0 (depending on me, mn, Z and κ) such that for any N,M ∈ N particles, N/M = κ,

−C−N5/3 < E0(N,M) < −C+N
5/3.

However, in the case of the second definition of energy Ẽ0, it is potentially increased
and thus less divergent due to the uncertainty principle for the quantum nuclei — and
indeed this was shown to be the case — although not sufficiently so to make the system
thermodynamically stable. The result is given in the following theorem which was worked
out in several steps and over many years [Dys67, CLY88, LS04, Sol06b]:

Theorem 7.13 (Instability for bosons with moving nuclei). Let Z = 1 and me =
mn = 1. There exists a constant C > 0 such that

min
N+M=K

Ẽ0(N,M) = −CK7/5 + o(K7/5), as K →∞.

In fact,

−C = inf

{∫
R3

|∇Φ|2 − I0

∫
R3

Φ5/2 : Φ ∈ H1(R3;R+),

∫
R3

Φ2 = 1

}
,

where (Foldy’s constant)

I0 =
2

5

Γ(3/4)

Γ(5/4)

(
2

π

)1/4

.

We refer to [LS10, LSSY05] for pedagogically outlined proofs of these results and for
further discussions on instability. For completeness we provide only the following simpler
version of instability with fixed nuclei, from [Lie79] and [LS10, Proposition 7.1].

Theorem 7.14. Assume that N = ZM , Z > 0, M = n3, n ∈ N. Then there exists a
normalized bosonic N -body state Ψ ∈ L2

sym((R3)N ) and positions R = (R1, . . . ,RM ) ∈ R3M ,
such that

〈Ψ, ĤN (R)Ψ〉 ≤ −CZ4/3N5/3,

for a constant C > 0 independent of N,Z,M .
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Proof. Let Ψ(x) =
∏N
j=1 φλ(xj), with φλ(x) = λ3/2φ(λx), λ > 0, such that φ ∈ C∞c (R3)

and
∫
|φλ|2 =

∫
|φ|2 = 1. Then

〈Ψ, ĤN (R)Ψ〉 = N

∫
R3

|∇φλ|2 +
1

2
N(N − 1)

∫
R6

|φλ(x)|2|φλ(y)|2

|x− y|
dxdy

− ZN
M∑
k=1

∫
R3

|φλ(x)|2

|x−Rk|
dx + Z2

∑
k<l

1

|Rk −Rl|

= Nλ2

∫
|∇φ|2 + λW [φ, λR],

where

W [φ,R] :=
1

2
N(N − 1)

∫
R6

|φ(x)|2|φ(y)|2

|x− y|
dxdy

− ZN
M∑
k=1

∫
R3

|φ(x)|2

|x−Rk|
dx + Z2

∑
k<l

1

|Rk −Rl|
.

We claim that we can find φ and positions R such that

W [φ,R] ≤ −CZ2/3N4/3

for some C > 0. This will then prove the theorem by the choice of the optimal

λ =
1

2
N1/3Z2/3 C∫

R3 |∇φ|2
,

so that

〈Ψ, ĤN (R)Ψ〉 ≤ −1

4

C2∫
R3 |∇φ|2

Z4/3N5/3.

To prove the above claim, we consider a partition of the support of φ into cells Γk,
k = 1, . . . ,M , such that ∫

Γk

|φ(x)|2dx =
1

M

and place each nucleus Rk ∈ Γk. In order to estimate the corresponding energy we perform a
clever averaging trick, namely consider averaging the positions Rk subject to the probability

distribution µk := M
∣∣φ|Γk ∣∣2, that is

〈W [φ,R]〉Rk
:=

∫
Γk

W [φ,R]M |φ(Rk)|2dRk.

Applying this averaging over every k to the terms in W [φ,R], we find:

• The electron-electron repulsion term is unchanged.
• For the electron-nucleus interaction term,

M∑
k=1

ZM

∫
Γk

∫
R3

|φ(x)|2

|x−Rk|
|φ(Rk)|2dRk = ZM

∫
R6

|φ(x)|2|φ(y)|2

|x− y|
dxdy.
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• For the nucleus-nucleus repulsion term,

M∑
k<l

Z2M2

∫
Γk

∫
Γl

|φ(Rk)|2|φ(Rl)|2

|Rk −Rl|
dRkdRl

=
1

2
Z2M2

∫
R6

|φ(x)|2|φ(y)|2

|x− y|
dxdy −

M∑
k=1

Z2M2

∫
Γk×Γk

|φ(x)|2|φ(y)|2

|x− y|
dxdy.

Hence, in the average 〈W [φ,R]〉R = 〈W [φ,R]〉R1,...,Rk
there are three terms involving the

same R6 integral, with the overall coefficient

1

2
N(N − 1)− ZNM +

1

2
Z2M2 = −1

2
N ≤ 0,

so that

inf
Rk∈Γk

W [φ,R] ≤ 〈W [φ,R]〉R ≤ −Z2M2
M∑
k=1

∫
Γk×Γk

|φ(x)|2|φ(y)|2

|x− y|
dxdy.

It thus remains to estimate the Coulomb self-energy of the normalized measures µk,

2D(µk, µk) =

∫
R3×R3

1

|x− y|
dµk(x)dµk(y) ≥

∫
∂Bk×∂Bk

1

|x− y|
dσ(x)dσ(y) =

1

rk
,

where we used that the self-energy of µk is bounded below by the infimum over all probability
measures over the smallest ball Bk which contains Γk, of radius rk > 0. The minimal such
distribution on Bk is given by the uniform measure σ over the boundary ∂Bk (consider
averaging over rotations and Newton’s theorem, as well as Exercise 7.2; the issue is discussed
in detail in [LL01, Section 11.15]). Hence,∑

k

2D(µk, µk) ≥
M∑
k=1

1

rk
≥M 1

1
M

∑M
k=1 rk

,

by convexity of the map 0 < x 7→ x−1.
Finally, we prove that by an appropriate choice of φ,

1

M

M∑
k=1

rk ≤
3

2
M−1/3, (7.11)

so that

inf
Rk∈Γk

W [φ,R] ≤ −Z2
∑
k

1

rk
≤ −2

3
Z2M4/3 = −2

3
Z2/3N4/3.

Namely, we may take f ∈ C∞c ([0, 1];R+) and

φ(x, y, z) = f(x)f(y)f(z),

and further divide the unit interval into n sub-intervals Ip s.t.∫
Ip

|f(x)|2dx =
1

n
, p = 1, . . . , n.

This produces M = n3 cells of the form

Γk = Ip1 × Ip2 × Ip3 , pj ∈ {1, . . . , n},
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with the radius of the smallest enclosing ball

rk =
1

2

(
|Ip1 |2 + |Ip2 |2 + |Ip3 |2

)1/2 ≤ 1

2
(|Ip1 |+ |Ip2 |+ |Ip3 |) .

Thus, by symmetry,
n3∑
k=1

rk ≤
3

2

∑
k

|Ip1 | =
3

2
n2,

which proves (7.11) and hence the claim and therefore the theorem. �

7.4.2. Instability for attractive interactions. If the interactions within a species of particle,
which above were repulsive Coulomb interactions or possibly inverse-square repulsion, are
replaced by attractive interactions, then stability no longer holds, even for fermions. The
following theorem is taken from [Sol12, Theorem 3.6].

Theorem 7.15 (Fermionic instability for attractive 2-body potentials). Assume
that the two-body potential W : Rd → R satisfies W (r) ≤ −c < 0 for all r in some ball
around the origin, and consider the N -body operator

ĤN = T̂ + Ŵ =
1

2m

N∑
j=1

(−∆xj ) +
∑

1≤i<j≤N
W (xi − xj),

acting in L2
asym((Rd)N ) =

∧N L2(Rd). If d ≥ 3 then ĤN cannot be stable of the second kind,

i.e. we can find a sequence of normalized vectors ΨN ∈ L2
asym(RdN ) in the form domain of

ĤN such that

lim
N→∞

N−1
〈

ΨN , ĤNΨN

〉
= −∞.

Proof. Assume that W (r) ≤ −c < 0 on the ball BR(0), R > 0. Consider a fermionic

N -body state ΨN ∈
∧N L2

c(BR(0)), ‖ΨN‖L2 = 1, with a kinetic energy〈
ΨN , T̂ΨN

〉
≤ CdN1+2/dR−2,

for some constant Cd > 0 (indeed this was done in Exercise 5.3, modulo a trivial geometric
equivalence). Thus

N−1
〈

ΨN , ĤNΨN

〉
≤ CdN2/dR−2 − 1

2
(N − 1)c,

so that instability occurs when d ≥ 3. �

7.5. Extensivity of matter. Finally, we have the following formulation of the extensivity
of fermionic matter, adopted from [Thi02, Theorem 4.3.3] and [LS10], and extended here
also to arbitrary dimensions and to inverse-square repulsive bosons (as well as to any other
operators of similar scaling for which a kinetic-exclusion energy inequality holds):

Theorem 7.16 (Extensivity of the volume). Consider on Rd the N -body operators

Ĥ := T̂ |Hasym(q)
+ V̂R or Ĥ := T̂ + Ŵβ + V̂R, β > 0,

and where V̂R with the parameter R is an operator assumed to scale with the inverse length,
such as the Coulomb interaction V̂R = WC(·,R) with some fixed set of nuclei R. Assume

that it admits stability of the second kind, Ĥ ≥ −AN , for some A > 0 independent of R
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and N . Then, given any B ≥ 0, there exists a constant Cd > 0 such that for any state
Ψ ∈ Q(Ĥ) with low energy in the sense that −AN ≤ 〈Ĥ〉Ψ ≤ BN , in this state(

|Ω|
N

) 2
2+d

≥ Cd

∫
Ω %Ψ

N
,

for any Ω ⊆ Rd. That is, any volume which contains a non-vanishing fraction of the
particles cannot be smaller than a corresponding non-vanishing fraction of N .

Proof. We have for any L2-normalized Ψ, by the kinetic-exclusion inequality (LT/BLT),

T [Ψ] +Wβ[Ψ] ≥ Kd(β)

∫
Rd
%

1+2/d
Ψ , (7.12)

and by stability, for any R,

T [Ψ] +Wβ[Ψ] + VR[Ψ] = 〈Ĥ〉Ψ ≥ −AN. (7.13)

Consider Ψλ(x) = λdN/2Ψ(λx), λ ∈ (0, 1), and employ the scaling properties of T̂ , Ŵβ and

V̂R:

T [Ψλ] +Wβ[Ψλ] + Vλ−1R[Ψλ] = λ2T [Ψ] + λ2Wβ[Ψ] + λVR[Ψ].

Therefore, by (7.13),

λ(T [Ψ] +Wβ[Ψ]) + VR[Ψ] ≥ −AN/λ (7.14)

(equivalently, this is the statement that in a Coulomb system the energy scales linearly with
the mass, as we can also see explicitly in our bounds concerning stability).

Let us fix Ψ with energy E := 〈Ĥ〉Ψ ≥ −AN and also assume that E ≤ BN . From
(7.14),

E = (1− λ)(T [Ψ] +Wβ[Ψ]) + λ(T [Ψ] +Wβ[Ψ]) + VR[Ψ] ≥ (1− λ)(T [Ψ] +Wβ[Ψ])−AN/λ,

thus

T [Ψ] +Wβ[Ψ] ≤ E

1− λ
+

AN

λ(1− λ)
=
E +AN

1− λ
+
AN

λ
.

We are here free to choose λ ∈ (0, 1), and the optimal choice

λ =

√
AN√

AN +
√
E +AN

produces the bound

T [Ψ] +Wβ[Ψ] ≤
(√

AN +
√
E +AN

)2
≤ N

(√
A+
√
A+B

)2
,

that is the kinetic-exclusion energy in such a state is at most O(N). For any Ω ⊆ Rd we
then obtain, using Hölder and (7.12),∫

Ω
%Ψ ≤

(∫
Ω
%

1+2/d
Ψ

) d
2+d
(∫

Ω
1

) 2
2+d

≤
(
Kd(β)−1N

(√
A+
√
A+B

)2
) d

2+d

|Ω|
2

2+d

= C−1
d N(|Ω|/N)

2
2+d ,

with Cd > 0 for fixed β > 0, for the expected number of particles on Ω. �
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The above theorem then explains why fermionic matter occupies a volume that grows
at least linearly with the number of particles. This concerns the ground state or a not too
excited state, namely note that the upper bound BN on its energy was required since we
may of course compress lots of particles to a small volume away from the nuclei R, with a
high cost in energy. For simplicity we could have also taken B = 0 in the above theorem.
See [LS10, Theorem 7.2] for other formulations of extensivity for fermions.
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Hölder’s inequality, 7
Hamilton’s equations of motion, 17
Hamiltonian, 17
Hamiltonian mechanics, 17
Hamiltonian operator, 22
hard cores, 32
hard spheres, 32
Hardy inequality, 47, 52
harmonic oscillator potential, 19, 100
Heisenberg group, 24
Heisenberg representation, 44
Heisenberg’s equation of motion, 22
Heisenberg’s uncertainty principle, 46
hermitian, 10, 11
hermitian form, 5
Hilbert space, 6
Hoffmann-Ostenhof inequality, 56
homogeneous gas, 100
hydrogenic atom, 20

identical particles, 37
indistinguishable particles, 37, 38
information loss, 23
inner product, 5
inner product space, 5
instability, 20, 109
Instability for bosons with fixed nuclei, 110
Instability for bosons with moving nuclei, 110

interaction, 29
intermediate (exclusion) statistics, 70, 79
internal space, 41, 75
involution, 17
irreducible (representation), 24

Jacobi coordinates, 33
Jacobi identity, 16

Kinetic energy inequality, 89

Laplace-Beltrami operator, 63
Laplacian, 11, 12, 14, 62–64
layer-cake representation, 9
Lebesgue dominated convergence theorem, 8
Lebesgue monotone convergence theorem, 8
Lebesgue spaces, 7
Leibniz rule, 16
Lie algebra, 16
Lie bracket, 16
Lieb–Liniger model, 79
Lieb–Thirring inequality, 88, 91, 92
local n-particle kinetic energy, 76
Local density approximation, 98
Local exclusion principle, 76
Local exclusion principle for anyons, 86
Local exclusion principle for pairwise repulsion,

80
Local exclusion principle for scale-covariant

systems, 82
local expected kinetic energy, 67
local particle probability distribution, 35
local uncertainty principle, 67
locally flat, 41
logically identical, 37
loop, 39
LT with gradient correction, 99

magic number, 70
magnetic gauge picture, 40
Many-anyon Hardy, 83
Many-body Hardy inequality, 52
Many-body Hardy with antisymmetry, 73
Many-body kinetic energy inequality, 89
mass, 18
Maxwell–Boltzmann statistics, 70
mean-field scaling, 108
measurement, 23
min-max principle, 14
minimal domain, 11
Minkowski’s inequality, 7
mixed states, 21
model of matter, 34, 101
momentum representation, 25
momentum variables, 16



UNCERTAINTY AND EXCLUSION PRINCIPLES IN QUANTUM MECHANICS 123

multiplication operator, 14

Neumann Laplacian, 11
Newton’s equation of motion, 18
Newton’s Theorem, 103
non-abelian anyons, 41
non-negative, 11
non-relativistic, 18
norm, 5
normed linear space, 5

observables, 22
one-body density, 35
One-body Hardy with antisymmetry, 72
one-body problem, 26
operator, 10
orthonormal, 6

parallelogram identity, 5, 33
Pauli matrices, 29
Pauli principle, 69
phase space, 16
Plancherel’s identity, 9
Planck’s constant, 22
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