Trees, functional inversion, and the virial expansion

Sabine Jansen
LMU, Munich
with Tobias Kuna (Reading) and Dimitrios Tsagkarogiannis (L'Aquila)
arXiv:1906.02322 [math-ph]

European Women in Mathematics,
German Chapter Conference 2019,
MPI MiS, Leipzig, 28-30 October 2019

Outline

1. Inversion? Trees? Virial expansion?
2. Why not use an inverse function theorem in Banach spaces?
3. An abstract inversion theorem
4. Application in statistical mechanics

Inversion of power series / complex analysis \& algebra

Given: a power series in \mathbb{C} of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

positive radius of convergence $R(f)$.
Wanted: inverse power series

$$
w=f(z) \Leftrightarrow z=g(w)=w+\sum_{n=2}^{\infty} b_{n} w^{n} .
$$

Questions:

- Is the radius of convergence of the inverse series positive? Holomorphic inverse function theorem.
- Quantitative bounds on $R(g)$? Bloch radii.
- Formulas? Lagrange inversion.

Also: The tree formulas for the reversion of power series, Wright '89, Journal of Pure and Applied Algebra, derived from Abhyankar-Gurjar inversion formula.

What about functionals in infinite-dimensional spaces?
E.g. background potential $\exp \left(-V_{\text {ext }}(x)\right) \mapsto$ density profile $\rho(x)$.

Trees / analytic combinatorics

Cayley's theorem: number of rooted labelled trees on n vertices

$$
t_{n}=\# \mathcal{T}_{n}^{\bullet}=n^{n-1}
$$

Exponential generating function

$$
T(z)=\sum_{n=1}^{\infty} \frac{\# \mathcal{T}_{n}^{\bullet}}{n!} z^{n}=\sum_{n=1}^{\infty} \frac{n^{n-1}}{n!} z^{n} \quad\left(|z|<\frac{1}{\mathrm{e}}\right) .
$$

Recursive structure of combinatorial species of trees
\Rightarrow functional equation for generating function:

$$
T(z)=z \mathrm{e}^{T(z)}=z\left(1+\sum_{k=1}^{\infty} \frac{1}{k!} T(z)^{k}\right)
$$

Think $k=$ number of children of the root.
Related: $W(z)=-T(-z)$ Lambert's W-function solves $z=W \exp (W)$.
Observation:

$$
z=T(z) \mathrm{e}^{-T(z)}, \quad \frac{1}{\mathrm{e}}=\sup _{x \geq 0} x \mathrm{e}^{-x}
$$

Relation functional equation \leftrightarrow radius of convergence.

Virial expansion / thermodynamics \& statistical mechanics

Ideal gas law $p V=N k_{B} T$

- p pressure
- V volume
- N number of particles
- k_{B} Boltzmann constant
- T absolute temperature (in Kelvin, $0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$).

Virial expansion: corrections as power series in the density $\rho=N / V$

$$
\frac{p}{k_{B} T}=\rho\left(1+C_{1} \rho+C_{2} \rho^{2}+\cdots\right)
$$

Mayer expansion: series in dual parameter z activity, fugacity

$$
\frac{p}{k_{B} T}=z+B_{2} z^{2}+B_{3} z^{3}+\cdots
$$

Known:

$$
\rho=z \frac{\partial}{\partial z} \frac{p}{k_{B} T}=z\left(1+2 B_{2} z+3 B_{3} z^{2}+\cdots\right) .
$$

From Mayer to virial via inversion $\rho=\rho(z) \Leftrightarrow z=z(\rho)$ Lebowitz, Penrose '64. What about inhomogeneous systems and position-dependent $z(x), \rho(x)$?

Virial expansion vs. virial theorem

Latin vis $=$ "force". ODE for motion of N particles of mass m subject to forces f_{i} : $m \ddot{x}_{i}=f_{i}$. Scalar product with x_{i} \& summation over $i \Rightarrow$

$$
-\frac{1}{2} \sum_{i=1}^{N} m x_{i} \cdot \ddot{x}_{i}=-\frac{1}{2} \sum_{i=1}^{N} x_{i} \cdot f_{i}=: \frac{1}{2} C(x)
$$

virial of the forces. Integrate over long time intervals, integrate by parts on the left side \Rightarrow long-time averages $\langle\cdot\rangle$ satisfy

$$
\begin{equation*}
\left\langle\sum_{i=1}^{N} \frac{1}{2} m \dot{x}_{i}^{2}\right\rangle=\frac{1}{2}\langle C\rangle . \tag{1}
\end{equation*}
$$

Time-average kinetic energy \leftrightarrow time-average of the virial. External forces due to container wall \rightarrow external virial

$$
\begin{equation*}
C_{\mathrm{ext}}=3 p V \tag{2}
\end{equation*}
$$

V volume, p pressure. (1) $+(2)$ Clausius virial theorem. Kinetic gas theory:

$$
\left\langle\sum_{i=1}^{N} \frac{1}{2} m \dot{x}_{i}^{2}\right\rangle=\frac{3}{2} N k_{B} T
$$

k_{B} Boltzmann constant, T absolute temperature (in Kelvin). Combine:

$$
p V=N k_{B} T-\frac{1}{3}\left\langle C_{\mathrm{int}}\right\rangle
$$

Corrections to ideal gas law \leftrightarrow average internal virial.

The trouble with infinite dimensions: a toy example

Countably many variables, map

$$
f: \mathbb{C}^{\mathbb{N}} \rightarrow \mathbb{C}^{\mathbb{N}}, \quad\left(z_{k}\right)_{k \in \mathbb{N}} \mapsto\left(\rho_{k}\right)_{k \in \mathbb{N}}
$$

with

$$
\rho_{1}=z_{1}, \quad \forall k \geq 2: \rho_{k}=z_{k} \mathrm{e}^{-k z_{1}}
$$

Clearly, invertible. Formally, Jacobian $=$ identity matrix

$$
\frac{\partial \rho_{k}}{\partial z_{j}}(\mathbf{0})=\delta_{j k} .
$$

Analytic framework? Inverse function theorem? Banach spaces

$$
E_{a}:=\left\{\left(z_{k}\right)_{k \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}: \sum_{k=1}^{\infty}\left|z_{k}\right| \mathrm{e}^{a k}<\infty\right\}, \quad a \in \mathbb{R} .
$$

Wanted:

$f: U \rightarrow V$ bijection from open neighborhoods of origin $U \subset E_{a}$ onto $V \subset E_{b}$.
$f: E_{a} \supset U \rightarrow E_{b}$ Fréchet-differentiable,
$\mathrm{D} f(0): E_{a} \rightarrow E_{b}$ invertible with bounded inverse.

Problem:

There is no way to choose a and b to make it work.

Proper analytic structure:

scale of Banach spaces, Nash-Moser theorem...

An abstract inversion theorem

Given: formal power series

$$
A(q ; z)=\sum_{n=1}^{\infty} \frac{1}{n!} \int_{\mathbb{X}^{n}} A_{n}\left(q ; x_{1}, \ldots, x_{n}\right) z^{n}(\mathrm{~d} \boldsymbol{x})
$$

$A_{n}: \mathbb{X} \times \mathbb{X}^{n} \rightarrow \mathbb{R}$. Domain of absolute convergence: $z \in \mathscr{D}(A)$ iff

$$
\sum_{n=1}^{\infty} \frac{1}{n!} \int_{\mathbb{X}^{n}}\left|A_{n}\left(q ; x_{1}, \ldots, x_{n}\right)\right||z|^{n}(\mathrm{~d} \boldsymbol{x})<\infty
$$

for all q. Measure-valued map

$$
\mathscr{D}(A) \ni z \mapsto \rho[z], \quad \rho[z](\mathrm{d} q)=z(\mathrm{~d} q) \mathrm{e}^{-A(q ; z)}
$$

Wanted: inverse map

$$
\rho[z]=\rho \Leftrightarrow z=z[\rho] ?
$$

Idea:

$$
\rho(\mathrm{d} q)=z(\mathrm{~d} q) \mathrm{e}^{-A(q ; z)} \Rightarrow z(\mathrm{~d} q)=\mathrm{e}^{A(q ; z)} \rho(\mathrm{d} q)
$$

Thus

$$
z(\mathrm{~d} \boldsymbol{q})=T_{q}^{\circ}(\rho) \rho(\mathrm{d} \boldsymbol{q})
$$

with

$$
T_{q}^{\circ}(\rho)=\exp \left(\sum_{n=1}^{\infty} \frac{1}{n!} \int_{\mathbb{X}^{n}} A_{n}\left(q ; x_{1}, \ldots, x_{n}\right) T_{x_{1}}^{\circ}(\rho) \cdots T_{x_{n}}^{\circ}(\rho) \rho^{n}(\mathrm{~d} \boldsymbol{x})\right)
$$

Lemma: Fixed point equation determines formal power series

$$
T_{q}^{\circ}(\rho)=1+\sum_{n=1}^{\infty} \frac{1}{n!} \int_{\mathbb{X}^{n}} t_{n+1}\left(q, x_{1}, \ldots, x_{n}\right) \rho^{n}(\mathrm{~d} \boldsymbol{x})
$$

uniquely.

Proposition:

Coefficients t_{n} can be expressed as sums over weighted trees.
Generalizes similar relation for finitely many variables from Gessel ' 87
A combinatorial proof of the multi-variate Lagrange-Good inversion formula.

Formal inversion always possible, inverse expressed with fixed point equation / trees. Convergence?
Theorem (J, Kuna, Tsagkarogiannis '19)
Suppose that for some $b: \mathbb{X}^{n} \rightarrow \mathbb{R}_{+}$and all $q \in \mathbb{X}$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n!} \int_{\mathbb{X}^{n}}\left|A_{n}\left(q ; x_{1}, \ldots, x_{n}\right)\right| \mathrm{e}^{b\left(x_{1}\right)+\cdots+b\left(x_{n}\right)}|\rho|^{n}(\mathrm{~d} \boldsymbol{x}) \leq b(q) \tag{b}
\end{equation*}
$$

Then

$$
\sum_{n=1}^{\infty} \frac{1}{n!} \int_{\mathbb{X}^{n}}\left|t_{n+1}\left(q, x_{1}, \ldots, x_{n}\right)\right||\rho|^{n}(\mathrm{~d} \boldsymbol{x}) \leq \mathrm{e}^{b(q)}-1
$$

Theorem (JKT '19)
Fix b and let \mathscr{V}_{b} be the set of measures $\rho(\mathrm{d} q)$ that satisfy $\left(\mathcal{S}_{\mathrm{b}}\right)$. Then $z \mapsto \rho[z]$ is a bijection from some set \mathscr{U}_{b} onto \mathscr{V}_{b}, and

$$
\rho[z]=\rho \Leftrightarrow z(\mathrm{~d} \boldsymbol{q})=\rho(\mathrm{d} \boldsymbol{q}) T_{q}^{\circ}(\rho) .
$$

Considerably improves on J.,Tate,Tsagkarogiannis, Ueltschi '14 where we treated countable spaces \mathbb{X} only.

Application to statistical mechanics

- Box $\Lambda=[0, L]^{d}$
- pair potential $V(x, y)$
- $\beta=1 / k_{B} T$ inverse temperature
- measure $z(\mathrm{~d} \boldsymbol{x})$, e.g.,

$$
z(\mathrm{~d} x)=z_{0} \exp \left(-\beta V_{\mathrm{ext}}(x)\right) \mathrm{d} x
$$

- Grand-canonical partition function

$$
\equiv_{\Lambda}(z)=1+\sum_{n=1}^{\infty} \frac{1}{n!} \int_{\Lambda^{n}} \mathrm{e}^{-\beta \sum_{1 \leq i<j \leq n} V\left(x_{i}, x_{j}\right)} z^{n}(\mathrm{~d} \boldsymbol{x})
$$

- Density in the grand-canonical ensemble

$$
\int_{\Lambda} g(x) \rho(\mathrm{d} x)=\frac{1}{\Xi_{\Lambda}(z)} \sum_{n=1}^{\infty} \frac{1}{n!} \int_{\Lambda^{n}}\left(\sum_{i=1}^{n} g\left(x_{i}\right)\right) \mathrm{e}^{-\beta \sum_{1 \leq i<j \leq n} V\left(x_{i}, x_{j}\right)} z^{n}(\mathrm{~d} \boldsymbol{x})
$$

for all non-negative test functions g. Admit expansion

$$
\rho(\mathrm{d} q)=z(\mathrm{~d} q)\left(1+\sum_{n=1}^{\infty} \frac{1}{n!} \int_{\Lambda^{n}} \varphi_{n+1}^{\top}\left(q, x_{1}, \ldots, x_{n}\right) z^{n}(\mathrm{~d} \mathbf{x})\right) .
$$

φ_{n}^{\top} Ursell functions, given as sums over connected graphs.

The inverse problem in statistical mechanics

Activity $z(\mathrm{~d} x)=z_{0} \exp \left(-\beta V_{\text {ext }}(x)\right) \mathrm{d} x$, density

$$
\rho(\mathrm{d} \boldsymbol{q})=z(\mathrm{~d} \boldsymbol{q})\left(1+\sum_{n=1}^{\infty} \frac{1}{n!} \int_{\Lambda^{n}} \varphi_{n+1}^{\top}\left(q, x_{1}, \ldots, x_{n}\right) z^{n}(\mathrm{~d} \boldsymbol{x})\right) .
$$

Formal inverse well-known Stell, Hiroike-Morita, Evans...

$$
z(\mathrm{~d} q)=\rho(\mathrm{d} \boldsymbol{q}) \exp \left(-\sum_{n=1}^{\infty} \frac{1}{n!} \int_{\Lambda^{n}} D_{n+1}\left(q, x_{1}, \ldots, x_{n}\right) \rho^{n}(\mathrm{~d} \mathbf{x})\right)
$$

D_{n+1} given as sum over 2-connected graphs.
Question: Can we find $V_{\text {ext }}$ so that the density profile associated with $V_{\text {ext }}$ equals a given density profile? Chayes, Chayes, Lieb ' 84
Theorem (JKT '19)
Suppose $V \geq 0$. Let $\rho(x) \mathrm{d} x$ be a density profile such that

$$
\int_{\mathbb{R}^{d}}\left(1-\mathrm{e}^{-\beta V(x, y)}\right) \mathrm{e}^{a(y)+b(y)} \rho(y) \mathrm{d} y \leq a(x)
$$

for some functions $a, b: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$with $a \leq b$ pointwise. Then

$$
\beta V_{\mathrm{ext}}(q)=\log z_{0}-\log \rho(q)+\sum_{n=1}^{\infty} \frac{1}{n!} \int_{\Lambda^{n}} D_{n+1}\left(q, x_{1}, \ldots, x_{n}\right) \rho\left(x_{1}\right) \cdots \rho\left(x_{n}\right) \mathrm{d}^{n} \boldsymbol{x}
$$

solves the problem, series is absolutely convergent.

Summary

- We have proven an inversion theorem for maps $z \mapsto \rho$ in measure spaces of the form

$$
\rho(\mathrm{d} q)=z(\mathrm{~d} q) \mathrm{e}^{-A(q ; z)}
$$

$A(q ; z)$ power series in z.

- Proof:
invert on formal level first, then read off convergence condition for formal inverse from fixed point equation (proof by induction).
Philosophy fixed points \leftrightarrow trees \leftrightarrow convergence conditions:
Fernández, Procacci '07, Faris '10.
- When applied to the virial expansion, yields a convergence condition of Kotecký-Preiss type for 2-connected graphs.

Outlook:

Application to other examples?
Connection with other tree formulas?
Gallavotti-Niccoló trees in renormalization group theory-trees for the Lindstedt series in KAM theory-trees for a quantum field theory take on Lagrange-Good inversion Abdesselam-Butcher trees in numerics...

