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The present notes collect some background, mostly without proofs, on Markov jump
processes in continuous time and with general state spaces. They serve as a preparation
for the study of spatial birth and death processes where the state space consists of finite
point configurations and the “jumps” correspond to addition or removal of a point.

Jump processes with discrete, countable state spaces, often called Markov chains, are
treated in [Lig10, Nor98, Sch11]. An in-depth treatment is given in [Chu67]. For jump
processes with possibly uncountable state spaces, see [Fel71, Chapter X.3], [Kal97, Chapter
10], [EK86, Chapters 4.2 and 8.3] and [BG68, Chapter I.12].

1. Markov processes

Let (E, E) be some measurable space and (Xt)t≥0 a stochastic process with state space E,
defined on some underlying probability space (Ω,F ,P). To avoid pathologies, we assume
that all singletons {x} ⊂ E are measurable, i.e., {x} ∈ E . This is always true in metric
spaces equipped with the Borel σ-algebra.
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Definition 1. A Markov kernel (also called probability kernel or stochastic kernel) on E
is a map P : E × E → [0, 1] such that:

(i) The map E → [0, 1], x 7→ P (x,A) is measurable for all A ∈ E.
(ii) For every x ∈ E, the map A 7→ P (x,A) is a probability measure on (E, E).

A sub-Markov kernel satisfies instead (i) and

(ii’) For every x ∈ E, the map A 7→ P (x,A) is a measure on (E, E) with total mass
P (x,E) ≤ 1.

A kernel satisfies (i) and

(ii”) For every x ∈ E, the map A 7→ P (x,A) is a measure on (E, E).

Definition 2. A normal transition function on E is a family (Pt)t≥0 such that

(i) Each Pt, t ≥ 0, is a Markov kernel on E.
(ii) The family satisfies the Chapman-Kolmogorov equations, i.e., for all x ∈ E, A ∈ E,

and s, t ≥ 0, ∫
E

Pt(x, dy)Ps(y, A) = Ps+t(x,A). (CK)

(iii) P0(x,A) = δx(A) for all x ∈ E and A ∈ E.

The word “normal” refers to condition (iii). We will always assume that condition (iii) is
satisfied and often drop the word “normal” in the sequel.

Definition 3. The process (Xt)t≥0 satisfies the simple Markov property with respect to
the canonical filtration F0

t = σ(Xs, s ≤ t) if for all t, h ≥ 0 and A ∈ E, any version of
the conditional probability P[Xt+h ∈ A | Xt] is also a version of the conditional probability
P(Xt+h ∈ A | Xs, s ≤ t), which we write as

P(Xt+h ∈ A | Xs, s ≤ t) = P(Xt+h ∈ A | Xt) P-a.s. (1)

The process is a (simple) Markov process with transition function (Pt)t≥0 if in addition
Ph(Xt, A) is a version of both these conditional expectations,

P(Xt+h ∈ A | Xs, s ≤ t) = P[Xt+h ∈ A | Xt] = Ph(Xt, A) P-a.s. (2)

A useful mnemotechnic notation is

Ph(x,A) = P(Xt+h ∈ A | Xt = x). (3)

Theorem 4. Let (Pt)t≥0 be a normal transition function on E and µ a probability measure
on E. Assume that E is Polish. Then there exists a simple Markov process (Xt)t≥0,
defined on some probability space (Ω,F ,Pµ), with transition function (Pt)t≥0 and initial
law Pµ(X0 ∈ ·) = µ(·).

For µ = δx we use the notation Px := Pδx . Thus X0 = x, Px-a.s.
The stochastic process in the theorem (more precisely, the tuple (Ω,F ,Pµ, (Xt)t≥0)) is

not uniquely determined by the transition function but the finite-dimensional distributions
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are. If (Xt)t≥0 is a simple Markov process with transition function (Pt)t≥0 and initial law
µ, then

Pµ
(
Xt1 ∈ A1, . . . , Xtn ∈ An

)
=

∫
En+1

µ(dx0)Pt1(x0, dx1)Pt2−t1(x1, dx2) · · ·Ptn−tn−1(xn−1, dxn)1lA1(x1) · · · 1lAn(xn)

for all n ∈ N, 0 ≤ t1 < · · · < tn, A1, . . . , An ∈ E . As a consequence, any two Markov
processes with same initial law and same transition function are equal in distribution
(meaning that they have the same finite-dimensional distributions). The proof of the
theorem consists in applying Kolmogorov’s extension theorem to the product space Ω =
E[0,∞) equipped with the product σ-algebra F = E [0,∞), the maps Xt

(
(ωs)s≥0

)
:= ωt,

and a well-chosen family of finite-dimensional distributions. In particular, the underlying
measure space (Ω,F) can be chosen independent of the initial law µ.

Remark (Markov family). A slightly stronger version of the theorem holds true: there exists
a tuple (Ω,F , (Px)x∈E, (Xt)t≥0) such that:

• (Ω,F) is a measurable space.
• Each Px, x ∈ E, is a probability measure on (E, E).
• Each Xt, t ≥ 0, is a measurable map from Ω to E (measurable with respect to F

and E).
• X0 = x, Px-almost surely.
• For every A ∈ E and t ≥ 0, the map E → R, x 7→ Px(Xt ∈ A) is measurable.
• For all x ∈ E, t, h ≥ 0, and A ∈ E , we have

Px
(
Xt+h ∈ A | Xs, 0 ≤ s ≤ t

)
= Ph(Xt, A) Px-a.s.

The extended version of the theorem emphasizes that there is actually a family of prob-
ability measures (Px)x∈E and paves the way for the abstract notion of Markov family,
see [KS91, Definition 5.11] or [Sch18, Definition 4.10].

Invariant and reversible measure

Definition 5. Let (Pt)t≥0 be a Markov transition function on (E, E). A probability measure
µ on (E, E) is invariant with respect to (Pt)t≥0 if for all t ≥ 0∫

E

µ(dx)Pt(x,A) = µ(A) (A ∈ E).

A convenient sufficient criterion for invariance is reversibility. For t ≥ 0, consider the
t-dependent measure µ⊗ Pt on E × E given by(

µ⊗ Pt)(A×B) =

∫
A

µ(dx)Pt(x,B).

A good way to remember this definition is to write(
µ⊗ Pt

)(
d(x, y)

)
= µ(dx)Pt(x, dy).

A measure ν on E × E is symmetric if ν(A×B) = ν(B × A) for all A,B ∈ E .
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Definition 6. Let (Pt)t≥0 be a transition function on (E, E). A probability measure µ on
(E, E) is reversible with respect to (Pt)t≥0 if for all t ≥ 0, the measure µ⊗Pt is symmetric,
i.e., ∫

A

µ(dx)Pt(x,B) =

∫
B

µ(dy)Pt(y, A)

for all A,B ∈ E and t ≥ 0.

Remark. More generally, if K(x, dy) is a kernel and µ a measure and∫
A

µ(dx)K(x,B) =

∫
B

µ(dy)K(y, A)

for all A,B ∈ E , then we say that µ symmetrizes K or it is a symmetrizing measure. We
reserve the word “reversible” for probability measures and Markov transition functions.

A convenient mnemotechnic notation for the symmetry of µ⊗ Pt is

µ(dx)Pt(x, dy) = µ(dy)Pt(y, dx). (4)

This relation is often referred to as detailed balance equation. If E is discrete, then physicists
think of µ({x})Pt(x, {y}) as a current from x to y. Detailed balance then says that the
current from x to y is the same as the current from y to x.

Lemma 7. If a probability measure µ is reversible for the (Markov) transition function
(Pt)t≥0, then it is invariant with respect to (Pt)t≥0.

For the lemma it is important that Pt(x,E) = 1—symmetrizing measures for sub-Markov
transition functions are not necessarily invariant!

2. Jump processes

2.1. Setting. Let Π(x, dy) be a Markov kernel on (E, E) and λ : E → [0,∞) a non-
negative measurable function. Define the jump kernel

K(x, dy) = λ(x)Π(x, dy)

(more precisely, K is the kernel given by K(x,A) = λ(x)P (x,A)). We assume that each
singleton is measurable and

Π(x,E \ {x}) = 1 (x ∈ E).

We would like to define a Markov process (Xt)t≥0 with state space E and piecewise constant
sample paths. The behavior, loosely speaking, should be as follows.

Suppose the process starts in X0 = x. Then it waits for random time with exponential
distribution τ1 ∼ Exp(λ(x))—this is often referred to as an exponential clock. At t = τ1—
i.e. when the exponential clock rings—the process jumps to a new location Xτ1 = y, chosen
according to the Markov kernel Π(x, dy). Then it waits again until an exponential clock
with parameter λ(y) rings and jumps to a new location z chosen according to the kernel
Π(y, dz), etc.
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In the context of spatial birth and death processes, the state space E consists of con-
figurations of points e.g. in some bounded domain in Rd and the “jumps” correspond to
addition or removal of some points of the configuration.

Jump processes can be approached in two complementary ways. They can be con-
structed directly with the jump-hold construction, using an auxiliary embedded discrete-
time Markov chain and exponential random variables. A more analytic angle of attack is
to define first the associated transition function.

2.2. Jump-hold construction. Let us fix some initial law µ. Suppose we are given a
probability space (Ω,F ,Pµ) and random variables Zn : Ω → E, n ∈ N0, and τk : Ω →
R+ ∪ {∞}, k ∈ N, such that:

(i) (Zn)n∈N0 is a discrete-time Markov process with transition kernel Π and initial law
Z0 ∼ µ. Thus

Pµ
(
Z0 ∈ A0, . . . , Zn ∈ An

)
=

∫
En+1

µ(dz0)Π(z0, dz1) · · ·Π(zn−1, dzn)1lA0(z0) · · · 1lAn(zn),

for all n ∈ N0 and A0, . . . , An ∈ E . The chain (Zn)n∈N0 is called embedded jump
chain.

(ii) Conditional on (Zk)k∈N0 , the variables τk, k ∈ N are independent exponential ran-
dom variables1 with parameters λ(Zk−1),, i.e.,

Pµ(τ1 ≥ s1, . . . , τn ≥ sn | Zk, k ∈ N0) =
n∏
i=1

e−λ(Zi−1)si .

for all n ∈ N and all s1, . . . , sn ≥ 0. The τi’s are called holding times.

Remark. If E is Polish, the existence of a tuple (Ω,F ,Pµ, (Zn)n∈N0 , (τn)n∈N) as above can be
checked with Kolmogorov’s extension theorem. The existence can also be checked with the
Ionescu-Tulcea theorem [Kle08, Theorem 14.32], which is applicable for every measurable
space (E, E)—the space E need not be Polish.

Define

T0 := 0, Tk := τ1 + · · ·+ τk (k ∈ N), ζ :=
∞∑
i=1

τi.

The sum ζ is always well-defined with values in R+ ∪ {∞}. It will play the role of the
life-time of our jump process. The random time interval [0, ζ) can be partitioned as

[0, ζ) =
∞⋃
k=0

[Tk, Tk+1).

To help us deal with the case ζ <∞, we enlarge the state space E by adding a state ∂ /∈ E,
called coffin or cemetery. Then we set

E∂ := E ∪ {∂}
1If λ = 0, we define Exp(λ) as the measure on R+∪{∞} that puts full mass on {∞}. Thus T ∼ Exp(λ)

if and only if T =∞ almost surely. This is consistent with the equality P(T ≥ t) = exp(−λt) for all t ≥ 0.
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and let E∂ be the smallest σ-algebra containing all sets E ∈ E and the singleton {∂}. We
define a process (X∂

t )t≥0 with state space E∂ by

X∂
t :=

{
Zk, t ∈ [Tk, Tk+1),

∂, t ≥ ζ.

Thus X∂
t = Z0 = X∂

0 on [0, τ1), X
∂
t = Z1 on [τ1, τ1 + τ2), etc. Then

ζ = min{t ≥ 0 | X∂
t = ∂}.

The random time is called the life-time of the process. Finally we define the number of
jumps up to time t as

Nt := max{k ∈ N0 | τ1 + · · ·+ τk ≤ t} = #{k ∈ N0 | Tk ≤ t}

and note

ζ > t ⇔ Nt <∞.

Definition 8. The process (X∂
t )t≥0 defined on (Ω,F ,Pµ) is non-explosive if its life-time

is infinite, Pµ-almost surely, and explosive otherwise.

Thus (X∂
t )t≥0 is non-explosive if and only if

∞∑
k=1

τk =∞, Pµ-a.s.

If the process is non-explosive, there is no need to extend the state space from E to E∂ and
we can define instead a process with state space E as follows. Let N ⊂ Ω be a measurable
set with Pµ(N) = 0 such that

∑∞
k=1 τk = ∞ (hence ζ = ∞) on Ω \ N . Let x0 ∈ E be an

arbitrary element. We define

Xt(ω) :=

{
Zk(ω), ω ∈ Ω \N and t ∈ [Tk(ω), Tk+1(ω)),

x0, ω ∈ N.

Then (Xt)t≥0 is a stochastic process with state space E, moreover Xt(ω) = X∂
t (ω) for all

t ≥ 0 and all ω ∈ Ω \N (the processes are indistinguishable).

2.3. Transition function. Kolmogorov backward equation.

2.3.1. Analytic construction. Intuitively, a path from x0 to xk ∈ A in time t that has
exactly k jumps at the moments 0 < t1 < · · · < tk < t and locations x1, . . . , xk right after
the jumps should be associated with the weight

λ(x0)e
−λ(x0)t1Π(x0, dx1)e

−λ(x1)(t2−t1)Π(x1, dx2) · · ·Π(xk−1, dxk)λ(xk−1)e
−λ(xk−1)(t−tk).
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This motivates the following definition. For t > 0, n ∈ N, x0 ∈ E, and A ∈ E , set

P
(n)
t (x0, A) = e−λ(x0)tδx0(A)

+
n∑
k=1

∫
0<t1<···<tk≤t

dt1 · · · dtk
∫
Ek

Π(x0, dx1)Π(x1, dx2) · · ·Π(xk−1, dxk)1lA(xk)

× λ(x0)e
−λ(x0)t1λ(x1)e

−λ(x1)(t2−t1) × · · · × λ(xk−1)e
−λ(xk−1)(t−tk). (5)

For n = 0 we set
P

(0)
t (x0, A) = e−λ(x0)tδx0(A).

This defines a family of mappings P
(n)
t : E × E → [0,∞), t ≥ 0, n ∈ N. We note the joint

measurability in t and x: for every n ∈ N0 and A ∈ E , the map

R+ × E → R+, (t, x) 7→ P
(n)
t (x,A)

is measurable.

Lemma 9. The family (P
(n)
t )n∈N0,t≥0 satisfies

P
(n+1)
t (x,A) = e−λ(x)tδx(A) +

∫ t

0

ds

∫
E

λ(x)e−λ(x)sΠ(x, dy)P
(n)
t−s(y, A), (6)

for all n ∈ N0, t ≥ 0, x ∈ E, and A ∈ E.

The recurrence relation together with the explicit value of P
(0)
t is often used as a definition

of P
(n)
t , instead of the sum (5), see e.g. [Lig10, Chapter 2.5] for discrete countable space

E, and [Fel71, Chapter X.3] for the general case.

Lemma 10. We have P
(n)
t (x,E) ≤ P

(n+1)
t (x,E) ≤ 1, for all n ∈ N0 and x ∈ E.

Let P
〈k〉
t (x0, A) be the k-th summand in (5) so that

P
(n)
s+t(x,A) =

n∑
k=0

P
〈k〉
t (x,A).

Lemma 11. For all s, t ≥ 0, n ∈ N0, x ∈ E, and A ∈ E, we have

P
〈n〉
s+t(x,A) =

n∑
k=0

∫
E

P 〈k〉s (x, dy)P
〈n−k〉
t (y, A).

Compare [Chu67, Chapter II.18, Eq. (5].
Clearly the pointwise limit

P ∗t (x,A) := lim
n→∞

P
(n)
t (x,A)

exists for all t ≥ 0, x ∈ E, and A ∈ E and satisfies P ∗t (x,A) ≤ P ∗t (x,E) ≤ 1. The

convergence is monotone, P
(n)
t (x,A)↗ P ∗t (x,A).

Proposition 12. The family (P ∗t )t≥0 is a normal sub-Markov transition function, i.e.,
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(a) Each P ∗t is a sub-Markov kernel.
(b) P ∗0 (x, ·) = δx(·), for all x ∈ E.
(c) (P ∗t )t≥0 satisfies the Chapman-Kolmogorov equations.

Proposition 13. The sub-Markov transition function (P ∗t )t≥0 solves the integrated back-
ward Kolmogorov equation, i.e.,

P ∗t (x,A) = e−λ(x)tδx(A) +

∫ t

0

ds

∫
E

λ(x)e−λ(x)(t−s)Π(x, dy)P ∗s (y, A). (7)

for all t ≥ 0, x ∈ E, and A ∈ E.

Proof. We pass to the limit n→∞ in the recurrence relation (6). On the right-hand side
the exchange of limits and integration is justified by monotone convergence. We obtain
the integral equation

P ∗t (x,A) = e−λ(x)tδx(A) +

∫ t

0

ds

∫
E

λ(x)e−λ(x)sΠ(x, dy)P ∗t−s(y, A). (8)

A change of variables from s to t− s in (8) yields Eq. (7). �

Differentiating on both sides of (7) yields an integro-differential equation.

Definition 14. We say that (Pt)t≥0 solves the backward Kolmogorov equation if (Pt)t≥0
is a sub-Markov normal transition function and for all x ∈ E and A ∈ E, the map t 7→
Pt(x,A) is differentiable on R+ and

∂

∂t
Pt(x,A) = −λ(x)Pt(x,A) + λ(x)

∫
E

Π(x, dy)Pt(y, A). (9)

The backward Kolmogorov equation can be rewritten with the jump kernel K(x, dy) =
λ(x)Π(x, dy) as

∂

∂t
Pt(x,A) =

∫
E

K(x, dy)
(
Pt(y, A)− Pt(x,A)

)
. (10)

Theorem 15.

(a) The family (P ∗t )t≥0 solves the backward Kolmogorov equation.
(b) Every sub-Markov transition function (Pt)t≥0 that solves the backward Kolmogorov

equation satisfies Pt(x,A) ≥ P ∗t (x,A) for all t ≥ 0, x ∈ E, and A ∈ E.
(c) If P ∗t (x,E) = 1 for all x ∈ E and t ≥ 0, then (P ∗t )t≥0 is the unique solution of the

backward Kolmogorov equation.

Parts (a) and (b) say that (P ∗t )t≥0 is the minimal solution of the backward Kolmogorov
equation, part (c) says that if the minimal solution is stochastic (another word for Markov,
as opposed to sub-Markov), then it is the unique solution.

Before we prove Theorem 15, we check that t 7→ P ∗t (x,A) is continuous.

Lemma 16. For every x ∈ E and A ∈ E, the map t 7→ P ∗t (x,A) is continuous on R+.
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Proof. We show first continuity in 0. Let f : E → R+ be a measurable, bounded function
and (P ∗t f)(x) :=

∫
E
P ∗t (x, dy)f(y). Notice P ∗t f ≥ 0 and

sup
x∈E

(P ∗t f)(x) ≤ sup
x∈E

f(x).

By the integrated backward Kolmogorov equation in the form (8), we have

(P ∗t f)(x) = e−λ(x)tf(x) +

∫ t

0

ds

∫
E

λ(x)e−λ(x)sΠ(x, dy)
(
P ∗t−sf

)
(y).

It follows that ∣∣(P ∗t f)(x)− e−λ(x)tf(x)
∣∣ ≤ (∫ t

0

λ(x)e−λ(x)sds
)

sup
x∈E

f(x)

=
(
1− e−λ(x)t

)
sup
x∈E

f(x)

≤ λ(x)t sup
x∈E

f(x).

For the last bound we have applied the inequality exp(u) ≥ 1+u to u = −λ(x)t. It follows
in particular that (P ∗t f)(x)→ f(x) as t↘ 0, for all x ∈ E.

Now let t, h ≥ 0 and A ∈ E . Set f(x) := P ∗t (x,A). By the Chapman-Kolmogorov
equation,

P ∗t+h(x,A) =

∫
E

P ∗h (x, dy)P ∗t (y, A) = (P ∗hf)(x).

As a consequence,∣∣P ∗t+h(x,A)− P ∗t (x,A)
∣∣ ≤ hλ(x) +

∣∣e−λ(x)h − 1
∣∣ ≤ 2hλ(x)

and the map t 7→ P ∗t (x,A) is continuous (in fact, Lipschitz-continuous) on R+. �

Proof of Theorem 15. (a) Below we check that the right-hand side of (7) is differentiable
in t, with derivative

− λ(x)e−λ(x)tδx(A)−
∫ t

0

ds

∫
E

λ(x)2e−λ(x)(t−s)Π(x, dy)P ∗s (y, A) +

∫
E

λ(x)Π(x, dy)P ∗t (y, A).

(11)
The first two terms can be regrouped by using (7), which gives −λ(x)P ∗t (x,A). It follows
that (11) is equal to the right-hand side of the backward Kolmogorov equation for P ∗t .

It remains to prove that the right-hand side of (7) is differentiable in t with derivative
given by (11). The integral equation (7) yields, for h > 0,

1

h

(
P ∗t+h(x,A)− Pt(x,A)

)
=

1

h

(
e−λ(x)(t+h) − e−λ(x)t

)
δx(A)

+

∫ t

0

ds

∫
E

λ(x)
1

h

(
e−λ(x)h − 1

)
e−λ(x)(t−s)Π(x, dy)P ∗s (y, A)

+
1

h

∫ t+h

t

ds

∫
E

λ(x)e−λ(x)(t+h−s)Π(x, dy)P ∗s (y, A) (12)
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The first term on the right-hand side clearly converges to −λ(x)e−λ(x)tδx(A) as h ↘ 0,
which is the first term in (11). For the second term on the right-hand side of (12) we
bound

1

h

∣∣e−λ(x)h − 1
∣∣ =

1

h

∫ h

0

λ(x)e−λ(x)udu ≤ λ(x)

and ∫ t

0

ds

∫
E

λ(x)2e−λ(x)(t−s)Π(x, dy)P ∗s (y, A) ≤ tλ(x)2 <∞.

Dominated convergence therefore allows us to pass to the limit h→ 0 for the middle term
on the right-hand side of (12), which gives the middle term in (11). The last integral
in (12) is equal to

λ(x)e−λ(x)(t+h)
∫
E

(1

h

∫ t+h

t

P ∗s (y, A)ds
)

Π(x, dy).

The inner integral is bounded by 1 and converges to P ∗t (y, A), for each y, because of the
continuity of t 7→ P ∗t (x,A). It follows that altogether, the expression converges to last
term in (11).

Thus we have proven that the limit of the difference quotient 1
h
(P ∗t+h(x,A) − P ∗t (x,A))

as h↘ 0 exists and is given by (11). It is not difficult to check that the right-hand side is
a continuous function of t. Thus t 7→ P ∗t (x,A) is continuous (by Lemma 16) and has right
derivatives everywhere, and the right derivative is a continuous function of t. It follows
from a general lemma (see [Sch11, Lemma 3.3.2]) that t 7→ P ∗t (x,A) is in fact differentiable
and the derivative is given by (11).

(b) (P ∗t )t≥0 is the minimal solution. Let (Pt)t≥0 be a solution of the backward Kolmogorov
equation. Then (Pt)t≥0 also solves the integrated backward Kolmogorov equation,

Pt(x,A) = e−λ(x)tδx(A) +

∫ t

0

ds

∫
E

λ(x)e−λ(x)sΠ(x, dy)Pt−s(y, A)

because the equation holds true at t = 0 and the left and right-hand sides have the same

derivatives with respect to t. An induction over n yields Pt(x,A) ≥ P
(n)
t (x,A) for all

n ∈ N0, hence Pt(x,A) ≥ P ∗t (x,A).

(c) Uniqueness if the minimal solution is stochastic. Suppose P ∗t (x,E) = 1 for all t ≥ 0
and x ∈ E. Let (Pt)t≥0 be a solution of the backward Kolmogorov equation. Then
Pt(x,A) ≥ P ∗t (x,A) because (P ∗t )t≥0 is the minimal solution (by part (b) of the proof).
Similarly, Pt(x,E \ A) ≥ P ∗t (x,E \ A). Moreover

1 ≥ Pt(x,E) = Pt(x,A) + Pt(x,E \ A) ≥ P ∗t (x,A) + P ∗t (x,E \ A) = P ∗t (x,E).

Because of P ∗t (x,E), the previous inequalities must be equalities, which is only possible if
Pt(x,A) = P ∗t (x,A). It follows that (Pt)t≥0 is equal to (P ∗t )t≥0. �
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2.3.2. Probabilistic interpretation. The relation between the process (X∂
t )t≥0 from Sec-

tion 2.2 and the sub-Markov kernels P
(n)
t , P ∗t from Section 2.3.1 is summarized by the

following lemma. Remember Px = Pδx and X0 = x, Px-a.s.

Lemma 17. We have

P
(n)
t (x,A) = Px

(
X∂
t ∈ A, Nt ≤ n

)
and

P ∗t (x,A) = Px
(
X∂
t ∈ A, ζ > t

)
,

for all t ≥ 0, x ∈ E, A ∈ E, and n ∈ N.

Proposition 18. Let (Ω,F ,Pµ) and (X∂
t )t≥0 be as in Section 2.2. The following two

conditions are equivalent:

(i) The process (X∂
t )t≥0 is non-explosive with respect to Px, for every x ∈ E.

(ii) The minimal solution (P ∗t )t≥0 of the backward Kolmogorov equation is stochastic.

Theorem 19. If the minimal solution (P ∗t )t≥0 is stochastic, then for every x ∈ E, the
process (Xt)t≥0 on (Ω,F ,Px) defined with the jump-hold construction is a Markov process
with state space E and transition function (P ∗t )t≥0.

Without the assumption that (P ∗t )t≥0 is stochastic, we can still formulate a Markov prop-
erty. First we extend the sub-Markov transition function (P ∗t )t≥0 on (E, E) to a Markov
transition function (P ∂

t )t≥0 on (E∂, E∂) by asking that for all t ≥ 0

P ∂
t (x,A) = P ∗t (x,A) (x ∈ E, A ∈ E),

P ∂
t (x, {∂}) = 1− P ∗t (x,E) (x ∈ E),

P ∂
t (∂, {∂}) = 1.

It is easily checked that there is a unique Markov transition function on (E∂, E∂) that
satisfies the previous three equations. Then for the process (X∂

t )t≥0 is a Markov process
with state space E∂ and transition function (P ∂

t )t≥0. In particular, for all x ∈ E, t, h ≥ 0,
and A ∈ E ,

Px(X∂
t+h ∈ A | X∂

s , s ≤ t) = 1l{ζ>t} P
∂
t+h(X

∂
t , A) = 1l{ζ>t} P

∗
t+h(X

∂
t , A) Px-a.s.

2.4. Reversible measure.

Proposition 20. Let µ be a probability measure on (E, E). Suppose that µ(dx)K(x, dy) =
µ(dy)K(y, dx). Then µ is a symmetrizing measure for (P ∗t )t≥0, i.e.,∫

A

µ(dx)P ∗t (x,B) =

∫
B

µ(dy)P ∗t (y, A)

for all A,B ∈ E and t ≥ 0.

Corollary 21. If the probability measure µ is a symmetrizing measure for the jump kernel
K(x, dy) and the minimal solution (P ∗t )t≥0 is stochastic, then µ is a reversible measure,
hence also an invariant measure for (P ∗t )t≥0.
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3. Coupling

Preston’s criterion for non-explosion of spatial birth and death processes [Pre75] builds
on a coupling between two processes, a spatial birth and death process (ηt)t≥0 and a non-
spatial birth and death process (Xt)t≥0. “Coupling” roughly means that the processes
(ηt)t≥0, (Xt)t≥0 are defined on a common probability space (Ω,F ,P). One way of trying
to get such a coupling is to construct a Markov process (ηt, Xt)t≥0 with bigger state space
N<∞(X) × N0 that is such that the component processes (ηt)t≥0, (Xt)t≥0 are spatial and
non-spatial birth and jump processes, respectively.

Here we collect some relevant background for such couplings. The general setting is
as follows [Che86]. Let (E1, E1) and (E2, E2) be two measurable spaces, and (E, E) =
(E1 × E2, E1 ⊗ E2) the product space. Let K1 and K2 be jump kernels on (E1, E1) and
(E2, E2) respectively. We look for ways of constructing a process (Xt)t≥0 = ((X1,t, X2,t))t≥0
with state space E in such a way that the component processes (X1,t)t≥0 and (X2,t)t≥0 are
jump processes with prescribed jump kernels K1 and K2.

We write Li and P ∗i,t for the formal generator and minimal solution of the backward
Kolmogorov equations associated with the jump kernel Ki.

3.1. Independent processes. The simplest—though often least useful—coupling con-
sists in making the two component processes independent. Let ∂ be an element not con-
tained in E and (

Ω,F , (Px)x∈E, (X∂
1,t)t≥0, (X

∂
2,t)t≥0

)
a tuple consisting of: a measurable space (Ω,F), a family of probability measures Px,
x ∈ E, measurable maps X∂

i,t : Ω → E∂
i , where E∂

i = Ei ∪ {∂}. We assume that for each

x = (x1, x2), under Px, the processes (X∂
1,t)t≥0 and (X∂

2,t)t≥0 are independent and they are
the minimal jump processes with respective kernels K1 and K2, initial values x1 and x2,
and cemetery ∂. Let ζ1 and ζ2 be the respective lifetimes of the processes and

ζ := min(ζ1, ζ2).

Define

X̃t :=
(
X∂

1,t, X
∂
2,t

)
(t ≥ 0)

and

X∂
t :=

{
X̃t, t < ζ,

∂, t ≥ ζ.

Notice X̃t(ω) = X∂
t (ω) ∈ E for all t < ζ(ω) and ω ∈ Ω. Set

Pt(x,A) := Px
(
X∂
t ∈ A, ζ < t

)
(A ∈ E).

Then for A1 ⊂ E1 and A2 ⊂ E2, we have

Px
(
X∂
t ∈ A, ζ < t

)
= P(x1,x2)

(
X∂

1,t ∈ A1, t < ζ1
)
P(x1,x2)

(
X∂

2,t ∈ A2, t < ζ2
)

hence

Pt(x1, x2;A1 × A2) = P ∗1,t(x1, A1)P
∗
2,t(x2, A2).
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Notice that

Pt(x1, x2;A1 × E2) ≤ P ∗1,t(x1, A1), Pt(x1, x2;E1 × A2) ≤ P ∗2,t(x2, A2) (13)

and the inequality may be strict. One checks that (Pt)t≥0 is a sub-Markov transition
function on (E, E). It solves the backward Kolmogorov equation associated with the jump
kernel uniquely defined by

K(x1, x2;A1 × A2) := K1(x1, A1)δx2(A2) + δx1(A1)K2(x2, A2).

The associated formal generator is

(Lf)(x1, x2) =

∫
E1

K1(x1, dy1)
(
f(y1, x2)−f(x1, x2)

)
+

∫
E2

K2(x2, dy2)
(
f(x1, y2)−f(x1, x2)

)
.

Then (Pt)t≥0 solves the backward Kolmogorov equation for the jump kernel K.

3.2. Dependent coupling. More generally, suppose that kernels K, K1, and K2 are given
such that the associated generators L,L1, L2 satisfy the following condition.

Condition 1. The following holds true for all f ∈ L∞(E, E):

(i) If f(x1, x2) = f1(x1) for some f1 ∈ L∞(E1, E1) and all (x1, x2) ∈ E, then (Lf)(x1, x2) =
(L1f1)(x1) on E.

(ii) If f(x1, x2) = f1(x1) for some f2 ∈ L∞(E2, E2) and all (x1, x2) ∈ E, then (Lf)(x1, x2) =
(L2f2)(x2) on E.

A compact way of writing the condition uses the notation

(f ⊗ g)(x1, x2) := f(x1)g(x2)

and 1 for the constant function 1. Then the condition becomes

L(f1 ⊗ 1) = (L1f1)⊗ 1, L(1⊗ f2) = 1⊗ (L2f2).

Write P ∗t , P ∗i,t for the minimal solutions associated with the jump kernels K and Ki.

Theorem 22. [Che86, Theorem 13] Suppose that (P ∗t )t≥0 is stochastic and that Condi-
tion 1 is satisfied. Then (P ∗1,t)t≥0 and (P ∗2,t)t≥0 are stochastic as well, moreover

P ∗t (x1, x2;A1 × E2) = P ∗1,t(x1, A1), P ∗t (x1, x2;E1 × A2) = P ∗2,t(x2, A2) (14)

for all t ≥ 0, x1 ∈ E1, x2 ∈ E2, A1 ∈ E1, and A2 ∈ E2.

If Condition 1 is satisfied and (P ∗1,t)t≥0 and (P ∗2,t)t≥0 are both stochastic, then (P ∗t )t≥0 is
stochastic too [Che86, Theorem 37].

Remark. If (P ∗t )t≥0 is not stochastic, then in general we can only expect an inequality
similar to (13).

A variant of the theorem works for sub-Markov jump processes with bounded generator.
Let K,K1, K2 be as before and λ̃ : E → R+, λ̃1 : E1 → R+, λ̃2 : E2 → R+ measurable with

λ̃(x) ≥ K(x,E), λ̃1(x1) ≥ K1(x1, E1), λ̃2(x2) ≥ K2(x2, E2).
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Define modified generators

(L̃f)(x) := −λ̃(x)f(x) +

∫
E

K(x, dy)f(y)

similarly L̃1, L̃2. If the rate λ̃(·) is bounded, then P̃t := exp(tL̃) (see Appendix A.2) is the
unique solution of the backward Kolmogorov equation

d

dt
P̃t = L̃Pt.

Sub-Markov transition functions P̃1,t and P̃2,t are defined in a similar way.

Proposition 23. Suppose that the rates λ̃(·), λ̃1(·), λ̃2(·) are bounded and that L̃, L̃1, and
L̃2 satisfy Condition 1. Then

P̃t(x1, x2;A1 × E2) = P̃1,t(x1, A1), P̃t(x1, x2;E1 × A2) = P̃2,t(x2, A2) (15)

for all t ≥ 0, x1 ∈ E1, x2 ∈ E2, A1 ∈ E1, and A2 ∈ E2.

Proof. An induction over k yields L̃k(f1 ⊗ 1) = (L̃k1f1) ⊗ 1, for all k ∈ N and f1 ∈
L∞(E1, E1). It follows that

P̃t(f1 ⊗ 1) = exp(tL̃)(f1 ⊗ 1) = (exp(tL̃1)f1)⊗ 1 = (P̃1,tf1)⊗ 1.

We apply the equality to f1 = 1A1 and evaluate the functions at the variable (x1, x2) and
obtain the claim for the first marginal. The proof for the second marginal is similar. �

Let us return to the situation of Theorem 22. We drop the ∗-superscript because the
minimal solutions are stochastic. Consider a tuple(

Ω,F , (Px)x∈E, (Xt)t≥0
)

consisting of a measurable space (Ω,F), probability measures Px, and measurable maps
Xt : Ω→ E such that under each Px, the process (Xt)t≥0 is a jump process with transition
function (Pt)t≥0. Write Xt = (X1,t, X2,t) ∈ E1 × E2.

Proposition 24. Under the conditions of Theorem 22: Under each P(x1,x2), the component
processes (X1,t)t≥0 and (X2,t)t≥0 are non-explosive jump processes with jump kernels K1 and
K2 with initial values x1 and x2.

Proof. Fix x = (x1, x2) ∈ E. Clearly X1,t is a measurable map from Ω to E1 and X1,0 = x1,
P(x1,x2)-almost surely. Let t, h ≥ 0 and A1 ∈ E1. The tower property of conditional
expectations, the Markov property for (Xt)t≥0, and Theorem 22 yield the Px-almost sure
equalities

Px
[
X1,t+h ∈ A1 × E

∣∣X1,s, s ≤ t
]

= Ex
[
Ex
[
Xt+h ∈ A1 × E

∣∣Xs, s ≤ t
]∣∣∣X1,s, s ≤ t

]
= Ex

[
Ph(Xt, A1 × E) | X1,s, s ≤ t

]
= Ex

[
P1,h(X1,t, A1) | X1,s, s ≤ t

]
= P1,h(X1,t, A1).
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Thus (X1,t)t≥0 is a simple Markov process with transition function (P1,t)t≥0. The proof for
the second component (X2,t)t≥0 is similar. �

4. Truncation

Sometimes it is of interest to truncate a jump process and investigate transition functions
where a part H ⊂ E of the state space is taboo. The motivation is twofold. First, it can
be genuinely of interest to investigate the probability

Px(X∂
t ∈ A, ∀s ≤ t : X∂

s ∈ E \H)

that the process goes from x to A in time time but without ever visiting the taboo set H.
Equivalently, we may look at the process killed upon exiting E \H,

Y ∂
t =

{
X∂
t , ∀s ≤ t : X∂

s ∈ E \H,
∂, else.

Second, truncation may allow us to deal with processes with bounded generators instead
of the orginal process. For example, if supx∈EK(x,E) = ∞, we may set Hn := {x ∈ E |
K(x,E) > n} and ask about processes defined in E \Hn, and perhaps about convergence
as n→∞.

Let K be a jump kernel, (P ∗t )t≥0 the minimal solution of the backward Kolmogorov
equation, and

(
Ω,F , (Px)x∈E, (X∂

t )t≥0
)

the usual associated setup. Working with the jump-
hold construction, we may assume without loss of generality that all sample paths t 7→
Xt(ω) are piecewise constant. Here we agree to call a map x : [0,∞) → E piecewise
constant if for all t ≥ 0, there exists h > 0 such that x(·) is constant on [t, t + h). Fix
F ∈ E and equip F with the trace of the σ-algebra E . Then for every t ≥ 0, the set

{ω ∈ Ω | ∀s ∈ [0, t] : X∂
s (ω) ∈ F} = {ω ∈ Ω | ∀s ∈ ([0, t) ∩Q) ∪ {t} : X∂

s (ω) ∈ F}

is measurable. For x ∈ F and measurable A ⊂ F , define

Qt(x,A) := Px
(
Xt ∈ A, ∀s ∈ [0, t] : X∂

s (ω) ∈ F
)
,

the probability of a transition from x to A in time t without ever leaving F . We may
also think of Qt as the transition function of a process killed upon exiting F . Remember
λ(x) = K(x,E).

Proposition 25. (Qt)t≥0 defines a normal sub-Markov transition function on F . It solves
the backward Kolmogorov equation

d

dt
Qt(x,A) = −λ(x)Qt(x,A) +

∫
F

K(x, dy)Qt(y, A)

for all t ≥ 0, x ∈ F , and measurable A ⊂ F .

The proposition is complemented by the following approximation result. Let En ↗ E,
En ∈ E . Let

(n)P t(x,A) := Px
(
Xt ∈ A, ∀s ∈ [0, t] : X∂

s (ω) ∈ En
)
,
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Then

lim
n→∞

(n)P t(x,A) = P ∗t (x,A),

for all t ≥ 0, x ∈ E, and A ∈ E . Choosing En in such a way that supx∈En K(x,En) <∞, we

see that the minimal solution (P ∗t )t≥0 is approximated by the (unique) solutions ((n)P t)t≥0
of backward equations with bounded generators.

Appendix A. Functional-analytic aspects

A.1. Positivity-preserving contraction semi-group. Let (Pt)t≥0 be a normal Markov
or sub-Markov transition function on (E, E). Then each Pt induces a linear map from
L∞(E, E), the space of bounded measurable functions, into itself. The linear operator is
given by

(Ptf)(x) :=

∫
E

Pt(x, dy)f(y).

By a slight abuse of notation we use the same letter Pt for the kernel and for the operator
Pt : L∞(E, E) → L∞(E, E). We write 1 for the constant function that is everywhere
equal to 1.

Proposition 26. Let (Pt)t≥0 be a normal Markov or sub-Markov transition function on
(E, E). Then the associated family of operators in L∞(E, E) satisfies the following:

(a) Pt+sf = PtPsf for all s, t ≥ 0 and all f ∈ L∞(E, E).
(b) P0f = f , for all f ∈ L∞(E, E).
(c) If 0 ≤ f ≤ 1 pointwise on E, then also 0 ≤ Ptf ≤ 1 pointwise on E.
(d) Let (fn)n∈N be a sequence in L∞(E, E) and f ∈ L∞(E, E). Then, if fn ↗ f

pointwise on E, then also Ptfn ↗ Ptf pointwise on E, for all t ≥ 0.

Moreover (Pt)t≥0 is Markov if and only if Pt1 = 1 for all t ≥ 0.

Item (a) says that (Pt)t≥0 defines a semi-group on E, it is inherited from the Chapman-
Kolmogorov equations. Item (c) implies in particular that (Pt)t≥0 is positivity-preserving,
i.e., it maps non-negative functions to non-negative functions. Moreover, item (c) implies
the inequality

sup
x∈E

∣∣(Ptf)(x)
∣∣ ≤ sup

x∈E
|f(x)|

for all f ∈ L∞(E, E). As a consequence, each Pt defines a bounded linear operator in the
Banach space L∞(E, E) of bounded functions equipped with the supremum norm

||f ||∞ := sup
x∈E
|f(x)|

moreover the operator norm is smaller or equal to 1: the family (Pt)t≥0 is a contraction
semi-group. It follows automatically that each Pt is continuous with respect to uniform
convergence. Item (d) of the proposition says that in addition, each Pt is continuous with
respect to pointwise monotone convergence of uniformly bounded, non-negative sequences.
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Remark (Daniell-Stone theorem). Conversely, if (Pt)t≥0 is a family of linear operators in
L∞(E, E)—a priori not necessarily given by a family of kernels—satisfying the items (a)-
(d) from Proposition 26, then there exists a uniquely defined associated sub-Markov transi-
tion function. Here property (d) is very important. In combination with the Daniell-Stone
theorem2 [Bau68, Chapter VII.39] from measure theory, it allows to prove the existence of
a measure Pt(x, dy) such that (Ptf)(x) =

∫
E
Pt(x, dy)f(y).

A.2. Semi-groups with bounded generator. Dyson expansion. Suppose that the
jump kernel K is such that

sup
x∈E

λ(x) = sup
x∈E

K(x,E) =: C <∞

(remember λ(x) = K(x,E)). Set (Kf)(x) :=
∫
E
K(x, dy)f(y). Then for all f ∈ L∞(E, E),

||Kf ||∞ ≤ sup
x∈E

λ(x)||f ||∞ = C||f ||∞,

hence K defines a bounded linear operator in L∞(E, E), which by a slight abuse of notation
is designated with the same letter as the kernel K. Similarly,

(Lf)(x) :=

∫
E

K(x, dy)
(
f(y)− f(x)

)
defines a bounded operator L : L∞(E, E)→ L∞(E, E). As a consequence, the exponential
series

exp(tL) = 1 +
∞∑
n=1

tn

n!
Ln

converges in operator norm. This suggests to use

Pt := exp(tL)

instead of the backward Kolmogorov equation in order to define a transition function.
We shall see that (Pt)t≥0 is actually exactly the semi-group associated with the minimal
solution, moreover, the minimal solution is stochastic.

Let us pretend that we do not know anything about the minimal solution and examine
Pt = exp(tL) as an object in its own right, as an alternative to what we did earlier. Clearly
P0f = f and Pt+sf = PtPsf for all s, t ≥ 0 and f ∈ L∞(E, E), i.e., we definitely have
a semi-group. It is less immediate, however, that Pt is positivity-preserving. Indeed even
when f is non-negative, because of the subtractions, Lf in general will not be non-negative
and neither will Lnf , so a priori there seems to be no reason why the exponential series
for exp(tL)f should yield a non-negative function.

The only reasonable way out is not to expand the negative part. Let Mλ be the multi-
plication operator

(Mλf)(x) := λ(x)f(x).

2The theorem deals with the following question: If I : F → R is a linear map on a vector space of
real-valued functions F ⊂ {f | f : E → R}, can we find a σ-algebra E on E and a measure µ on (E, E)
such that (i) every f ∈ F is measurable with respect to E (and the Borel σ-algebra on R), and (ii)
I(f) =

∫
E
fdµ for all f ∈ F? Is the measure unique?
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Notice

(Lf)(x) =

∫
E

K(x, dy)f(y)− λ(x)f(x)

hence
L = K −Mλ.

If the function λ(x) is constant, then Mλ is a scalar multiple of the identity operator,
therefore KMλ = MλK and Pt = exp(tL) = exp(−tMλ) exp(tK), which can be used to
prove that Pt is indeed positivity-preserving.

In general, however, Mλ and K do not commute. But the following observation is useful:
we have

d

dt
etMλetL = etMλ

(
Mλ + L

)
etL = etMλKetL.

Set
A(t) := etMλetL = etMλPt, K(t) := etMλKe−tMλ

then
d

dt
A(t) = K(t)A(t), A(0) = exp(0) = id.

Following the standard procedure for proving the existence of a solution to ordinary differ-
ential equations, we can write down the associated integral equation, interpret the integral
equation as a fixed point problem, and then try a Picard iteration. Thus

A(t) = id +

∫ t

0

K(s)A(s)ds. (16)

Multiplying with the operator exp(−tMλ) from the left and inserting the definitions of A(·)
and K(·), we obtain

Pt = e−tMλ +

∫ t

0

e−(t−s)MλKPsds. (17)

This is precisely the integrated backward Kolmogorov equation from Proposition 13, writ-
ten in a more functional-analytic way. The associated Picard iteration reads

P
(0)
t := e−tMλ , P

(n+1)
t = e−tMλ +

∫ t

0

e−(t−s)MλKP (n)
s ds, (18)

which is the recurrence relation from Lemma 9.

Lemma 27. If supx∈E λ(x) = supx∈EK(x,E) < ∞, then for each t ≥ 0, the sequence

(P
(n)
t )n∈N0 converges to Pt = exp(tL) in operator norm, i.e., there is a sequnce (εn(t))n∈N0

such that limn→∞ εn(t) = 0 and

||P (n)
t f − Ptf ||∞ ≤ εn(t) ||f ||∞

(
f ∈ L∞(E, E)

)
.

The proof is similar to existence proofs for ordinary differential equations.

Proposition 28. If supx∈E λ(x) = supx∈EK(x,E) < ∞, then the family of operators
(Pt)t≥0 = (exp(tL))t≥0 satisfies the properties (a), (b), (c) and (d) from Proposition 26,
moreover Pt1 = 1 for all t ≥ 0.
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Proof. The semigroup property Pt+s = PtPs and the initial value P0 = id follow from
properties of the exponential. This proves (a) and (b). The constant function 1 satisfies

(L1)(x) =

∫
E

K(x, dy)(1− 1) = 0 (x ∈ E),

therefore

Pt1 = exp(tL)1 = 1 +
∞∑
n=1

tn

n!
Ln1 = 1

for all t ≥ 0. For (c), let f ∈ L∞(E, E) be such that 0 ≤ f ≤ 1 pointwise on E. Then

0 ≤ P
(n)
t f ≤ 1 for all t ≥ 0, n ∈ N0. Indeed this is clearly true for n = 0; and if it is true

for n, then (
P

(n+1)
t f

)
(x) = e−λ(x)t +

∫ t

0

e−(t−s)λ(x)

(∫
E

K(x, dy)(P
(n)
t f)(x)

)
ds

≤ e−λ(x)t +

∫ t

0

e−(t−s)λ(x)λ(x)ds

= e−λ(x)t +
(
1− e−λ(x)t

)
= 1.

Similarly, P n+1
t f ≥ 0. Thus 0 ≤ P

(n+1)
t f ≤ 1. This completes the inductive proof of the

claim. By Lemma 27, P
(n)
t f → Ptf uniformly on E, therefore we also have 0 ≤ Ptf ≤ 1.

This proves (c).
For the continuity with respect to pointwise convergence of monotone increasing se-

quences, let (fk)k∈N be bounded non-negative functions with fk ↗ f ∈ L∞(E, E). An

induction over n shows that P
(n)
t fk ↗ P

(n)
t f as k → ∞, for each n ∈ N0. The pointwise

convergence Ptfk → Ptf then follows from Lemma 27 and an ε/3-argument based on the
bound∣∣(Ptfk)(x)− (Ptf)(x)

∣∣
≤ ||Ptfk − P (n)

t fk||∞ + |(P (n)
t fk)(x)− (P

(n)
t f)(x)|+ ||Ptf − P (n)

t f ||∞
≤ 2εn(t) ||f ||∞ + |(P (n)

t fk)(x)− (P
(n)
t f)(x)|

with εn(t) as in Lemma 27. The pointwise convergence is monotone because fk ≤ fk+1

implies fk+1 − fk ≥ 0 hence Pt(fk+1 − fk) ≥ 0 and Ptfk ≤ Ptfk+1. This proves (d). �

It follows from the Daniell-Stone theorem [Bau68, Chapter VII.39] that the semi-group
(Pt)t≥0 is associated with a sub-Markov transition function, i.e., there exists a family of
kernels Pt(x, dy) such that (Ptf)(x) =

∫
E
Pt(x, dy)f(y) for all t ≥ 0, f ∈ L∞(E, E), and

x ∈ E, and the kernels form a sub-Markov transition function. Because of Pt1 = 1 and
Pt(x,E) = (Pt1)(x) = 1, we are in fact dealing with a (Markov) transition function. In
addition, the operator-valued differential equation d

dt
Pt = LPt (differentiability in operator
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norm), which follows from the properties of the exponential of bounded operators, implies
that the associated transition function satisfies the backward Kolmogorov equation.

Lemma 27 implies that the transition function associated with the exponential (exp(tL))t≥0
is in fact equal to the family (P ∗t )t≥0 defined in Section 2.3. We have just checked that it
is stochastic. The following proposition summarizes the relation between the functional-
analytic approach for bounded jump kernels and the previous analytic approach to the
backward Kolmogorov equation.

Proposition 29. If supx∈E λ(x) = supx∈EK(x,E) < ∞, then the minimal solution
(P ∗t )t≥0 of the backward Kolmogorov equations is stochastic and it is the unique solution,
moreover

P ∗t (x,A) =
(
etL1lA

)
(x)

for all t ≥ 0, x ∈ E, and A ∈ E.

Remark (Dyson series and time-ordered exponential). We could also have written down a
fixed point iteration starting from Eq. (16). The analogue of Lemma 27 for the operators
A(t) and K(t), together with a representation similar to Eq. (5), yields

A(t) = id +
∞∑
n=1

∫
0≤t1<···<tn≤t

K(t1) · · ·K(tn)dt1 · · · dtn. (19)

Physicists like to rewrite this series, with some abuse of notation, as follows. For t1, . . . , tn ∈
[0, t], let σ ∈ Sn be a permutation such that tσ(1) ≤ · · · ≤ tσ(n). Write

T
[
K(t1) · · ·K(tn)

]
:= K(tσ(1)) · · ·K(tσ(n))

and think of T as a time-ordering “operator”. The notation is extended to integrals by

T
[∫

[0,t]n
K(t1) · · ·K(tn)dt1 · · · dtn

]
:=

∫
[0,t]n
T
[
K(t1) · · ·K(tn)

]
dt1 · · · dtn.

Then

A(t) = id +
∞∑
n=1

1

n!
T
[∫

[0,t]n
K(t1) · · ·K(tn)dt1 · · · dtn

]
(20)

=: T
[
exp
(∫ t

0

K(s)ds
)]
. (21)

The last expression is sometimes referred to as time-ordered exponential, the series (20)
and (19) as Dyson series or Dyson expansion, compare [RS75, Section X.12]. The time-
ordered exponential connects to formulas for ordinary differential equations for real-valued
functions. Indeed under mild regularity conditions on k(t) the solution of the initial value
problem for real-valued functions

a′(t) = k(t)a(t), a(0) = 1

is given by

a(t) = exp
(∫ t

0

k(s)ds
)
.
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The considerations above tell us that a similar formula holds for the operator-valued equa-
tion A′(t) = K(t)A(t) but the exponential has to be replaced by the time-ordered expo-
nential (21), rigorously defined in terms of the Dyson expansion (19).
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