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Chapter 1

Introduction

Since its invention in 1985 [31], the lace expansion has become a powerful tool for proving
mean-field behavior in various spatial stochastic systems, such as the self-avoiding walk,
percolation, oriented percolation, the contact process, lattice trees and -animals, and the
Ising model. In this thesis we discuss a generalized lace expansion approach that holds
for self-avoiding walk, percolation and the Ising model. Our analysis covers the classical
nearest-neighbor model as well as various spread-out cases. Particular attention is given
to those spread-out models where the underlying step distribution has infinite variance,
so-called long-range models. Among various other results, we show that a sufficiently long
range can reduce the upper critical dimension, above which the system shows mean-field
behavior. Later on we discuss the behavior of critical percolation on a high-dimensional
torus, and the scaling limit of long-range self-avoiding walk.

We study percolation, self-avoiding walk and the Ising model on the hypercubic lattice
Zd. We consider Zd as a complete graph, i.e., the graph with vertex set Zd and correspond-
ing edge set Zd × Zd. We will refer to the edges as bonds and to the vertices as sites. We
assign each (undirected) bond {x, y} a weight D(x − y), where D is a probability distri-
bution to be specified in Section 3.1 below. If D(x − y) = 0, then we can omit the bond
{x, y}. We will always assume that D(0) = 0, hence there are no self-loops to consider.
The most prominent example for D is the nearest-neighbor case, where D is given by

D(x) =
1

2d
1{|x|=1}, x ∈ Zd.

However, we do not rule out the possibility that D has unbounded support. Throughout
the thesis, we denote by | · | the Euclidean norm on Zd and 1E represents the indicator
function of the event E.

We start by introducing the models that we shall consider, i.e., self-avoiding walk,
percolation and the Ising model.

1.1 Percolation

Percolation has been proposed as a model of porous media by Broadbent and Hammersley
[28, 29], but evolved into a core model of contemporary probability. Despite its relatively
simple definition, percolation shows a tremendously rich structure and offers a variety
of inspiring and challenging problems with links to various other statistical mechanical
models.

Consider the set of bonds, which are unordered pairs of lattice sites. We set each bond
{x, y} ∈ Zd × Zd occupied, independently of all other bonds, with probability zD(y − x)
and vacant otherwise. Thus for the nearest-neighbor model, each nearest-neighbor bond
is occupied with probability z/(2d). The corresponding product measure is denoted by
Pz with corresponding expectation Ez. We require z ∈ [0, (supx D(x))−1] to ensure that
0 ≤ zD(y − x) ≤ 1.

Percolation studies the (random) subgraph of occupied bonds. We write {x ↔ y} for
the event that x and y are connected on the subgraph of occupied bonds, i.e., there exists
a path of occupied bonds from x to y. When the event {x ↔ y} occurs we call the vertices
x and y connected. For x ∈ Zd, the set

C(x) := {y ∈ Zd | y ↔ x} (1.1.1)

1



2 Introduction

Figure 1.1: This figure shows realizations of nearest-neighbor percolation on (a finite subset
of) the two-dimensional lattice. Nearest-neighbor bonds are occupied with probability
p = 1/3 (left), p = 1/2 (middle) and p = 2/3 (right). Since z = 2dp, this corresponds to
z = 4/3, z = 2 and z = 8/3, respectively. As Kesten [79] proves, p = 1/2 corresponds to
the critical case.

of connected vertices is called the cluster of x. It is the size and geometry of these clusters
that we are interested in. Due to the shift invariance of the model, we can restrict attention
to the cluster at the origin C := C(0).

One of the first results about percolation, due to Hammersley [29, 52, 53], shows that
percolation observes a phase transition, see also [50, Section 1.4]. By means of a Peierls
type argument, Hammersley shows that if z is sufficiently small (though positive), then C
is Pz-a.s. finite. On the other hand, if d ≥ 2 and the nearest neighbors are in the support
of D, then z can be taken so large that the probability that the size of the cluster C is
infinite,

θ(z) := Pz(|C| = ∞), (1.1.2)

is strictly greater than zero. This has been extended to power-law spread-out percolation
in one dimension by Newman and Schulman [90]. See Fig. 1.1 for a percolation realization
in the two-dimensional nearest-neighbor model.

Since z 7→ θ(z) is non-decreasing, there exists some critical value zc where this proba-
bility turns positive,

zc = inf{z | θ(z) > 0}. (1.1.3)

There is also a second characterization of zc as

zc = sup {z | Ez|C| < ∞} , (1.1.4)

where
Ez|C| =

∑

x∈Zd

Pz(0 ↔ x) (1.1.5)

is the expected number of vertices connected to the origin. Menshikov [89] as well as
Aizenman and Barsky [3] proved equivalence of (1.1.3) and (1.1.4).

For a general account of percolation we refer to the monograph by Grimmett [50] and the
proceedings article by Kesten [82]. The substantial progress on the rigorous understanding
of two-dimensional percolation is summarized in Werner’s Park City lecture notes [104].

The behavior at or nearby the critical value zc is one of the major questions of statistical
mechanics, and is the central question for the present thesis. We use the notion of critical
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exponents to describe this behavior. While the existence of these critical exponents is
folklore, there is no general argument proving this. We write f(z) ³ g(z) if the ratio
f(z)/g(z) is bounded away from 0 and infinity, for some appropriate limit.

To this end, we consider the critical exponents γP, βP, and δP defined by

Ez|C| ³ (zc − z)−γP as z ↗ zc, (1.1.6)

θ(z) ³ (z − zc)
βP as z ↘ zc, (1.1.7)

Pzc(|C| ≥ n) ³ 1

n1/δP
as n →∞. (1.1.8)

The exponent γP describes the asymptotic behavior in the subcritical regime {z < zc},
and characterizes the divergence of the expected cluster size when reaching the critical
point. The exponent βP describes the behavior in the supercritical regime {z > zc}, while
the exponent δP bounds the upper tail of the cluster size at criticality. A number of other
critical exponents has been considered, see [50, Section 9.1]. There are also certain relations
between the various critical exponents, known as scaling and hyperscaling postulates.

It is evident that θ(z) = 0 for z < zc by (1.1.2). We should remark that the map
z 7→ θ(z) is right-continuous, [50, Lemma 8.3]. If the critical exponent βP exists and
exceeds 0, then

θ(zc) = 0. (1.1.9)

For example, in the nearest-neighbor case, (1.1.9) is known to hold for the two-dimensional
lattice (as implied by the results of Harris [63] and Kesten [79]), and in high dimension
(currently d ≥ 19) it follows from the fact that βP = 1, see also Theorem 3.16 below.
Though widely believed to hold, it is an open problem to show (1.1.9) in dimensions
3 ≤ d ≤ 18.

1.2 Self-avoiding walk

Self-avoiding walk is a model at the intersection of probability, statistical mechanics, the-
oretical chemistry and combinatorics.

For every lattice site x ∈ Zd, we denote by

Wn(x) = {(w0, . . . , wn) | w0 = 0, wn = x, wi ∈ Zd, 1 ≤ i ≤ n− 1} (1.2.1)

the set of all n-step walks from the origin 0 to x. We call a walk w ∈ Wn(x) self-avoiding
if wi 6= wj for i 6= j with i, j ∈ {0, . . . , n}. We define c0(x) = δ0,x and, for n ≥ 1,

cn(x) :=
∑

w∈Wn(x)

n∏
i=1

D(wi − wi−1)1{w is self-avoiding}. (1.2.2)

where D is as in Section 3.1. For the nearest-neighbor case, (2d)ncn(x) is equal to the
number of n-step (nearest-neighbor) self-avoiding paths from 0 to x.

We write cn :=
∑

x∈Zd cn(x) and observe

cn+m ≤ cn cm (1.2.3)

by neglecting avoidance between the two parts of the walk. This shows that log cn is a
subadditive sequence in n, and hence the limit

µ := lim
n→∞

c1/n
n = inf

n
c1/n

n (1.2.4)

exists, cf. [88, Lemma 1.2.2]. The limit µ is known as the connective constant.
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Figure 1.2: Realization of a 10 000 step self-avoiding walk for the two-dimensional nearest-
neighbor model.1

The self-avoiding walk measure is the measure Qn on the set of n-step paths Wn defined
by

Qn(w) :=
1

cn

n∏
i=1

D(wi − wi−1)1{w is self-avoiding} (1.2.5)

A nearest-neighbor self-avoiding walk sampled from Qn is depicted in Fig. 1.2.
Having said what a self-avoiding walk is, it might be worthwhile to remark what it is

not. It is certainly not Markovian, because “history” plays a major role here. Even more, it
is not even a stochastic process, because the sequence (Qn)n≥0 does not form a consistent
family of measures.

One of the motivations to study self-avoiding walk is the modeling of long chains of
linear polymers in a good solvent. For example, polyethylene is a polymer that consists of
many CH2 groups (so-called monomers, in this case one carbon atom and two hydrogen
atoms), that are lined up to form a long chain with eventually a CH3 group at either
end. The monomers are connected via chemical bonds that have a fixed distance, and
also certain prescribed possible angles, which suggests using paths in a lattice to model
the flexibility of the polymers. On the other hand, no two monomers can be at the same
position in space, and this excluded volume constraint indicates that these paths should
be self-avoiding. A very accessible discussion of modeling real polymers by self-avoiding
walk paths can be found in Flory’s 1974 Nobel lecture [42].

There are many related questions with no or very few rigorous answers. For example,
polymers in a bad solvent also observe the excluded volume constraint, but on the other
hand it is energetically favorable for the polymer to touch itself in order to minimize surface
with the solvent. For this model there are two competing effects: the self-repellency result-
ing from the excluded volume constraint makes the walk more spatially extent, whereas the
self-attraction makes the walk more compact. Suppose that the self-attraction is controlled
by a parameter κ, then it is predicted that the repellency dominates if κ is sufficiently close
to 0, and the end-to-end distance of the polymer scales like nν for some ν ≥ 1/2. As κ

increases above a certain threshold κc, then the polymer collapses to a length scale of n1/d.
This phase transition point κc is known in physics as the theta-point, and it is believed

1I thank Vincent Beffara for Fig. 1.2, and also for his help with producing Fig. 1.1.
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that at κc the two effects cancel out and the end-to-end distance is Gaussian for d ≥ 3.
The only rigorous result in that aspect is the existence of an uncollapsed phase for the case
where D is given as in (3.1.5) with h(x) = e−|x| and d > 4 due to Ueltschi [103].

For self-avoiding walk, we define the critical exponent γ̂S by

cn ³ µnnγ̂S−1 as n →∞. (1.2.6)

See also below (1.4.9) for a related version of the exponent γ̂S.

1.3 Ising model

The Ising model as a model of ferromagnetism was introduced by Ernst Ising in his 1924
thesis [73], but credits should be shared with his advisor Wilhelm Lenz who actually
suggested the model to Ising. It is one of the fundamental models for disordered media,
and attracts enormous interest in the physics and mathematics community.

For the Ising model we consider the space {−1, 1}Zd

of spin configurations on the hyper-
cubic lattice, with a probability distribution thereon. For a formal definition, we consider
a finite subset Λ ⊂ Zd, and for every spin configuration ϕ = {ϕx | x ∈ Λ} ∈ {−1, 1}Λ the
energy given by the Hamiltonian

HΛ(ϕ) = −
∑

{x,y}∈Λ×Λ

J(y − x) ϕx ϕy, (1.3.1)

where J and D are related via the identity

D(x) =
tanh(zJ(x))∑

y∈Zd tanh(zJ(y))
, (1.3.2)

and z is the inverse temperature. For example, in the nearest-neighbor case, D = J . The
probability of a configuration ϕ ∈ {−1, 1}Λ is given by

exp(−zHΛ(ϕ))∑
ϕ∈{−1,1}Λ exp(−zHΛ(ϕ))

. (1.3.3)

For the Ising model, J is known as the spin-spin coupling. If J ≥ 0 (which is equivalent
to D ≥ 0, and always satisfied in our setting) then the model is called ferromagnetic, hence
alignment of spins is energetically preferable. The ferromagnetic Ising model is used to
model cooperative phenomena in a rather general sense. For example, an application in
Social sciences is presented by Contucci and Ghirlanda [37]. See Fig. 1.3 for realizations
of the Ising model on a finite box.

As a general reference for the Ising model we refer to the monographs by Fernández,
Fröhlich and Sokal [41], and Bovier [26].

It is most remarkable that percolation and the Ising model have a joint generalization
known as the random cluster model. This relation was discovered and formulated by
Fortuin and Kasteleyn [44, 45, 46], and also documented in Fortuin’s doctoral thesis [43].
Their finding was motivated by Kasteleyn’s observation that both percolation and the Ising
model obey so-called “series/parallel laws”, similar to those that Kirchhoff [83] observed
for electrical networks. See [51] and references therein.

We will mainly study the spin correlation function,

〈ϕ0 ϕx〉Λ =

∑
ϕ∈{−1,1}Λ ϕ0 ϕx exp(−zHΛ(ϕ))∑

ϕ∈{−1,1}Λ exp(−zHΛ(ϕ))
, x ∈ Zd, (1.3.4)
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Figure 1.3: Realization of the two-dimensional nearest-neighbor Ising model on a finite
box Λ. Here Λ is a box of size 1000× 1000, and boundary conditions are chosen such that
the left half of the box has negative boundary conditions (white), and the right half has
positive boundary conditions (black). The J-term in (1.3.1) equals J(y− x) = 1{|y−x|=1},
with z = zc = log(1 +

√
2) ≈ 0.881374 (left) and z = 0.900000 (right).2

in the thermodynamic limit when Λ ↗ Zd. Here the limit is taken over any non-decreasing
sequence of Λ’s converging to Zd. This limit exists and is independent from the chosen
sequence of Λ’s due to Griffiths’ second inequality [49]. The susceptibility χ(z) is then
defined as

χ(z) =
∑

x∈Zd

lim
Λ↗Zd

〈ϕ0 ϕx〉Λ. (1.3.5)

Also for the Ising model we require that the support of D contains the nearest neighbors of
0. This enables a Peierls’ argument [91] showing that a (finite) critical threshold zc ∈ (0,∞)
exists, where the susceptibility χ(z) diverges as z ↗ zc. This is exemplified in [41, Sect.
2.1].

We further consider the magnetization

M(z, h) = lim
Λ↗Zd

∑
ϕ∈{−1,1}Λ ϕ0 exp{−zHΛ(ϕ) + h

∑
y∈Λ ϕy}∑

ϕ∈{−1,1}Λ exp{−zHΛ(ϕ) + h
∑

y∈Λ ϕy} , (1.3.6)

and write M(z, 0+) for the limit limh↘0 M(z, h). The magnetization gives rise to another
characterization of zc, namely zc = inf{z |M(z, 0+) > 0}. As proved by Aizenman, Barsky
and Fernández [4], these two versions of zc are equivalent.

For the Ising model, we consider the critical exponents γI, βI, δI defined by

χ(z) ³ (zc − z)−γI as z ↗ zc, (1.3.7)

M(z, 0+) ³ (z − zc)
βI as z ↘ zc, (1.3.8)

M(zc, h) ³ h1/δI as h ↘ 0. (1.3.9)

1.4 Two-point function and susceptibility

We study the critical behavior of percolation, self-avoiding walk and the Ising model in a
unified way. For this, we need to introduce some notation. For percolation we define the

2Pictures by Vincent Beffara
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function Gz(x) for x ∈ Zd by
Gz(x) = Pz(0 ↔ x), (1.4.1)

being the probability of the event that there is a path consisting of occupied bonds from 0
to x. For self-avoiding walk, we define Gz(x) as the Green’s function,

Gz(x) =

∞∑
n=0

cn(x) zn, (1.4.2)

whereas for the Ising model, we consider the spin correlation Gz as the thermodynamic
limit

Gz(x) = lim
Λ↗Zd

〈ϕ0 ϕx〉Λ = lim
Λ↗Zd

∑
ϕ∈{−1,1}Λ ϕ0 ϕx exp(−zHΛ(ϕ))∑

ϕ∈{−1,1}Λ exp(−zHΛ(ϕ))
. (1.4.3)

We will refer to Gz as the two-point function. This is inspired by the fact that Gz(x)
describes features of the models depending on the two points 0 and x.

We further consider the Fourier transform of Gz(x), Ĝz(k), and introduce the critical
exponent η by

Ĝzc(k) ³ 1

|k|(α∧2)−η
as k → 0, (1.4.4)

with η = ηP for percolation, η = ηS for self-avoiding walk and η = ηI for the Ising model.

The construction of Ĝzc(k) is discussed in Section 3.4, and α ∧ 2 is to be interpreted as 2 if
the variance of D exists, and as α = sup{κ | the κth moment of D exists} if the variance
of D does not exist. We refer to Section 3.1 for a formal definition of α.

The susceptibility is defined as

χ(z) :=
∑

x∈Zd

Gz(x). (1.4.5)

For percolation, the susceptibility is equal to the expected cluster size χ(z) = Ez|C|. For
all our three models the mean-field bound

χ′(z) ≤ const χ(z)2 (1.4.6)

holds for some positive constant. Eq. (1.4.6) is a consequence of the fact that the models
are self-repellent. For example, for self-avoiding walk we use (1.2.3) to bound

χ′(z) =

∞∑
n=0

(n + 1) cn+1z
n =

∞∑
n=0

n∑
m=0

cn+1z
n ≤

∞∑
n=0

n∑
m=0

cmcn−mc1z
mzn−m = χ(z)2.

(1.4.7)
For percolation, the proof of (1.4.6) follows from (3.5.20) after taking the appropriate limit.
For the Ising model, this mean-field bound is a consequence of the Lebowitz inequality [86].

For all three models we can express zc, the critical value of z, as

zc = sup {z |χ(z) < ∞} . (1.4.8)

For self-avoiding walk, zc is the convergence radius of the power series (1.4.2), and hence
zc = µ−1 by (1.2.4).

For self-avoiding walk, we shall consider the critical exponent γS, defined by

χ(z) ³ (zc − z)−γS as z ↗ zc, (1.4.9)
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rather then the formerly introduced exponent γ̂S, see (1.2.6). As in the other two models,
the exponent γS describes divergence of the susceptibility. The two exponents γ̂S and γS

are presumably the same. Indeed, if γ̂S exists, then also γS exists and γS = γ̂S, cf. [88, Sect.
1.3]. For the reverse problem, we aim to conclude the large n behavior of the sequence cn

from the divergence of its generating function χ(z). This is known as a Tauberian problem,
and does not follow a priori. We shall encounter more examples of Tauberian problems
throughout the thesis. Theorem 3.16 contains a result about γS, and Corollary 5.4 provides
a result about γ̂S.

1.5 Mean-field behavior

We have argued that all three models, percolation, self-avoiding walk and the Ising model,
exhibit a phase transition at the (model-dependent) critical value zc, and the critical be-
havior is characterized by means of critical exponents.

It is believed that critical exponents are universal, i.e., minor modifications of the model,
like changes in the underlying graph, leave the general asymptotic behavior, as described
by the critical exponents, unchanged (although they do change the specific value of zc).

Mean-field behavior and upper critical dimension. We next describe the general
picture on a somewhat non-rigorous level. The values of the critical exponents do depend
on the dimension d. It is predicted that there is an upper critical dimension dc, such that
the critical exponents take the same value for all d > dc. These values are the mean-field
values of the critical exponents. On the other hand, for d < dc the values of the critical
exponents are different from the mean-field value. At the critical dimension, i.e. d = dc,
typically the mean-field values apply, but there is a logarithmic correction present.3

The mean-field values for percolation are γP = 1, βP = 1, δP = 2 and ηP = 0, which
coincide with the corresponding critical exponents obtained for percolation on an infinite
regular tree, as obtained in [50, Section 10.1]. This fact can be interpreted in the sense
that local interactions are qualitatively less important for d > dc. It also supports the
belief, that critical clusters above the upper critical dimensions have an “almost” tree-like
structure, with only small loops. That is why the infinite regular tree is also called a
mean-field model for percolation.

For self-avoiding walk, the mean-field values are the same values that are obtained
for simple random walk, i.e., γS = 1 and ηS = 0. This suggests that for d > dc the
self-avoidance constraint effects only the microscopic scale, but becomes invisible on a
macroscopic level, and simple random walk is the mean-field model for self-avoiding walk.
A stronger statement in that direction is contained in Chapter 5.

The mean-field values for the Ising model are obtained if in (1.3.1) one of the two
factors, ϕx or ϕy, is replaced by its average. Then the model becomes explicitly solvable,
and yields γI = 1, βI = 1/2, δI = 3 and ηI = 0. In fact, this calculation is also the origin
of the term “mean-field”.

In Chapters 2 and 3 we use the lace expansion to show that these critical exponents exist
and take their mean-field values in sufficiently high dimensions for the nearest-neighbor
version of D, or if d exceeds some critical dimension dc and D is sufficiently “spread-out”
(to be made precise in Chapter 3).

Spatial vs. non-spatial models. The Ising model on the lattice Zd is a spatial model,
because the underlying geometry of the lattice heavily influences the behavior of the model.
It turns out that the mean-field values for the Ising model coincide with the critical expo-
nents that are obtained for the Curie-Weiss model, which is the Ising model on the complete

3There is recent progress on the rigorous understanding of the renormalization group approach
for self-avoiding walk for d = dc by Brydges and Slade, see also [30].
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graph. The Curie-Weiss model is an example of a non-spatial model, because the geometry
of the lattice disappears on the complete graph, where every vertex is a direct neighbor of
every other vertex. That is, the behavior of the spatial model in high dimensions is the
same as for the non-spatial model.

A similar effect for percolation is described in Chapter 4, where we consider percolation
on a high-dimensional torus with V vertices. We show that the largest cluster for critical
percolation on the torus has order V 2/3 vertices, and the very same asymptotic is observed
for percolation on the complete graph. The latter is known as the Erdős-Rényi random
graph model, whence the V 2/3-scaling is called random graph asymptotic. The random
graph asymptotic of high-dimensional tori is another example of a model where the behavior
of the high-dimensional spatial model (percolation on torus) coincides with that of the non-
spatial model (percolation on the complete graph).

1.6 Overview

The present thesis is based on the following three research papers:

[64] M. Heydenreich. Long-range self-avoiding walk converges to α-stable processes.
Preprint (2008).

[65] M. Heydenreich and R. van der Hofstad. Random graph asymptotics on high-
dimensional tori. Comm. Math. Phys., 270(2):335–358, 2007.

[67] M. Heydenreich, R. van der Hofstad and A. Sakai. Mean-field behaviour of finite-
and long-range Ising model, percolation and self-avoiding walk. J. Statist. Phys.,
132(6):1001–1049, 2008.

The general setup of the thesis is as follows. In Chapter 2 we perform the lace expansion
for percolation and self-avoiding walk, and derive diagrammatic bounds. These derivations
are well-known and not presented in full detail; the focus is on the understanding of the
diagrams, which are heavily used to derive the diagrammatic bounds. The lace expansion
for the Ising model, which was obtained by Sakai [95], is much more involved and is
therefore not presented here. Bounds on the lace expansion coefficients for the Ising model
are derived in Appendix A, based on the diagrammatic bounds in [95].

In Chapter 3, which is based on [67], we use the lace expansion to prove the infrared
bound in Theorem 3.7. As a consequence of this infrared bound, we derive the critical
exponents above the upper critical dimension, see Theorem 3.16. Furthermore, several
other lace expansion results are briefly discussed at the end of the chapter.

The comparison between percolation on the infinite lattice Zd and the high-dimensional
torus is the central topic of Chapter 4. This chapter is based on paper [65]. The main result
of the chapter is Theorem 4.2, stating that for critical percolation on a high-dimensional
torus with V vertices, the largest cluster has order V 2/3 vertices.

Finally, Chapter 5 deals with the scaling limit of long-range self-avoiding walk in high
dimensions, [64]. We prove that (rescaled) long-range self-avoiding walk converges in dis-
tribution to Brownian motion, or to an α-stable Lévy-motion, depending on the step
distribution D.





Chapter 2

Lace expansion

Consider the two-point function Gz(x), defined in (1.4.1)–(1.4.3). For each of the three
models, i.e., for percolation, self-avoiding walk, and the Ising model, the lace expansion
obtains an expansion formula of the form

Gz(x) = δ0,x + τ(z) (D ∗Gz) (x) + (Gz ∗ Φz) (x) + Ψz(x). (2.0.1)

Here we write δ for the Kronecker delta function, and we let τ(z) = z for percolation
and self-avoiding walk, and τ(z) =

∑
y∈Zd tanh(zJ(y)) for the Ising model (compare to

(1.3.2)). The lace-expansion coefficients Φz(x) and Ψz(x) depend on the particular model,
but above their respective upper critical dimension they obey similar bounds. In the
present chapter we derive a representation of the lace-expansion coefficients Φz and Ψz,
and prove diagrammatic bounds on them. The name ‘diagrammatic bounds’ stems from
the fact that Φz and Ψz can be represented using certain diagrams, and these diagrams
are heavily used in obtaining the bounds.

Both the expansion and the diagrammatic bounds are well-known in the literature.
In the present thesis we do the expansion briefly and only sketch the derivation of the
diagrammatic bounds; full expansions and detailed derivations of the diagrammatic bounds
are performed in [25] for percolation, in [68, 102] for self-avoiding walk, and in [95] for the
Ising model.

2.1 Lace expansion for percolation

The lace expansion for percolation was first derived by Hara and Slade in [56], and is
based on an inclusion-exclusion argument. The expansion itself holds quite generally for
any connected graph, finite or infinite, even for non-regular graphs. Since we are using
Fourier analysis later on, we nevertheless restrict our attention to the case where the
graph has vertex set Zd, and edge set

{{x, y} | x, y ∈ Zd, x 6= y
}
.

In our account, we follow the presentation in [25, Sect. 3 and 4] (the same derivation is
contained in the monograph [102]), at some places even verbatim.

Throughout this section we fix a particular value z ∈ [0, zc), and further omit the
z-dependence from the notation; e.g., we write G(x) for Gz(x), etc.

The expansion. Our aim is to derive the expansion formula

G(x) = δ0,x + z (D ∗G) (x) + z (ΠM ∗D ∗G) (x) + ΠM(x) + RM(x) (2.1.1)

for M = 0, 1, 2, . . . . By ∗ we denote matrix multiplication, which on regular graphs reduces
to convolution. The function ΠM : Zd → R is the central quantity in the expansion, and
RM(x) is a remainder term. Here M indicated the level to which the expansion is carried
out, and the dependence of ΠM on M is given by

ΠM(x) =

M∑
N=0

(−1)Nπ(N)(x). (2.1.2)

The alternating sign in (2.1.2) arises via inclusion-exclusion. When the expansion con-
verges, one has

lim
M→∞

∑
x

|RM(x)| = 0 (2.1.3)

11
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for each x ∈ Zd. We shall later fix M sufficiently large (so that (3.3.37) and (3.3.38) below
are satisfied for K = 4). Then (2.1.1) is equivalent to (2.0.1) by letting τ(z) = z, and

Φz(x) = z(D ∗ΠM)(x), x ∈ Zd, (2.1.4)

Ψz(x) = ΠM(x) + RM(x), x ∈ Zd. (2.1.5)

Notation and definitions. At some places we will write the two-point function G with
two arguments, with the convention that G(x, y) = G(y − x). We call two vertices x and
y doubly connected (and write x ⇔ y), if x = y or there are (at least) two bond-disjoint
paths from x to y consisting of occupied bonds. Given a bond configuration, we call an
(occupied or vacant) bond b pivotal for the event {x ↔ y}, if {x ↔ y} occurs if b is made
occupied, and {x ↔ y} does not occur if b is made vacant. We denote by Piv(x, y) the set
of bonds that are occupied and pivotal for the event {x ↔ y}. Although bonds are generally
regarded as undirected, it is convenient to consider pivotal bonds as directed bonds, i.e.,
(u, v) ∈ Piv(x, y) if x ↔ u, v ↔ y, and x is not connected to y if the bond {u, v} is made
vacant.

For a set of vertices A ⊂ Zd we define {x ↔ y off A} to be the event that x is connected
to y after all bonds with endpoints in the set A are made vacant. We write GA(x, y) :=

P(x ↔ y off A). Also, we write {x A←→ y} := {x ↔ y} \ {x ↔ y off A} for the event
that either every connected path from x to y has at least one bond with endpoint in A or
x = y ∈ A. This leads to the identity

GA(x, y) = G(x, y)−
(
G(x, y)−GA(x, y)

)
= G(x, y)− P(x A←→ y), (2.1.6)

which plays a crucial role in the expansion later on.

Finally, we write C̃(u,v)(x) for the restricted cluster of x which consists of all vertices
connected to x after setting the bond (u, v) vacant.

Derivation of (2.1.1). We are now expanding G(x) = P(0 ↔ x). We start by introduc-
ing a schematic representation, see Figure 2.1. To begin the expansion, we define

π(0)(x) := P(0 ⇔ x)− δ0,x (2.1.7)

and distinguish configurations with 0 ↔ x according to whether or not there is a double
connection by writing

G(x) = δ0,x + π(0)(x) + P(0 ↔ x, 0< x). (2.1.8)

0

x

0 x

Figure 2.1: On the left there is a possible cluster containing the vertices 0 and x, with all
4 occupied pivotal bonds shown bold. On the right is a schematic representation of the
configuration as a “string of sausages”.
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If 0 is connected to x, but not doubly, then Piv(0, x) is nonempty. There is therefore
a unique element (u, v) ∈ Piv(0, x) such that (u, v) is occupied and 0 ⇔ u (the “first”
occupied and pivotal bond), and we can write

P
(
0 ↔ x, 0 < x) =

∑

(u,v)

P(0 ⇔ u, (u, v) ∈ Piv(0, x)
)
. (2.1.9)

The sum in (2.1.9) is over all directed bonds (u, v). Now comes the essential part of the
expansion. Ideally, we would like to factor the probability on the right hand side of (2.1.9)
as

P(0 ⇔ u) P((u, v) is occupied) P(v ↔ x) =
(
δ0,u + π(0)(u)

)
zD(v − u) G(x− v). (2.1.10)

The expression (2.1.10) would lead to (2.1.1) with ΠM = π(0) and RM = 0. However, (2.1.9)

does not factor in this way, because (u, v) being pivotal implies that the cluster C̃(u,v)(0)
(which is the cluster containing 0 after setting the bond (u, v) vacant) is constrained not to

intersect the cluster C̃(u,v)(x). We are taking this constraint into account with the following
lemma. To this end, we define the events E′(v, y; A) and E(x, u, v, y; A) by

E′(v, y; A) := {v A←→ y} ∩ {
@(u′, v′) ∈ Piv(v, y) such that v

A←→ u′
}
,(2.1.11)

E(x, u, v, y; A) := E′(x, u; A) ∩ {
(u, v) ∈ Piv(x, y)

}
, (2.1.12)

where u, v, x, y ∈ Zd, and A ⊂ Zd is a nonempty set of vertices. These events are best
understood graphically:

v

A

y
v

A

y
u

x

Figure 2.2: Pictorial representation of E′(v, y; A) (left) and E(x, u, v, y; A) (right).

Lemma 2.1 ([102, Lemma 10.1]). For z ≥ 0 such that there is a.s. no infinite cluster

(z < zc), x, y, u, v ∈ Zd, and A ⊂ Zd,

P
(
E(x, u, v, y; A)

)
= z D(v − u)E

(
1E′(x,u;A) G C̃(u,v)(0)(v, x)

)
. (2.1.13)

The expectation on the right hand side of (2.1.13) needs some explanation: the set

C̃(u,v)(0) in the superscript of G C̃(u,v)(0)(v, x) should be understood as fixed (i.e., deter-
ministic) w.r.t. the restricted two-point function. On the other hand, it is a random set
with respect to the expectation E.

For a formal proof of Lemma 2.1 we refer to [102, Proof of Lemma 10.1], and appeal to

Fig. 2.2 instead. We note that E′(0, x;Zd) = {0 ⇔ x} and

E(0, v, u, x;Zd) = {0 ⇔ u, (u, v) ∈ Piv(0, x)},

hence Lemma 2.1 with A = Zd implies

P
(
0 ⇔ u, (u, v) ∈ Piv(0, x)

)
= zD(v − u)E

(
1{0⇔u}G

C̃(u,v)(0)(v, x)
)

. (2.1.14)
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We now combine (2.1.8)–(2.1.9) with (2.1.14) and apply (2.1.6) with A = C̃(u,v)(0) to
obtain

G(x) = δ0,x + π(0)(x) +
∑

(u,v)

zD(v − u) E0

(
1{0⇔u}

(
G(x− v)− P1

(
v
C̃(u,v)
0 (0)←→ x

)))

= δ0,x + π(0)(x) +
∑

(u,v)

(
δ0,u + π(0)(u)

)
zD(v − u) G(x− v)

−
∑

(u,v)

zD(v − u) E0

(
1{0⇔u} P1

(
v
C̃(u,v)
0 (0)←→ x

))
. (2.1.15)

Here we have introduced subscripts for C̃ and the expectations to indicate to which expec-
tation C̃ belongs. With R0(x) equal to the last line of (2.1.15) (including the minus sign)
this proves (2.1.1) for M = 0.

We are now proceeding with the expansion. For any (nonempty) set of vertices A ⊂ Zd

we consider configurations in which v
A←→ x. An occupied pivotal bond (u′, v′) is called a

cutting bond for the event {v A←→ x} if v
A←→ u′ and (u′, v′) is the first such pivotal bond.

Equivalently, (u′, v′) is a cutting bond for {v A←→ x} if (u′, v′) ∈ Piv(v, x) and E′(v, u′; A)
occurs. In any configuration, there is either 0 or 1 cutting bond. For example, in Figure

2.2 there is no cutting bond on the left, and (u, v) is a cutting bond for {x A←→ y} on the
right.

A partition of the event {v A←→ x} according to the location of the cutting bond yields

{v A←→ x} = E′(v, x; A)
·∪

·⋃

(u′,v′)

E(v, u′, v′, x; A), (2.1.16)

where the first term E′(v, x; A) consists of configurations where there is no cutting bond.
By using Lemma 2.1 in the first line, and identity (2.1.6) in the second,

P
(
v

A←→ x
)

= P
(
E′(v, x; A)

)
+

∑

(u′,v′)

zD(u′, v′) E
(
1E′(v,u′;A) GC̃

(u′,v′)(0)(v′, x)

)

= P
(
E′(v, x; A)

)
+

∑

(u′,v′)

zD(u′, v′)P
(
E′(v, u′; A)

)
G(v′, x)

−
∑

(u′,v′)

zD(u′, v′) E1

(
1E′(v,u′;A) P2

(
v′
C̃(u′,v′)
1 (0)←→ x

))
. (2.1.17)

Recall that the subscripts for C̃ and the expectations indicate to which expectation C̃
belongs.

Defining

π(1)(x) =
∑

(u,v)

zD(v − u) E0

(
1{0⇔u} P1

(
E′(u, x; C̃(u,v)

0 (0)
))

, (2.1.18)
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we insert (2.1.6) (with A = C̃(u,v)
0 (0)) into (2.1.17) and obtain

G(x) = δ0,x + π(0)(x)− π(1)(x) +
∑

(u,v)

(
δ0,u + π(0)(u)− π(1)(u)

)
zD(v − u) G(v, x)

+
∑

(u,v)

zD(v − u)
∑

(u′,v′)

zD(v′ − u′)

× E0

(
1{0⇔u} E1

(
1

E′(v,u′;C̃(u,v)
0 (0))

P2

(
v′
C̃(u′,v′)
1 (v)←→ x

)))
. (2.1.19)

This proves (2.1.1) for M = 1 and R1(x) equal to the last two lines of (2.1.19).
A repeated use of (2.1.17) proves (2.1.1) recursively with

π(N)(x) =
∑

(u0,v0)

zD(v0 − u0) · · ·
∑

(uN−1,vN−1)

zD(vN−1 − uN−1) E0 1{0⇔u0}

× E1 1E′(v0,u1;C̃0) · · ·EN−1 1E′(vN−2,uN−1;C̃N−2) EN 1E′(vN−1,x;C̃N−1)

(2.1.20)

and remainder term

RM(x) =(−1)M+1
∑

(u0,v0)

zD(v0 − u0) · · ·
∑

(uM ,vM )

zD(vM − uM ) E0 1{0⇔u0}

× E1 1E′(v0,u1;C̃0) · · ·EM−1 1E′(vM−2,uM−1;C̃M−2)

× EM

(
1E′(vM−1,uM ;C̃M−1) PM+1

(
vM

C̃M←→ x
))

(2.1.21)

where we abbreviate C̃j = C̃(uj ,vj)

j (vj−1), with v−1 = 0.

Since PM+1

(
vM

C̃M←→ x
) ≤ PM+1

(
vM ↔ x

)
= G(vM , x) it follows that

|RM(x)| ≤
∑

(uM ,vM )

π(M)(uM ) zD(vM − uM ) G(vM , x). (2.1.22)

By expanding P(0 ↔ x), we have obtained exact expressions for ΠM(x) and RM(x).
Recalling (2.1.4)–(2.1.5), these identities imply exact expressions for Φz(x) and Ψz(x) in
(2.0.1). We proceed by deriving upper bounds on ΠM and RM , known as diagrammatic
bounds. These bounds are used later on to show that Φz and Ψz are actually small.

Diagrammatic bounds. We proceed by decomposing the lace-expansion coefficients
π(N) into certain diagrams to be introduced now. Denote

G̃(x) := z(D ∗G)(x) (2.1.23)

and define the diagrams

T := (G ∗G ∗G)(0), T̃ := (G̃ ∗G ∗G)(0); (2.1.24)

Bk :=
∑

x∈Zd

[1− cos(k · x)] G̃(x) G(x), Wk := sup
y∈Zd

∑

x∈Zd

[1− cos(k · x)] G(x) G(x + y);

(2.1.25)
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and

Hk := sup
a1,a2

∑
s,t,u,v,w

[1− cos(k · (t− u))] G(0, u) G(u, t) G̃(t, v + a2)

×G(u, w) G(t, w) G(w, s) G̃(a1, s) G(s, v).

(2.1.26)

In (2.1.26) and the remainder of the section, all sums and suprema are taken over Zd unless
stated otherwise.

Proposition 2.2 (Diagrammatic bounds for percolation [25, Prop. 4.1]).

∑
x

π(0)(x) ≤ T̃ , (2.1.27)

∑
x

[1− cos(k · x)] π(0)(x) ≤ Bk, (2.1.28)

and, for N ≥ 1, ∑
x

π(N)(x) ≤ T
(
2T T̃

)N

, (2.1.29)

∑
x

[1− cos(k · x)] π(N)(x) ≤ (4N + 3)

[
TWk

(
2T̃ + (1 + z)NT

) (
2T T̃

)N−1

+ (N − 1)
(
T̃ 2Wk + Hk

)
T 2

(
2T T̃

)N−2
]

.

(2.1.30)

Furthermore, for N = 1 we can improve (2.1.30) to

∑
x

[1− cos(k · x)] π(1)(x) ≤ Bk + 31 T T̃Wk. (2.1.31)

Why do we need these bounds? As we shall see, (2.1.27)–(2.1.31) imply bounds on the
Fourier transform of ΠM , introduced in (2.1.2). In particular, we get upper bounds on

|Π̂M(0)| and |Π̂M(0) − Π̂M(k)|. Together with (2.1.22), these bounds allow for sufficient
control on ΠM and RM in the expansion identity (2.1.1). The bounds on ΠM and RM

involve the two-point function G only, and we apply a clever ’consistency’ argument (the
bootstrap lemma in Section 3.4.3) to obtain bounds on G. This analysis is carried out
in Sections 3.3 and 3.4 below, and Proposition 2.2 is the main ingredient for the proof of
Proposition 3.2 in the percolation case.

We shall prove Proposition 2.2 only for the cases N = 0 and N = 1. A full proof uses
induction over N , and can be found in [25, Prop. 4.1]1.

BK-inequality. The main tool for the decomposition of the diagrams is the BK-inequali-
ty, which is due to van den Berg and Kesten [17]. In order to state the inequality we need to
introduce the notion of increasing events and disjoint occurrence. We call E an increasing

event, if the occurrence of E on a given configuration ω ∈ {0, 1}Zd×Zd

implies that E also
occurs on ω′ with ω′ ≥ ω (pointwise comparison). Casually speaking, making vacant bonds
occupied is “harmless” for increasing events. In our setting we will mainly consider events
of the form that some points are connected via paths of occupied bonds, e.g. {0 ↔ x}, and
these are clearly increasing events. By E1 ◦ E2 we denote the disjoint occurrence of the

1Note that pΩ in the notation of [25] corresponds to z in our notation.
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increasing events E1 and E2, and an edge configuration ω ∈ {0, 1}Zd×Zd

belongs to E1 ◦E2

if the following holds: The set of edges can be partitioned into two sets, K and Kc, such
that E1 occurs if all edges in Kc are made vacant, and E2 occurs if all edges in K are
made vacant.

Proposition 2.3 (BK-inequality [17]). For increasing events E1 and E2,

P(E1 ◦ E2) ≤ P(E1)P(E2).

For example, the event that there is a double connection between 0 and x can be written
as {0 ⇔ x} = {0 ↔ x} ◦ {0 ↔ x}, and hence the BK-inequality yields

P(0 ⇔ x) = P
({0 ↔ x} ◦ {0 ↔ x}) ≤ P(0 ↔ x)2. (2.1.32)

Proof of (2.1.27) and (2.1.28). For x 6= 0 we have that

{0 ↔ x} =
⋃

y∈Zd\{0}

({bond {0, y} is occupied} ◦ {y ↔ x}). (2.1.33)

Consequently, the BK-inequality implies

G(x) ≤ δ0,x +
∑

y∈Zd

zD(y) G(x− y) = δ0,x + G̃(x). (2.1.34)

Recalling the definition of π(0)(x) in (2.1.7), we use (2.1.32), then (2.1.34), and finally
G(x) ≤ (G ∗G)(x) to obtain

∑
x

π(0)(x) =
∑

x6=0

P(0 ⇔ x) ≤
∑

x6=0

G(x)2 ≤
∑

x

G(x) G̃(x) ≤ (G ∗G ∗ G̃)(0) = T̃ (2.1.35)

and ∑
x

[1− cos(k · x)] π(0)(x) ≤
∑

x

[1− cos(k · x)] G̃(x) G(x) = Bk. (2.1.36)

Proof of (2.1.29) for N = 1. We rewrite (2.1.18) with Fubini’s theorem as

π(1)(x) =
∑

(u,v)

zD(v − u) P
(
{0 ⇔ u}0 ∩ E′(u, x; C̃(u,v)

0 (0)
)
1

)
. (2.1.37)

Here, P denotes the product measure on two copies of Zd, that are coupled via the restricted

cluster C̃(u,v)
0 (0). Events with subscript 0 or 1 indicate connections on either of the two

copies. Eq. (2.1.37) is best understood graphically, see Figure 2.3.
It is evident from Figure 2.3 that on the product space,

{0 ⇔ u}0 ∩ E′(u, x; C̃(u,v)
0 (0)

)
1

⊂
⋃

w1,w2,w3

{{0 ↔ u} ◦ {0 ↔ w1} ◦ {w1 ↔ u} ◦ {w1 ↔ w2} ◦ {w2 ↔ w3}
}

0

∩ {{v ↔ w3} ◦ {w2 ↔ x} ◦ {x ↔ w3}
}

1

(2.1.38)

so that the BK-inequality allows for the upper bound

π(1)(x) ≤
∑

(u,v)

zD(v − u)
∑

w1,w2,w3

G(0, u) G(0, w1) G(w1, u) G(w1, w2) G(w2, w3)

×G(v, w3) G(w2, x) G(x, w3).

(2.1.39)
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w1

0
vu

w3

w2

x

Figure 2.3: Schematic representation of π(1)(x). The two graphs are coupled via the

restricted cluster C̃(u,v)
0 (0), which is shown gray. Connections within graph 0 are printed

bold, whereas connections within graph 1 have thin lines.

The sum over directed bonds (u, v) can be replaced by the double sum over all u, v ∈ Zd,
because since D(0) = 0 there is no contribution from terms with u = v. A graphical
representation for Eq. (2.1.39) is the following:

π(1)(x) ≤
∑
u,v

w1,w2,w3

w1

x0

vu w3

w2

, (2.1.40)

where a line between two points, say w1 and w2, represents a two-point function G(w1, w2),

and the double-dashed line represents
∑

v zD(v − u) G(v, w3) = G̃(u, w3).

We have upper bounded the rather complicated diagram describing π(1)(x) into a struc-
ture consisting of only two-point functions G, and we achieved this by repeated use of
the BK-inequality. This procedure is called decomposition of the diagrams, and it can be
applied similarly to higher order terms π(N)(x) (cf. [25, (4.1)–(4.11)]).

The last step now is to identify the triangle diagrams that are hidden in (2.1.39). We
remark that

(G ∗G ∗G)(x) ≤ (G ∗G ∗G)(0) = T, (G ∗G ∗ G̃)(x) ≤ (G ∗G ∗G)(0) = T̃ . (2.1.41)

This can be seen via translating the quantities on the left side of the inequality sign into

Fourier space and using Ĝ(k) ≥ 0 for all k by [9, Lemma 3.3]. For example, for the first
inequality in (2.1.41) we bound

(G∗G∗G)(x) =

∫

[−π,π)d
eik·x Ĝ(k)3

dk

(2π)d
≤

∫

[−π,π)d

∣∣ eik·x ∣∣
︸ ︷︷ ︸

=1

|Ĝ(k)|3︸ ︷︷ ︸
=Ĝ(k)3

dk

(2π)d
= (G∗G∗G)(0).

We use (2.1.41) to bound

∑
x

π(1)(x) ≤
∑
u,w1

G(0, u) G(0, w1) G(w1, u)

︸ ︷︷ ︸
=T

(
sup

u

∑
w2,w3

G(w1, w2) G(w2, w3) G̃(u, w3)

)

︸ ︷︷ ︸
≤T̃

×
(

sup
w3

∑
x

G(w2, x) G(x, w3)

)

︸ ︷︷ ︸
≤T using G(x, w3) ≤ (G ∗G)(x, w3)

≤ T 2T̃ .
(2.1.42)
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Again, the bound in (2.1.42) has a graphical interpretation as

∑
x

π(1)(x) = ≤ , (2.1.43)

where the three objects on the right hand side correspond to the three factors in (2.1.42),
and vertices marked with a black dot are summed over. This finishes the proof of (2.1.29)
for N = 1.

Proof of (2.1.31). We denote by Θ the right hand side of (2.1.39) without the sum,

Θ(s, u, w1, w2, w3, x) = G(s, u) G(u, w1) G(w1, s)

×G(w1, w2) G(w2, w3) G̃(w3, u) G(w2, x) G(x, w3),
(2.1.44)

so that (2.1.39) can be rewritten as
∑

x

π(1)(x) ≤
∑

u,w1,w2,w3,x

Θ(0, u, w1, w2, w3, x).

Insertion of the identity

1 = 1{0=u=w1} 1{w2=w3=x} + 1{0=u=w1}
(
1− 1{w2=w3=x}

)
+ (1− 1{0=u=w1}). (2.1.45)

into the right hand side yields
∑

x

[1− cos(k · x)]π(1)(x) ≤ (I) + (II) + (III), (2.1.46)

where

(I) =
∑

x

[1− cos(k · x)] G(x) G̃(x), (2.1.47)

(II) =
∑

w2,w3,x

[1− cos(k · x)] (1− 1{w2=w3=x}) Θ(0, 0, 0, w2, w3, x), (2.1.48)

(III) =
∑
u,x,

w1,w2,w3

[1− cos(k · x)] (1− 1{0=u=w1}) Θ(0, u, w1, w2, w3, x). (2.1.49)

Clearly, (I) = Bk, cf. (2.1.25). Hence it suffices to show that (II) + (III) ≤ 31 T T̃Wk.
To this end, we need the following trigonometric bound. For real numbers t1, . . . , tn

one can show that

1− cos

(
n∑

j=1

tj

)
≤ (2n + 1)

n∑
j=1

[1− cos tj ] , (2.1.50)

cf. [25, (4.51)]. We apply (2.1.50) to (II) with t1 = k · w3 and t2 = k · (x− w3) to obtain
∑

w2,w3,x
|{w2,w3,x}|≥2

[1− cos(k · x)] G(0, w2) G(w2, w3) G̃(w3, 0) G(w2, x) G(x, w3)

≤
∑

w2,w3,x

5 [1− cos(k · w3)]
(
1− 1{w2=w3=x}

)
G(0, w2) G(w2, w3) G̃(w3, 0) G(w2, x) G(x, w3)

+
∑

w2,w3,x

5[1− cos(k · (x− w3))]
(
1− 1{w2=w3=x}

)

×G(0, w2) G(w2, w3) G̃(w3, 0) G(w2, x) G(x, w3)
(2.1.51)
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For the first summand on the right hand side of (2.1.51) we replace w2 and x by w2 + w3

and x+w3, and use translation invariance of the model to obtain the equivalent expression
∑

w2,w3,x

5 [1− cos(k · w3)]
(
1− 1{w2=w3=x}

)
G̃(w3, 0) G(w2, w3) G(0, w2) G(w2, x) G(x, w3).

(2.1.52)
This is further bound above by

5
∑
w2,x

(
1− 1{w2=w3=x}

)
G(0, w2) G(w2, x) G(x, 0)

︸ ︷︷ ︸
≤T

∑
w3

[1− cos(k · w3)] G̃(w3, 0) G(w2, w3)

︸ ︷︷ ︸
≤Wk

(2.1.53)
Generally we have that

0 ≤ T − 1 ≤ T̃ , (2.1.54)

where the lower bound comes from the contribution x = y = 0 in T =
∑

x,y G(0, x) G(x, y)

G(y, 0), and the upper bound arises from that fact that if at least one of the two, x or y,
is nonzero, then there is one of the two-point functions with a nonzero contribution, and
the upper bound follows with (2.1.34). Therefore, (2.1.53) is smaller or equal to 5 T T̃Wk.
For the second summand on the right hand side of (2.1.51), we bound from above by

5
∑

w2,w3

G(0, w2) G(w2, w3) G̃(w3, 0)

︸ ︷︷ ︸
=T̃

∑
x

[1− cos(k · (x− w3))] Ĝ(w3, x) G(w2, w3)

︸ ︷︷ ︸
≤Wk

.

(2.1.55)
A combination of (2.1.51)–(2.1.55) shows

(II) ≤ 2 · 5 T T̃Wk.

For the bound on (III) it is convenient to use translation invariance again yielding
∑
u,x,

w1,w2,w3

[1− cos(k · x)]
(
1− 1{0=u=w1}

)
Θ(0, u, w1, w2, w3, x)

=
∑
s,x,

w1,w2,w3

[1− cos(k · (x− s))]
(
1− 1{0=u=w1}

)
Θ(s, 0, w1, w2, w3, x).

(2.1.56)

We use again (2.1.50), this time with J = 3 and t1 = s, t2 = w3, and t3 = x − w3. This
obtains (III) ≤ 7

[
(IIIa) + (IIIb) + (IIIc)

]
, where

(IIIa) =
∑
s,x,

w1,w2,w3

[1− cos(k · s)] Θ(s, 0, w1, w2, w3, x) (2.1.57)

(IIIb) =
∑
s,x,

w1,w2,w3

[1− cos(k · w3)]
(
1− 1{0=u=w1}

)
Θ(s, 0, w1, w2, w3, x) (2.1.58)

(IIIc) =
∑
s,x,

w1,w2,w3

[1− cos(k · (x− w3))] Θ(s, 0, w1, w2, w3, x). (2.1.59)

In terms of the diagrammatical representation of (2.1.43), this bound may be depicted as

(III) ≤ 7

(
+ +

)

,

(2.1.60)
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where a double line between two points, say v1 and v2, denotes a factor [1 − cos(k(v2 −
v1))] G(v1, v2). For the third term we bound straightforwardly

(IIIc) ≤
∑
s,w1

G(0, s) G(s, w1) G(w1, 0)
∑

w2,w3

G(w1, w2) G(w2, w3) G̃(w3, 0)

×
∑

x

G(w2, x) G(x, w3) [1− cos(k · (x− w3))]

≤ T T̃Wk,

(2.1.61)

or “translated” into diagrams,

(IIIc) = ≤ = T T̃Wk. (2.1.62)

The term (IIIa) obeys the same bound, as can be seen after another index shift (similar
to (2.1.56)). For the bound on (IIIb) we use translation invariance to shift a line in the
diagram, and this works as follows:

(IIIb) =
∑

s,x,w1,w2,w3

(
1− 1{0=s=w1}

)
w1

ys

0 w3

w2

≤ T̃ sup
w1

∑
w2,w3,x

w1

y

0 w3

w2

(2.1.63)

by (2.1.54), whereas translation invariance yields

sup
w1

∑
w2,w3,x

w1

y

0 w3

w2

= sup
w1

∑
w2,w3,x

w1

y

0

w3w2

w3

w3

+

+

≤


 sup

w1,w2

∑
w3

w1

0

w2

w3

-







∑
w2,x

y

0

w2


 = Wk T.

(2.1.64)

This shows (IIIb) ≤ T T̃Wk, and together with (2.1.60) and (2.1.62), (III) ≤ 7 · 3 T T̃Wk.
We summarize that

∑
x

[1− cos(k · x)] π(1)(x) ≤ (I) + (II) + (III) ≤ Bk + 10 T T̃Wk + 21 T T̃Wk,

as desired.

The inequality (3.3.42) is obtained by similar methods, [25, Prop. 4.1].
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2.2 Lace expansion for self-avoiding walk

The lace expansion for self-avoiding walk was first derived by Brydges and Spencer [31].
They provide an algebraic expansion using graphs. A special class of graphs that play an
important role here, the laces, gave the lace expansion its name. An alternative approach
is based on an inclusion-exclusion argument, and was first derived by Slade [99]. We refer
the reader to [68, Sect. 2.2.1] or [102, Sect. 3] for a full derivation of the expansion and the
diagrammatic bounds. Here we shall only present a sketch of the argument, based on the
presentation in [68].

The lace expansion for self-avoiding walk obtains an identity of the form

cn+1(x) = (D ∗ cn)(x) +

n+1∑
m=2

(πm ∗ cn+1−m) (x) (2.2.1)

for certain quantities πm(x) : Zd → R, m ≥ 2. We multiply (2.2.1) by zn+1 and sum over
n ≥ 0. By letting Φz(x) =

∑∞
m=2 πm(x)zm and recalling Gz(x) =

∑∞
n=0 cn(x)zn this

yields
Gz(x) = δ0,x + z(D ∗Gz)(x) + (Gz ∗ Φz)(x), (2.2.2)

which is equivalent to 2.0.1 with τ(z) = z and Ψz(x) = 0.

The expansion. To derive (2.2.1), we define R(1)
n+1(x) by

cn+1(x) =
∑

y∈Zd

D(y) cn(x− y)−R(1)
n+1(x). (2.2.3)

The term R(1)
n+1(x) is the contribution of walks that contribute to the first term on the

right-hand side of (2.2.3), but not on the left-hand side. Therefore, this contribution is
due to paths that have at least one self-intersection. Since the first term on the right-hand
side of (2.2.3) can alternatively be seen as the contribution from concatenations of a step
from 0 to some y and a self-avoiding walk from y to x, this self-intersection must be at
the origin. The inclusion-exclusion derivation of the lace expansion studies the correction
term R(1)

n+1(x) in more detail by using inclusion-exclusion on the avoidance properties of
the paths involved.

Let P(1)
n+1(x) be the set of paths ω ∈ Wn+1(x) which contribute to R(1)

n+1(x), i.e., the
walks ω for which there exists an l ∈ {2, . . . , n + 1} (depending on ω) with ω(l) = 0 and

ω(i) 6= ω(j) for all i 6= j with {i, j} 6= {0, l}. For the special case x = 0, P(1)
n+1(0) is the

set of (n + 1)-step self-avoiding polygons. For x 6= 0, P(1)
n+1(x) is the set of self-avoiding

polygons followed by a self-avoiding walk from 0 to x, with the total length being n + 1
and with the walk and polygon mutually avoiding. Then, by definition,

R(1)
n+1(x) =

∑

ω∈P(1)
n+1(x)

W (ω), (2.2.4)

where W (ω) :=
∏|ω|

i=1 D(ωi − ωi−1) denotes the weight of the path ω.
Diagrammatically the right-hand side of (2.2.3) can be represented by

∑

y∈Zd

D(y) ·
y x

−
0 x

. (2.2.5)
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The line in the first term indicates an n-step walk from y to x which is unconstrained,
apart from the fact that it should be self-avoiding.

We proceed by again applying the inclusion-exclusion relation to R(1)
n+1(x). Indeed, we

ignore the mutual avoidance constraint of the polygon and self-avoiding walk that together
form ω ∈ P(1)

n+1(x), and then make up for the overcounted paths by excluding the walks

where the polygon and the self-avoiding walk do intersect. For y ∈ Zd, let

π(1)
m (y) = δ0,y

∑

ω∈P(1)
m (0)

W (ω) = δ0,y (D ∗ cm−1)(0), (2.2.6)

and define R(2)
n+1(x) by

R(1)
n+1(x) =

∑

y∈Zd

n+1∑
m=2

π(1)
m (y) cn+1−m(x− y)−R(2)

n+1(x). (2.2.7)

The next step is to investigate R(2)
n+1(x), which involves walks consisting of a self-avoiding

polygon and a self-avoiding walk from 0 to x, of total length n +1, where the self-avoiding
polygon and the self-avoiding walk have an intersection point additional to their inter-
section at the origin. Let P(2)

n+1(x) be the subset of walks of Wn+1(x) satisfying these
requirements. Then we clearly have

R(2)
n+1(x) =

∑

ω∈P(2)
n+1(x)

W (ω). (2.2.8)

Diagrammatically, we can represent (2.2.7) as follows:

R(1)
n+1(x) =

n+1∑
m=2

(π(1)
m ∗ cn+1−m)(x) −

0

x

.

(2.2.9)

The two thick lines are mutually avoiding, so that they together form a self-avoiding walk.
The walk and polygon may intersect more than once, and we focus on the first intersection
point.

We then again perform inclusion-exclusion, neglecting the avoidance between the por-
tions of the self-avoiding walk before and after this first intersection, and again subtracting
a correction term. Due to the fact that we look at the first intersection point of the self-
avoiding walk and the self-avoiding polygon, the three self-avoiding walks in the Θ-shaped
diagram are also mutually avoiding each other. We define R(3)

n+1(x) by

R(2)
n+1(x) =

∑

y∈Zd

n+1∑
m=2

π(2)
m (y) cn+1−m(x− y)−R(3)

n+1(x), (2.2.10)

where π(2)
m (y) is defined by

π(2)
m (x) =

∑

m1, m2, m3 ≥ 1
m1 + m2 + m3 = m

3∏
j=1

∑

ωj∈Wmj
(x)

W (ωi) I(ω1, ω2, ω3), (2.2.11)

and I(ω1, ω2, ω3) is equal to 1 if the ωi are all self-avoiding and mutually avoiding each
other (apart from their common start- and endpoint), and otherwise equals 0. We do not

write down an explicit formula for R(3)
n+1(x), as this already gets quite involved.
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This inclusion-exclusion step can be diagrammatically represented as

R(2)
n+1(x) =

n+1∑
m=2

(π(2)
m ∗ cn+1−m)(x) −

0
x
.

(2.2.12)

The process of using inclusion-exclusion is continued indefinitely and leads to

cn+1(x) =
∑

y∈Zd

D(y) cn(x− y) +
∑

y∈Zd

n+1∑
m=2

πm(y) cn+1−m(x− y), (2.2.13)

where

πm(y) =

∞∑
N=1

(−1)Nπ(N)
m (y). (2.2.14)

Explicit expressions for the π(N) for N ≥ 3 are given e.g. in [68, (2.2.32)].

Diagrammatic bounds. As in (2.1.23), we write

G̃z(x) = z(D ∗Gz)(x) (2.2.15)

and define
B̃(z) := sup

x
(G̃z ∗Gz)(x) (2.2.16)

and
H̃k(z) := sup

x
[1− cos(k · x)] G̃z(x). (2.2.17)

We further write

Π(N)
z (x) :=

∞∑
m=2

π(N)
m (x) zm (2.2.18)

so that

Φz(x) =

∞∑
N=1

(−1)N Π(N)
z (x). (2.2.19)

Proposition 2.4 (Diagrammatic bounds for self-avoiding walk). For z ≥ 0 and N ≥ 2,
∑

x

Π(1)
z (x) ≤ ‖G̃z‖∞,

∑
x

Π(N)
z (x) ≤ ‖G̃z‖∞ B̃(z)N−1, (2.2.20)

and
∑

x

[1− cos(k · x)] Π(1)
z (x) = 0,

∑
x

[1− cos(k · x)] Π(N)
z (x) ≤ N

2
(N + 1) H̃k(z) B̃(z)N−1.

(2.2.21)

Inserting the bounds of the proposition into (2.2.19) yields

∑
x

|Φz(x)| ≤ ‖G̃z‖∞
∞∑

N=1

B̃(z)N−1, (2.2.22)

∑
x

[1− cos(k · x)] |Φz(x)| ≤ H̃k(z)

∞∑
N=2

N

2
(N + 1) B̃(z)N−1. (2.2.23)

We provide a proof of the proposition for N = 1, 2, 3, and refer to the monograph by Slade
[102, Chapter 4] for the bounds on higher order contributions.
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Proof of Proposition 2.4 for N = 1, 2, 3. For N = 1 we multiply (2.2.6) by zm and sum
over m ≥ 2 to obtain

Π(1)
z (x) =

∞∑
m=2

π(1)
m (x) zm ≤ δ0,x G̃z(x) =

0=x

, (2.2.24)

and hence∑
x

Π(1)
z (x) = G̃z(0) ≤ ‖G̃z‖∞,

∑
x

[1− cos(k · x)] Π(1)
z (x) = [1− cos(k · 0)] G̃(0) = 0.

(2.2.25)
For N = 2 we recall (2.2.11). Since Gz(0) = 1 and, for x 6= 0 and n ≥ 1, cn(x) ≤

(D ∗ cn−1)(x) by allowing that the (n− 1)-step walk on the right hand side returns to the
origin. Consequently,

Gz(x) ≤ δ0,x + z (D ∗Gz)(x). (2.2.26)

We obtain an upper bound on π(2)
m (x) if the indicator I(ω1, ω2, ω3) is replaced by the

(weaker) requirement that ω1, ω2, and ω3 are self-avoiding (but not necessarily mutually
avoiding). Whence,

Π(2)
z (x) ≤

0

x

= (Gz(x)− δ0,x)3, (2.2.27)

where the lines in the diagram indicate three two-point functions that cannot shrink to a
single point (because the three walks in (2.2.11) have length at least 1). Consequently, by
(2.2.26),
∑

x

Π(2)
z (x) ≤

∑
x

G̃z(x)2 Gz(x) ≤ ‖G̃z(x)‖∞
∑

x

G̃z(x) Gz(x) = ‖G̃z(x)‖∞ B̃(z) (2.2.28)

and∑
x

[1− cos(k · x)] Π(2)
z (x) ≤

∑
x

[1− cos(k · x)] G̃z(x)2 Gz(x) ≤ H̃k(z) B̃(z), (2.2.29)

as desired.
For N = 3, there is no explicit expression given here, but it is suggested in (2.2.12) (and

shown in [102, p. 21]) that π(3)
z (x) can be expressed by

π(3)
z (x) =

x0

. (2.2.30)

The unlabeled vertex on the top of the diagram is summed over, and lines with a double
dash indicate walks of length ≥ 1. There are mutual avoidances between some of these
walks, and we obtain an upper bound by neglecting them. By multiplying zm and summing
over m ≥ 2, and using (2.2.26),

Π(3)
z (x) ≤

∑
y

Gz(x) (Gz(y)− δ0,y)2 (Gz(y − x)− δx,y)2 ≤ Gz(x)
(
(G̃z Gz) ∗ (G̃z)

2
)
(x).

(2.2.31)
We bound this expression from above by

∑
x

Π(3)
z (x) ≤

∑
y

G̃z(y) Gz(y)

︸ ︷︷ ︸
≤B̃(z)

∑
x

Gz(x)G̃z(y − x)

︸ ︷︷ ︸
≤B̃(z)

G̃z(y − x)︸ ︷︷ ︸
≤‖G̃‖∞

. (2.2.32)

and similarly
∑

x[1− cos(k · x)] Π(3)
z (x) ≤ Hk(z) B(z)2.
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2.3 Lace expansion for the Ising model

The lace expansion for the Ising model has been established recently by Sakai [95]. It is
similar in spirit to a high-temperature expansion. The starting point is to rewrite the two-
point function (spin-spin correlation) using the random-current representation. This gives
rise to a representation involving bonds, in that showing some similarities to a percolation
configuration. The lace expansion is then performed using ideas from the lace expansion
for percolation, however, it is considerably more involved.

For the Ising model on a finite graph Λ, Sakai in [95, Prop. 1.1] proved the expansion
formula

GΛ
z (x) = δ0,x + τ(z)

(
D ∗GΛ

z

)
(x) + τ(z)

(
D ∗ΠΛ

M ∗GΛ
z

)
(x) + ΠΛ

M(x) + RΛ
M(x), (2.3.1)

where the z-dependence of ΠΛ
M and RΛ

M is omitted from the notation. Note that RΛ
M here

corresponds to (−1)M+1R(M+1)
p;Λ in [95]. Here M refers to the level of the expansion, and

GΛ
z denotes the finite-volume two-point function. This is equivalent to (2.0.1) if we let

ΦΛ
z (x) = τ(z)(D ∗ΠΛ

M)(x), x ∈ Zd, (2.3.2)

ΨΛ
z (x) = ΠΛ

M(x) + RΛ
M(x), x ∈ Zd, (2.3.3)

then choose M so large that (3.3.54) and (3.3.55) below are satisfied for a certain K,
say K = 4, and subsequently taking the thermodynamic limit Λ ↗ Zd. Note that, if
comparing (2.3.1) to [95, (1.11)], we explicitly extract the δ0,x-term from the Π-term in

[95], i.e., Π(M)
p;Λ (x) in [95] corresponds to ΠΛ

M(x) + δ0,x in this thesis.
We have chosen not to demonstrate the expansion for the Ising model, nor the derivation

of the diagrammatic bounds. Instead we refer to [95]. Since already the statement of
the bounding diagrams is quite complicated, we defer the statement of the bounds to the
appendix. After the statement of the diagrammatic bounds in Proposition A.2 we also show
how they imply bounds on the lace expansion coefficients Φ and Ψ, needed for Assumption
3.2 below.



Chapter 3

Convergence of the lace expansion

and the infrared bound

In Chapter 2 we have performed the lace expansion and derived diagrammatic bounds.
The aim of this chapter is to use the results of Chapter 2 to prove an infrared bound for
the two-point function. This infrared bound is formulated in Theorem 3.7, and this is
the main result of the chapter. As an application of the infrared bound we derive critical
exponents in Section 3.5. In fact, the lace expansion has been used to prove various other
results concerning the critical behavior of these models, like the identification of scaling
limits and the correlation length in the critical case. A short overview of (some of) these
results is given in Section 3.6.

In order to study the various models in a unified way, we set up a generalized framework.
Our strategy is as follows: We make two assumptions in terms of the general framework,
Assumptions 3.1 and 3.2. Subsequently we prove the infrared bound in terms of the general
framework. Assumption 3.1 is actually an assumption on the step distribution D. We prove
in Section 3.2 that it is satisfied for the nearest-neighbor model if d is sufficiently large, and
for so-called spread-out models (to be defined in Section 3.1) if d > dc and the spread-out
parameter L is sufficiently large. Assumption 3.2 concerns bounds on the lace expansion
coefficients that were introduced in the previous chapter. The proof that Assumption
3.2 is satisfied by percolation, self-avoiding walk and the Ising model uses specific model-
dependent properties, and is therefore performed separately for each of the three models
in Section 3.3. Nevertheless, Assumption 3.2 provides a bound that holds simultaneously
for all three models, and this is what we use in Section 3.4 to prove the infrared bound.

Fourier analysis is an important tool in this chapter. Unless specified otherwise, k
will always denote an element from the Fourier dual of the discrete lattice, which is the
torus [−π, π)d. The Fourier transform of a summable function f : Zd → C is defined as

f̂(k) =
∑

x∈Zd f(x) eik·x, and its inverse Fourier transform is given by

f(x) =

∫

k∈[−π,π)d
e−ik·x f̂(k)

dk

(2π)d
.

We benefit from the fact that the Fourier transform of a convolution is the product of

the two Fourier transforms: f̂ ∗ g = f̂ ĝ. In accordance with the usual notation of their
elements, we will refer to Zd as x-space and to the Fourier dual [−π, π)d as k-space.

We use the following Landau symbols throughout the thesis. For functions f, g, we write
f(x) = O

(
g(x)

)
for a limit x → a if |f(x)/g(x)| is bounded as x → a. By f(x) = o

(
g(x)

)
we denote the stronger version |f(x)/g(x)| → 0. For example, O(1) represents a uniformly
bounded term, and o(1) denotes a vanishing term.

3.1 The step distribution D: 3 versions

Let D denote a probability distribution on Zd that is symmetric under reflections in coor-
dinate hyperplanes and rotations by π/2. We refer to D as a step distribution, having in
mind a random walker taking independent steps distributed according to D. Without loss
of generality we henceforth assume that there is no mass at the origin, i.e. D(0) = 0.

We consider three different versions of D. While we explicitly state our main results for
these versions, they actually hold more generally under a random walk condition formulated

27
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in Assumption 3.1 below. The first version is the nearest-neighbor model, where D is the
uniform distribution on the nearest neighbors, i.e.,

D(x) =
1

2d
1{|x|=1}, x ∈ Zd. (3.1.1)

This nearest-neighbor version of D corresponds to the classical model for the study of
self-avoiding walk, percolation, and the Ising model, see e.g. [41, 50, 88].

We further consider two versions of spread-out models. They involve some spread-out
parameter L, which is typically chosen large. In order to stress the L-dependence of D
we will write DL in the definitions, but later omit the subscript. In the finite-variance
spread-out model we require DL to satisfy the following conditions1:

(D1) There is an ε > 0 such that

∑

x∈Zd

|x|2+εDL(x) < ∞.

(D2) There is a constant C such that, for all L ≥ 1,

‖DL‖∞ ≤ CL−d.

(D3) There exist constants c1, c2 > 0 such that

1− D̂L(k) ≥ c1L
2|k|2 if ‖k‖∞ ≤ L−1, (3.1.2)

1− D̂L(k) > c2 if ‖k‖∞ ≥ L−1, (3.1.3)

1− D̂L(k) < 2− c2, k ∈ [−π, π)d. (3.1.4)

Example. Let h be a non-negative bounded function on Rd which is almost everywhere
continuous, and symmetric under the lattice symmetries of reflection in coordinate hyper-
planes and rotations by ninety degrees. Assume that there is an integrable function H on
Rd with H(te) non-increasing in t ≥ 0 for every unit vector e ∈ Rd, such that h(x) ≤ H(x)

for all x ∈ Rd. Assume further that the (2 + ε)-th moment of h exists for some ε > 0.
The monotonicity and integrability hypotheses on H imply that

∑
x h(x/L) < ∞ for all

L, with x/L = (x1/L, . . . , xd/L). Then

DL(x) =
h(x/L)∑

y∈Zd h(y/L)
, x ∈ Zd, (3.1.5)

obeys the conditions (D1)–(D3), whenever L is large enough (cf. [71, Appendix A]). For
h(x) = 1{0<‖x‖∞≤1} we obtain the uniform spread-out model with

DL(x) =
1

(2L + 1)d − 1
1{0<‖x‖∞≤L}, x ∈ Zd. (3.1.6)

In the spread-out power-law model we replace assumptions (D1) and (D3) by the con-
dition that there exists an α > 0 such that

(D1′) all ε > 0 satisfy ∑

x∈Zd

|x|α−εDL(x) < ∞;

1These conditions coincide with Assumption D in [71].
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(D3′) there exist constants c1, c2 > 0 such that

1− D̂L(k) ≥ c1L
α|k|α if ‖k‖∞ ≤ L−1, (3.1.7)

1− D̂L(k) > c2 if ‖k‖∞ ≥ L−1, (3.1.8)

1− D̂L(k) < 2− c2, k ∈ [−π, π)d. (3.1.9)

The condition (D2)=(D2′) remains unchanged.
As an example, let DL be of the form (3.1.5), but instead of the existence of the (2+ε)-th

moment of h, require h to decay as |x|−d−α as |x| → ∞. In particular, there exist positive
constants ch and lh such that

h(x) ≥ ch|x|−d−α, whenever |x| ≥ lh. (3.1.10)

In this setting, the κth moment
∑

x∈Zd |x|κDL(x) does not exist if κ ≥ α, but exists and
equals O(Lα) if κ < α. Take e.g.

h(x) = (|x| ∨ 1)−d−α, (3.1.11)

so that DL has the form

DL(x) =
(|x/L| ∨ 1)−d−α

∑
y∈Zd (|y/L| ∨ 1)−d−α

, x ∈ Zd. (3.1.12)

Chen and Sakai [33, Prop. 1.1] showed that, analogously to the finite-variance spread-out
model, the spread-out power-law model (3.1.12) satisfies conditions (D1′)–(D3′).

Note that the spread-out power-law model with parameter α > 2 satisfies the finite
variance condition (D1), and hence is covered in the finite variance case. For simplicity we
further write α ∧ 2 indicating the minimum of α and 2 in the spread-out power-law case,
and 2 in the nearest-neighbor case or in the finite-variance spread-out case.

For the finite-variance spread-out model and the spread-out power-law model we require
that the support of D contains the nearest neighbors of 0, see the discussion below (1.4.3).

3.2 The random walk condition

We start this section with preliminary considerations about random walks. Given a step
distribution D, we consider the random walk two-point function or Green’s function of the
random walk defined by

Cz(x) =

∞∑
n=0

D∗n(x) zn, (3.2.1)

where D∗n is the n-fold convolution of D and D∗0(x) z0 = δ0,x. By conditioning on the
first step we obtain

Cz(x) = δ0,x + z (D ∗ Cz) (x). (3.2.2)

Taking the Fourier transform and solving for Ĉz(k) yields

Ĉz(k) =
1

1− zD̂(k)
, z < 1. (3.2.3)

We define the model parameter s to be 2 for self-avoiding walk or the Ising model,
and 3 for percolation. This choice is motivated by the fact that the lace expansion coeffi-
cients for percolation are bounded by the triangle diagram T (z) = G∗3z (0) and derivations
thereof, whereas the lace expansion coefficients for self-avoiding walk and the Ising model
are bounded by quantities related to the bubble diagram B(z) = G∗2z (0). We make an
assumption on the step distribution D.
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Assumption 3.1 (Random walk s-condition). There exists β > 0 such that

sup
x∈Zd

D(x) ≤ β (3.2.4)

and ∫

[−π,π)d

D̂(k)2

[1− D̂(k)]s
dk

(2π)d
≤ β. (3.2.5)

We will later need that Assumption 3.1 holds for β sufficiently small, and the specific
amount of smallness required in (3.2.4)–(3.2.5) will be specified in the proofs in Section
3.4. Be aware that the critical exponents βP and βI have no relation with the β introduced
here.

For s = 2 we call (3.2.5) the random walk bubble condition. This is inspired by the fact
that its x-space analogue reads

(D ∗ C1 ∗D ∗ C1)(0) ≤ β. (3.2.6)

In other words, we have an (ordinary) random walk from 0 to x of at least one step, and
a second walk from x to 0 and subsequently sum over x. Correspondingly, for s = 3, we
obtain the x-space representation

(C1 ∗D ∗ C1 ∗D ∗ C1)(0) ≤ β, (3.2.7)

and refer to (3.2.5) as the random walk triangle condition. See the graphical representation
in Figure 3.1.

0

(y)

0 (x)

(x)

Figure 3.1: Graphical representation of the random walk bubble diagram in (3.2.6) and the
random walk triangle diagram in (3.2.7). A line between two points, say x and y, represents
the two-point function C1(y− x), a line with a double dash in the middle requires at least
one step, e.g. a line between 0 and x represents (D ∗ C1)(x). Vertices labeled in brackets
are summed over Zd.

Proposition 3.1. Assumption 3.1 is satisfied for arbitrarily small β if d is chosen suffi-
ciently large in the nearest-neighbor model (at least d > 4s) or d > dc = s(α ∧ 2) and L
is sufficiently large in the spread-out models. More specifically, the assumption holds with
β = O(d−1) in the nearest-neighbor case, and β = O(L−d) in the spread-out cases.

A proof of Proposition 3.1 is contained in [25, Sect. 2.2.2], where finite tori are consid-
ered. Restriction to the infinite lattice gives rise to a noteworthy simplification, which we
shall present in the following.

Proof of Proposition 3.1 for the nearest-neighbor model. We follow [25, Sect. 2.2.2]. Since
‖D‖∞ = (2d)−1, the bound (3.2.4) is satisfied for d sufficiently large, and it remains to
prove (3.2.5).

By the symmetry of D we have

D̂(k) =
∑

x∈Zd

D(x) cos(k · x) =
1

d

d∑
j=1

cos(kj), k = (k1, . . . , kd) ∈ [−π, π)d. (3.2.8)
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Since 1− cos t ≥ 2π−2t2 for |t| ≤ π, this implies the infrared bound

1− D̂(k) ≥ 2

π2

|k|2
d

. (3.2.9)

The Cauchy-Schwarz inequality2 yields

∫

[−π,π)d

D̂(k)2

[1− D̂(k)]s
dk

(2π)d

≤
(∫

[−π,π)d
D̂(k)4

dk

(2π)d

)1/2 (∫

[−π,π)d

1

[1− D̂(k)]2s

dk

(2π)d

)1/2 (3.2.10)

First we show that the first term on the right hand side of (3.2.10) is small if d is large.

Note that
∫
[−π,π)d D̂(k)4 (2π)−d dk = D∗4(0) is the probability that a nearest-neighbor

random walk returns to its starting point after the fourth step. This is bounded from
above by c(2d)−2 with c being a well-chosen constant, because the first two steps must be
compensated by the last two. Finally, the square root yields the upper bound O(d−1).

It remains to show that the second term on the right of (3.2.10) is bounded uniformly
in d. The infrared bound (3.2.9) gives

∫

[−π,π)d

1

[1− D̂(k)]2s

dk

(2π)d
≤ π4s

22s

∫

[−π,π)d

d 2s

|k|4s

dk

(2π)d
. (3.2.11)

The right hand side of (3.2.11) is finite if d > 4s. For A > 0 and m > 0,

1

Am
=

1

Γ(m)

∫ ∞

0

tm−1 e−tA dt. (3.2.12)

Applying this with A = |k|2/d and m = 2s yields

1

Γ(2s)

π4s

22s

∫ ∞

0

t2s−1

( ∫ π

−π

(
e−tθ2 )1/d dθ

2π

)d

dt (3.2.13)

as an upper bound for (3.2.11). This is non-increasing in d, because ‖f‖p ≤ ‖f‖q for
0 < p ≤ q ≤ ∞ on a probability space by Lyapunov’s inequality.

Proof of Proposition 3.1 for the spread-out models. We again follow [25, Sect. 2.2.2]. Ob-
viously (3.2.4) is implied by condition (D2)/(D2′) for sufficiently large L, hence it remains
to prove (3.2.5).

The power-law spread-out model with α > 2 satisfies the finite variance condition (D1)
with ε < α − 2. Note further that (D3) and (D3′) agree when the exponent in the first
inequality is taken α ∧ 2.

We separately consider the regions ‖k‖∞ ≤ L−1 and ‖k‖∞ > L−1. By (3.1.2), (3.1.7)

and the bound D̂(k)2 ≤ 1, the corresponding contributions to the integral are

∫

k:‖k‖∞≤L−1

D̂(k)2

[1− D̂(k)]s
dk

(2π)d
≤ 1

cs
1L

(α∧2)s

∫

k:‖k‖∞≤L−1

1

|k|(α∧2)s

dk

(2π)d
≤ Cd,c1L−d

(3.2.14)

2The Hölder inequality gives better bounds here. In particular, it requires d > 2s only, cf. (2.19)
in [25].
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if d > (α ∧ 2)s, where Cd,c1 is a constant depending (only) on d and c1, and by (3.1.3),
(3.1.8),

∫

k:‖k‖∞>L−1

D̂(k)2

[1− D̂(k)]s
dk

(2π)d
≤ c2

−s

∫

k:‖k‖∞>L−1
D̂(k)2

dk

(2π)d
≤ O

(
L−d)

. (3.2.15)

In the last step we used assumption (D2) / (D2′) to see that

∫

k∈[−π,π)d
D̂(k)2

dk

(2π)d
= (D ∗D)(0) =

∑

y∈Zd

D(y)2

≤
∑

y∈Zd

D(y) ‖D‖∞ = ‖D‖∞ ≤ O
(
L−d)

.
(3.2.16)

3.3 Bounds on the lace expansion coefficients

We recall that the function τ : z 7→ τ(z) is given by τ(z) = z for self-avoiding walk and
percolation, and

τ(z) =
∑

y∈Zd

tanh(zJ(y)) (3.3.1)

for the Ising model, cf. (2.0.1).

Assuming the existence of Φ̂z(k) and Ψ̂z(k), we apply Fourier transformation to the
identity in (2.0.1) to obtain

Ĝz(k) =
1 + Ψ̂z(k)

1− τ(z)D̂(k)− Φ̂z(k)
, z < zc. (3.3.2)

We will see that, for z = 0, Ψ̂0(k) ≡ 0 and Φ̂0(k) ≡ 0 for all three models. Eq. (3.3.2)

suggests that moreover Ĝz(k) ≈ (
1−τ(z)D̂(k)

)−1
if Ψ̂z(k) and Φ̂z(k) are sufficiently small,

and this is what we aim to prove now.
We introduce the quantity

λz := 1− 1

Ĝz(0)
= 1− 1

χ(z)
∈ [0, 1]. (3.3.3)

Then λz satisfies the equality

Ĝz(0) = Ĉλz (0). (3.3.4)

The idea of the proof of the infrared bound is motivated by the intuition that Ĝz(k) and

Ĉλz (k) are comparable in size and, moreover, the discretized second derivative

∆kĜz(l) := Ĝz(l − k) + Ĝz(l + k)− 2Ĝ(l) (3.3.5)

is bounded by

Uλz (k, l) :=
200

Ĉλz (k)

{
Ĉλz (l − k)Ĉλz (l) + Ĉλz (l)Ĉλz (l + k) + Ĉλz (l − k)Ĉλz (l + k)

}
.

(3.3.6)
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More precisely, we will show that the function f : [0, zc) → R, defined by

f := f1 ∨ f2 ∨ f3 (3.3.7)

with

f1(z) := τ(z), f2(z) := sup
k∈[−π,π)d

Ĝz(k)

Ĉλz (k)
, (3.3.8)

and

f3(z) := sup
k,l∈[−π,π)d

|∆kĜz(l)|
Uλz (k, l)

, (3.3.9)

is small, given that β in Assumption 3.1 is sufficiently small. To make this rigorous, we
need the following assumption:

Assumption 3.2 (Bounds on the lace expansion coefficients). If Assumption 3.1 holds
and, for some K > 0, the inequality f(z) ≤ K holds uniformly for z ∈ (0, zc), then there

exists a constant cK > 0 (independent of β) such that, for all k ∈ [−π, π)d,

∣∣∣Ψ̂z(k)
∣∣∣ ≤ cKβ,

∣∣∣Φ̂z(k)
∣∣∣ ≤ cKβ (3.3.10)

and
∑

x

[1−cos(k ·x)] |Ψz(x)| ≤ cKβ Ĉλz (k)−1,
∑

x

[1−cos(k ·x)] |Φz(x)| ≤ τ(z) cKβ Ĉλz (k)−1

(3.3.11)
where Φz and Ψz refer to the model-dependent coefficients in the expansion formula (2.0.1).

Indeed, the assumption is satisfied by our three models:

Proposition 3.2. If Assumption 3.1 holds for a value of β that is sufficiently small, then
also Assumption 3.2 holds for self-avoiding walk, percolation and the Ising model.

The relevant bounds have been proven by Slade [102] for self-avoiding walk, by Borgs
et al. [25] for percolation (on finite graphs), and by Sakai [95] for the Ising model. We
demonstrate the proof of Proposition 3.2 subject to the diagrammatic bounds in Chapter
2.

3.3.1 Preliminaries on the proof of Proposition 3.2

Before we start proving the proposition separately for each of the three models, we formu-
late (and prove) some general bounds that hold simultaneously for all three models.

We occasionally make use of the bound

0 ≤ 1− D̂(k) ≤ 2Ĉλz (k)−1, k ∈ [−π, π)d, (3.3.12)

which itself is a consequence of

0 ≤ Ĉλz (k) [1− D̂(k)] = 1 +
λz − 1

1− λzD̂(k)
D̂(k) ≤ 2. (3.3.13)

Lemma 3.3. Assume that for a model we have f(z) ≤ K for some K > 1, uniformly for
z ∈ (0, zc). Assume further that Assumption 3.1 holds for a certain value of s = 2, 3, . . . ,
and

Gz(x) ≤ δ0,x + G̃z(x) = δ0,x + τ(z) (D ∗Gz)(x), (3.3.14)
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as well as Gz(0) = 1. Then the following bounds hold:

G∗s
z (x) ≤ δ0,x + K2s2(2K)sβ (3.3.15)

sup
x

(G̃z ∗G∗(s−1)
z )(x) ≤ K2s(2K)sβ. (3.3.16)

We note that (3.3.14) is satisfied by percolation and self-avoiding walk with τ(z) = z
(cf. (2.1.34) and (2.2.26)), and for the Ising model with τ(z) given by (3.3.1).

Proof. We first prove (3.3.16). For x ∈ Zd,

G̃z ∗G∗s
z (x) = τ(z)

∑
w1,...,ws

D(w1) Gz(w2 − w1) . . . Gz(ws − ws−1) Gz(x− ws). (3.3.17)

We split the sum in (3.3.17) into two summands, one term corresponding to w1 = · · · =
ws = x, and the second term for the remaining part (w2 − w1, . . . , ws − ws−1, x − ws) 6=
(0, . . . , 0). This yields

G̃z ∗G∗s
z (x) ≤ τ(z) D(x) + τ(z)2s

(
D∗2 ∗G∗s

z

)
(x) (3.3.18)

by (3.3.14), where the factor s comes from the fact that there are s possibilities for a
nonzero displacement. We now bound τ(z) ≤ K by using our assumption f1(z) ≤ K,
bound further D(x) ≤ β by (3.2.4) and

(D∗2 ∗G∗s
z )(x) =

∫

[−π,π)d
e−ik·x D̂(k)2 Ĝz(k)s dk

(2π)d

≤ Ks

∫

[−π,π)d
e−ik·x D̂(k)2 Ĉλz (k)s dk

(2π)d

≤ (2K)s

∫

[−π,π)d

D̂(k)2

[1− D̂(k)]s
dk

(2π)d

≤ (2K)sβ, (3.3.19)

by Parseval’s identity in the first line, f2(z) ≤ K in the second line, (3.3.12) in the third
line, and (3.2.5) in the last line. This proves (3.3.16).

For (3.3.15), we proceed similarly. The sum in

G∗s
z (x) =

∑
w1,...,ws−1

Gz(w1) Gz(w2 − w1) . . . Gz(ws − ws−1) Gz(x− ws) (3.3.20)

contributes 1 if (w1, w2 − w1, . . . , ws − ws−1, x − ws) = (0, . . . , 0). Otherwise, there is a

nonzero displacement for at least one of the two-point functions, such that Gz ≤ G̃z for
this. Hence,

G∗s
z (x) ≤ δ0,x + s

(
sup

x
G̃z ∗G∗(s−1)

z (x)

)
, (3.3.21)

which proves (3.3.15).

Lemma 3.4. Under the assumptions of Lemma 3.3,

∑
x

[1− cos(k · x)] G̃z(x) G∗(s−2)
z (y − x) ≤ τ(z) Ĉλz (k)−1

{
O(β) if y = 0;

O(1) if y 6= 0.
(3.3.22)

The constants in the O-terms depend only on K and s, and we use the convention that
G∗0z (x) = δ0,x.
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Proof. We use (2.1.50) for n = 2 yielding

[1− cos(k · x)] G̃z(x) = τ(z)
∑
w

[1− cos(k · x)] D(w) Gz(x− w)

≤ 5τ(z)
∑
w

(
[1− cos(k · w)] D(w) Gz(x− w) + [1− cos(k · (x− w))] D(w) Gz(x− w)

)
.

(3.3.23)

We abbreviate Gz,k(x) = cos(k · x) G(x) and use (3.3.23) to obtain
∑

x

[1− cos(k · x)] G̃z(x) G∗(s−2)
z (y − x) ≤ 5τ(z)

∑

w 6=0

[1− cos(k · w)] D(w) G∗(s−1)
z (y − w)

+ 5τ(z)
(
D ∗ (Gz −Gz,k) ∗G∗(s−2)

z

)
(y).

(3.3.24)

We first consider the first summand on the right hand side of (3.3.24). There is no contri-

bution to the sum for w = 0, because 1− D̂(0) = 0. Furthermore,
∑
w

[1− cos(k · w)] D(w) = 1− D̂(k) ≤ 2Ĉλz (k)−1 (3.3.25)

by (3.3.12), whereas

sup
w 6=0

G∗(s−1)
z (y − w) ≤ δw,y + O(β) (3.3.26)

by (3.3.15). Therefore,

∑

w 6=0

[1− cos(k · w)] D(w) G∗(s−1)
z (y − w) ≤ Ĉλz (k)−1

{
O(β) if y = 0,

O(1) if y 6= 0,
(3.3.27)

We now consider the second summand on the right hand side of (3.3.24). We note that

the Fourier transform of Gz − Gz,k(x) is Ĝz(l) − 1/2 (Ĝz(l − k) + Ĝz(l + k)), and this is

equal to −1/2∆kĜz(l). Whence by Parseval’s identity,

(
D ∗ (Gz −Gz,k) ∗G∗(s−2)

z

)
(y) =

∫

[−π,π)d
e−il·y D̂(l)

(
−1

2
∆k Ĝz(l)

)
Ĝz(l)

s−2 dl

(2π)d
.

(3.3.28)
Our bounds f2 ≤ K and f3 ≤ K imply that (3.3.28) is bounded above by

100 Ks−1

Ĉλz (k)

∫

[−π,π)d
D̂(l)

(
Ĉλz (l − k) Ĉλz (l) + Ĉλz (l) Ĉλz (l + k)

+ Ĉλz (l − k) Ĉλz (l + k)
)

Ĉλz (l)s−2 dl

(2π)d
.

(3.3.29)

Denoting Cλz,k(x) := cos(k · x) Cλz (x), we observe that |Cλz ,k(x)| ≤ Cλz (x) and

Ĉλz,k(l) =
1

2

(
Ĉλz (l − k) + Ĉλz (l + k)

)
. (3.3.30)

Since Ĉλz (l − k) Ĉλz (l) + Ĉλz (l) Ĉλz (l + k) = Ĉλz (l) Ĉλz ,k(l) and

Ĉλz (l − k) Ĉλz (l + k) =
1

4

[
Ĉλz (l − k) + Ĉλz (l + k)

]2

− 1

4

[
Ĉλz (l − k)− Ĉλz (l + k)

]2

≤ 1

4

[
Ĉλz (l − k) + Ĉλz (l + k)

]2

= Ĉλz,k(l)2, (3.3.31)
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we can use again Parseval’s identity to bound (3.3.29) further from above by

100 Ks−1Ĉλz (k)−1
(
(D ∗ Cλz,k ∗ C

∗(s−1)
λz

)(0) + (D ∗ Cλz ,k ∗ Cλz ,k ∗ C
∗(s−2)
λz

)(0)
)

≤ 100 Ks−1Ĉλz (k)−12 (D ∗ C
∗(s)
λz

)(0)

≤ 200 Ks−1Ĉλz (k)−1(D ∗ C
∗(s)
1 )(0).

(3.3.32)

Applying (3.2.2) iteratively and using C1(x) ≤ (C1 ∗ C1)(x) yields

(D ∗ C∗s
1 )(x) = (D∗2 ∗ C∗s

1 )(x) + (D∗2 ∗ C
∗(s−1)
1 )(x) + · · ·+ (D∗2 ∗ C1)(x) + D(x)

≤ D(x) + s (D∗2 ∗ C∗s
1 )(x).

(3.3.33)

Hence (D ∗C
∗(s)
1 )(0) ≤ sβ by using D(0) = 0 and (3.2.5). A combination of this inequality

with (3.3.28)–(3.3.32) shows

(
D ∗ (Gz −Gz,k) ∗G∗(s−2)

z

)
(y) ≤ Ĉλz (k)−1 O(β) (3.3.34)

where the bounding constant depends only on s and K. Together with (3.3.24) and (3.3.27),
this proves the claim.

3.3.2 Proof of Proposition 3.2 for percolation

We begin by stating certain bounds on the lace expansion coefficients ΠM and RM , intro-
duced in Section 2.1. Thereafter we derive the bounds on Φz and Ψz, needed for Proposition
3.2.

Proposition 3.5 (Bounds on the lace expansion coefficients for percolation [25]). Fix
z ∈ (0, zc). If f(z) of (3.3.7) obeys f(z) ≤ K, then there are positive constants c′K and
β0 = β0(K), such that the following holds: If Assumption 3.1 holds for some β ≤ β0, then
for all M = 0, 1, 2, . . . , ∑

x

|ΠM(x)| ≤ c′Kβ, (3.3.35)

∑
x

[1− cos(k · x)] |ΠM(x)| ≤ c′KβĈλz (k)−1, (3.3.36)

and for M sufficiently large (depending on K and z),

∑
x

|RM(x)| ≤ β, (3.3.37)

∑
x

[1− cos(k · x)] |RM(x)| ≤ βĈλz (k)−1. (3.3.38)

For the proof we make use of the framework developed in Section 2.1, and in particular
Proposition 2.2 is of crucial importance.

Proof of Proposition 3.5. Lemma 3.3 and Lemma 3.4, both for s = 3, imply that there
exists a constant c̆K such that

T (z) ≤ 1 + c̆K β, T̃ (z) ≤ c̆K β, (3.3.39)
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Bk(z) ≤ z c̆K β Ĉλz (k)−1, Wk(z) ≤ z c̆K Ĉλz (k)−1. (3.3.40)

The bound
Hk(z) ≤ c̆K Ĉλz (k)−1. (3.3.41)

is not proven here, we refer to [25, Lemma 5.7] instead. Together with Proposition 2.2,
these bounds prove that there exists c̄K (depending on K only) such that

∑
x

π(N)(x) ≤ (c̄Kβ)N∨1 , (3.3.42)

∑
x

[1− cos(k · x)] π(N)(x) ≤ (c̄Kβ)(N−1)∨1 Ĉλz (k)−1. (3.3.43)

Recalling (2.1.2), the bounds (3.3.35)–(3.3.36) follow from summing (3.3.42)–(3.3.43)
over N ≥ 0 assuming β is small enough that c̄Kβ ≤ 1/2.

For the bounds on the remainder RM in (3.3.37)–(3.3.38), we recall from (2.1.22) that

|RM(x)| ≤ K
∑
u,v

π(M)(u) D(v − u) Gz(x− v). (3.3.44)

Consequently,
∑

x |RM(x)| ≤ π̂(M)(0) χ(z), and this can be made arbitrarily small by taking
M large enough, proving (3.3.37). For (3.3.38) we use once more (2.1.50) (this time with
n = 3) to obtain

∑
x

[1− cos(k · x)] |RM(x)| ≤ 7K [1− D̂(k)] π̂(M)(0) χ(z)

+ 7K
(
π̂(M)(0)− π̂(M)(k)

)
χ(z)

+ 7K π̂(M)(0)
(
Ĝz(0)− Ĝz(k)

)
. (3.3.45)

The first summand can be made smaller than β/3 Ĉλz (k)−1 by using (3.3.12) and (3.3.35).
Similarly the second summand by (3.3.36). Finally, for the third summand we apply the

bound f3 ≤ K on Ĝz(0)− Ĝz(k) = −1/2∆kĜz(0) and use calculations similar to (3.3.28)–

(3.3.32) showing Ĝz(0) − Ĝz(k) ≤ Ĉλz (k)−1O(1). Again, we take M large and appeal to

(3.3.35) showing that also the third line is bounded above by β/3 Ĉλz (k)−1. This proves
(3.3.38).

We now use Proposition 3.5 to prove Proposition 3.2 for percolation:

Proof of Proposition 3.2 for percolation. Recall (2.1.4)–(2.1.5). The bounds on Ψz(x) in
(3.3.10)–(3.3.11) follow directly from Proposition 3.5 if M is chosen so large that (3.3.37)–
(3.3.38) is satisfied.

For the bounds on Φz(x) = z(D ∗ΠM)(x) we use the estimate

[1− cos(t1 + t2)] ≤ 5 ([1− cos t1] + [1− cos t2]) , t1, t2 ∈ R, (3.3.46)

(see (2.1.50)) to obtain
∑

x

[1− cos(k · x)] |Φz(x)| ≤ 5
∑

x

z
∑

y

(
[1− cos(k · y)]

+[1− cos(k · (x− y))]
)
D(y) |ΠM(x− y)|

≤ 5z
∑

x

[1− D̂(k)] |ΠM(x− y)|

+5z
∑

x

[1− cos(k · (x− y))] |ΠM(x− y)|

≤ 5z
(
2c′KβĈλz (k)−1 + c′KβĈλz (k)−1

)
. (3.3.47)
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by (3.3.35)–(3.3.36) and (3.3.12).

3.3.3 Proof of Proposition 3.2 for self-avoiding walk

Proof of Proposition 3.2 for self-avoiding walk. Since Ψ(x) ≡ 0 for self-avoiding walk,

there is nothing to prove for Ψ̂z(k). By (2.2.22)–(2.2.23) it is sufficient to prove that
there is a constant c̆K depending on K only, such that

‖G̃‖∞ ≤ c̆Kβ, B̃(z) = sup
x

(G̃ ∗G)(x) ≤ c̆Kβ, (3.3.48)

and
H̃k(z) ≤ z c̆K Ĉλz (k)−1. (3.3.49)

Then, taking β small enough such that c̆Kβ ≤ 1/2, the geometric series in (2.2.22)–(2.2.23)
are summable, and cK = 2c̆K is sufficient.

The required bounds on B̃(z) and H̃k(z) follow directly from Lemmas 3.3 and 3.4 with
s = 2 and τ(z) = z.

For the bound on ‖G̃‖∞ we proceed similarly as in the proof of Lemma 3.3: By (2.2.26),

G̃z(x) = z (D ∗Gz)(x) ≤ z D(x) + z2 (D∗2 ∗Gz)(x). (3.3.50)

For the first summand we bound z D(x) ≤ Kβ by the f1(z) = z ≤ K and (3.2.4). For the
second summand on the right hand side of (3.3.50) we estimate

z2 (D∗2 ∗Gz)(x) = z2

∫

[−π,π)d
e−ik·x D̂(k)2 Ĝz(k)

dk

(2π)d

≤ K3

∫

[−π,π)d
D̂(k)2 Ĉλz (k)

dk

(2π)d
≤ 4K3

∫

[−π,π)d

D̂(k)2

[1− D̂(k)]2
dk

(2π)d
≤ 4K3β,

(3.3.51)

where the second line uses the bounds f1 ≤ K and f2 ≤ K in the first inequality, (3.3.12)

and [1−D̂(k)] ≤ 2 in the second inequality, and Assumption 3.1 in the final inequality. Thus

‖G̃‖∞ ≤ 5K3β, and this finishes the proof of Proposition 3.2 for self-avoiding walk.

3.3.4 Proof of Proposition 3.2 for the Ising model

For ΠΛ
M and RΛ

M we have the following bounds:

Proposition 3.6 (Diagrammatic estimates for the Ising model from [95]). Fix z ∈ (0, zc).
If f(z) of (3.3.7) obeys f(z) ≤ K, then there are positive constants c′K and β0 = β0(K),
such that the following holds: If Assumption 3.1 holds for some β ≤ β0, then for all
M = 0, 1, 2, . . . , ∑

x

|ΠΛ
M(x)| ≤ c′Kβ, (3.3.52)

∑
x

[1− cos(k · x)] |ΠΛ
M(x)| ≤ c′KβĈλz (k)−1, (3.3.53)

and for M sufficiently large (depending on K and z),

∑
x

|RΛ
M(x)| ≤ β, (3.3.54)

∑
x

[1− cos(k · x)] |RΛ
M(x)| ≤ βĈλz (k)−1. (3.3.55)

These bounds hold uniformly in Λ.
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A similar statement was proved by Sakai [95, Proposition 3.2]. However, since the hy-
pothesis of Proposition 3.6 is different from that in [95], it is not so obvious how Proposition
3.6 follows from the results in [95]. In Appendix A we explain how the statement in [95,
Prop. 3.2] can be modified to obtain the desired bounds (3.3.52)–(3.3.55).

Given Proposition 3.6, we prove Proposition 3.2 for the Ising model as in the percolation
case, now using Proposition 3.6 instead of Proposition 3.5. We refrain from repeating the
argument.

3.4 Infrared bound

Our main result is the following infrared behavior:

Theorem 3.7 (Infrared bound). Fix s = 2 for self-avoiding walk and the Ising model, and
s = 3 for percolation. Let d sufficiently large in the nearest-neighbor case (at least d > 4s),
or d > 2s and L sufficiently large in the finite-variance spread-out case, or d > s(α ∧ 2)
and L sufficiently large in the spread-out power-law case. Then

Ĝz(k) =
1 + O(β)

χ(z)−1 + τ(z)[1− D̂(k)]
(3.4.1)

uniformly for z ∈ [0, zc) and k ∈ [−π, π)d.

The terminology ‘infrared bound’ originates from the fact that (3.4.1) particularly iden-

tifies the asymptotics of Ĝz(k) for small k, which presumably (via a Tauberian theorem)
determines the behavior of Gz(x) for large x. This is reminiscent of the relation between
wave length and frequency, where low frequency (infrared light) corresponds to long wave
lengths.

The infrared bound is well-known in several cases. Hara and Slade proved the in-
frared bound for the nearest-neighbor case and the finite-variance spread-out case, for
self-avoiding walk [58, 57] (see also [88, Theorem 6.1.6]) as well as for percolation [56].
Fröhlich, Simon and Spencer [47] proved the upper bound in (3.4.1) for the Ising model
under the reflection positivity assumption, which holds e.g. for the nearest-neighbor case.
We discuss reflection positivity in more detail in Section 3.4.1.

For the critical case (i.e., z = zc) we have

1 ≤ τ(zc) ≤ 1 + O(β), (3.4.2)

where the lower bound is a consequence of Gz(x) ≤ δ0,x + τ(z) (D ∗ Gz)(x) (see also
(3.5.2) below), and the upper bound emerges from (3.3.8) and the fact that f(z) ≤ 1 +

O(β), see (3.4.5) below. The function Gzc(x) = limz↗zc Gz(x) is not in `1(Zd), hence
the Fourier transform does not exist. However, the diagrammatic bounds of the lace
expansion coefficients in Proposition 3.2 and the dominated convergence theorem guarantee

the absolute convergence of the various sums involved defining Ψ̂z(k) and Φ̂z(k), which

shows that the critical quantities Ψ̂zc(k) and Φ̂zc(k) are well-defined. This justifies the

introduction of Ĝzc(k) as a solution to (3.3.2) with z = zc. Note that we do not assume

any continuity of z 7→ Ψ̂z(k) and z 7→ Φ̂z(k) to do this. Nevertheless, we can extend (3.4.1)
to the critical case z = zc, and further use (3.4.2) to obtain

Ĝzc(k) =
1 + O(β)

1− D̂(k)
. (3.4.3)

An issue of interest is the (left-) continuity of Ĝz(k) at z = zc. In particular, the identity

Gzc(x) =

∫

[−π,π)d
e−ik·x Ĝzc(k)

dk

(2π)d
, x ∈ Zd, (3.4.4)
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would follow from the the fact that Ψ̂z(k) and Φ̂z(k) are left-continuous at z = zc, as

explained by Hara [55, Appendix A]. The left-continuity of Ψ̂z(k) and Φ̂z(k) at z = zc

indeed holds for self-avoiding walk (by Abel’s Theorem) and for percolation (by [55, Lemma
A.1]), but a proof for the Ising model is not known.

We shall prove the following generalized version of Theorem 3.7. By Proposition 3.1,
Theorem 3.8 below immediately implies Theorem 3.7.

Theorem 3.8 (Infrared bound, generalized form). Fix s = 2 for self-avoiding walk and
the Ising model, and s = 3 for percolation. If Assumption 3.1 is satisfied for β sufficiently
small, then (3.4.1) holds uniformly for z ∈ [0, zc) and k ∈ [−π, π)d.

3.4.1 Discussion of related literature

There is numerous work on the application of the lace expansion, see the lecture notes by
Slade [102] and references therein. We give more references below at places where we use
lace expansion methodology and need particular results. We now briefly summarize the
results known for long-range systems.

For percolation, Hara and Slade [56] proved the infrared bound for the finite-variance
spread-out case when D has exponential tails. The study of long-range percolation with
power law spread-out bonds started in the 1980’s by considering the one-dimensional case
[10, 90, 97]. These papers study the case where occupation probabilities are given by
(3.1.12) with α ∈ (0, 1] and prove criteria for the existence of an infinite cluster. For
example, Aizenman–Newman [10] show that if D(x) |x|2 → 1 as |x| → ∞ in one dimension,
and D(1) is sufficiently large, then there exists a critical infinite cluster and hence the
percolation probability z 7→ θ(z) is discontinuous at zc. This is compatible with our
results, which imply that there is no infinite cluster at criticality for d > 3α and large L
(and here α = 1). Berger [18] uses a renormalization argument to show that in dimension
d = 1, 2 for all z ≥ 0 the infinite cluster (if it exists) is transient if 0 < α < d and recurrent
if α ≥ d. He further concludes that in the d-dimensional case (d ≥ 1) there is no infinite
cluster at criticality if 0 < α < d. The question whether there exists an infinite critical
cluster for d ≥ 2 and α ≥ d [18, Question 6.4] is answered negatively by the present thesis
for d > 6 and L sufficiently large.

In recent work, Chen and Sakai [33, 34] study oriented percolation in the spread-out
power-law case. Using similar methods, they prove that the two-point function in oriented
percolation obeys an infrared bound if d > 2(α ∧ 2), which implies mean-field behavior of
the model.

Long-range self-avoiding walk has rarely been studied. Yang and Klein [105] showed
that weakly self-avoiding walk in dimension d ≥ 3 jumping m lattice sites along the co-
ordinate axes with probability proportional to 1/m2 converges to a Cauchy process (as
for ordinary random walk with such step distribution). A similar result for strictly self-
avoiding walk has been obtained by Cheng [35].

A long-range Ising model in one dimension has been studied by Aizenman, Chayes,
Chayes, and Newman [5]. Similar to the percolation result in [10], they prove that in the
one-dimensional case where D(x) |x|2 → 1 as |x| → ∞, the spontaneous magnetization
M(z, 0+) has a discontinuity at the critical point zc.

The infrared bound for the Ising model was proved in [47] for d > α ∧ 2 for a class of
models obeying the reflection positivity (RP) property. The class of models satisfying (RP)
includes the nearest-neighbor model (where D(x) = (2d)−11{|x|=1}), exponential decaying
potentials (where D(x) ∝ exp{−µ‖x‖1} for µ > 0), power-law decaying interactions (where
D(x) ∝ |x|−s for s > 0), and combinations thereof. For a definition of (RP) and a discussion
of the above mentioned models, we refer to [20]. Nevertheless, (RP) fails in most cases for
small perturbations of these models, although it is believed that the asymptotics still hold.
Moreover, (RP) only implies the upper bound in (3.4.1), in that implying that the critical
exponent η (when it exists) is nonnegative. Our approach using the lace expansion does
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not require reflection positivity, it is more universal in the choice of D, and also gives a
matching lower bound in (3.4.1), yielding η = 0. On the other hand, our approach requires
that the dimension d or the spread-out parameter L are sufficiently large, a limitation that
one may not expect to reflect the physics. The literature for the long-range Ising model in
higher dimensions based on (RP) arguments is summarized by Aizenman and Fernández
[7], who also identify 2(α ∧ 2) as upper critical dimension.3

3.4.2 Proof of the infrared bound

The proof of Theorem 3.8 will follow from the following proposition:

Proposition 3.9. Suppose we are given a model with some model-dependent constant
s ∈ {2, 3, . . . }, and a two-point function Gz of the form (2.0.1), where the step distribution
D satisfies Assumption 3.1 (for some sufficiently small β > 0), and Φz and Ψz satisfy
Assumption 3.2. Assume further that χ′(z) ≤ O

(
χ(z)2

)
, z ∈ [0, zc). Then

f(z) ≤ 1 + O(β) (3.4.5)

uniformly for z < zc.

The assumption χ′(z) ≤ O
(
χ(z)2

)
in Proposition 3.9 is only needed to prove continuity

of f . However, it does hold for our models, cf. (1.4.6).

Proof of Theorem 3.8 (and Theorem 3.7) subject to Proposition 3.9. Propositions 3.1 and
3.2 validate Assumptions 3.1 and 3.2. With these assumptions, the prerequisites of Propo-
sition 3.9 are satisfied and (3.4.5) holds provided β sufficiently small. The latter can be
achieved by taking d or L large enough, by Proposition 3.1. Then we again use Assumption
3.2 to obtain (3.3.10)–(3.3.11),

It remains to show that (3.3.10)–(3.3.11) imply (3.4.1). To this end, let

mz = 1− τ(z)− Φ̂z(0). (3.4.6)

Then

Ĝz(k) =
1 + Ψ̂z(k)

1− τ(z)D̂(k)− Φ̂z(k)
=

1 + Ψ̂z(k)

mz + τ(z)[1− D̂(k)] + [Φ̂z(0)− Φ̂z(k)]
. (3.4.7)

By the first inequality in (3.3.10) and the second in (3.3.11),

Ĝz(k) =
1 + O(β)

mz + τ(z) [1− D̂(k)] + τ(z) O(β) Ĉλz (k)−1
. (3.4.8)

Evaluating (3.4.7) for k = 0 yields

χ(z) = Ĝz(0) =
1 + Ψ̂z(0)

mz
, (3.4.9)

and the first inequality in (3.3.10) implies

mz = (1 + O(β)) χ(z)−1. (3.4.10)

Furthermore, by (3.2.3) and (3.3.3),

Ĉλz (k)−1 = 1− λzD̂(k) = 1− D̂(k) + χ(z)−1D̂(k). (3.4.11)

3The value of δ in [7, (1.2)] should be 3.
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A combination of (3.4.8), (3.4.10), (3.4.11) in conjunction with |D̂(k)| ≤ 1 and τ(z) ≤ O(1)
proves

Ĝz(k) =
1 + O(β)

(1 + O(β)) χ(z)−1 + τ(z) (1 + O(β)) [1− D̂(k)]
, (3.4.12)

which implies (3.4.1).

3.4.3 The bootstrap argument

The remainder of the section is devoted to the proof of Proposition 3.9, which is based on
the following lemma:

Lemma 3.10 (The bootstrap / forbidden region argument). Let f be a continuous function
on the interval [0, zc), and assume that f(0) ≤ 3. Suppose for each z ∈ (0, zc) that if
f(z) ≤ 4, then in fact f(z) ≤ 3. Then f(z) ≤ 3 for all z ∈ [0, zc).

Proof. This is a straightforward application of the intermediate value theorem for contin-
uous functions, see also [102, Lemma 5.9].

The bootstrap argument in Lemma 3.10 is often used in lace expansion, see e.g. [88,
Section 6.2]. An alternative approach that involves an induction argument has been applied
in [71], see also the lecture notes by van der Hofstad [68].

We shall now prove that the function f defined in (3.3.7) obeys the prerequisites of
Lemma 3.10. We therefore have to show that f(0) ≤ 3, that f is continuous on [0, zc), and
that f(z) ≤ 4 implies f(z) ≤ 3 for z ∈ (0, zc). The latter is referred to as the improvement
of the bounds.

Let us first check that f(0) ≤ 3. Clearly, f1(0) = 0. Note that Ψ̂0(k) ≡ 0 and Φ̂0(k) ≡ 0.

This leads to Ĝ0(k) ≡ 1 and λ0 = 0, hence f2(0) = 1 and f3(0) = 0.
Next we want to prove continuity of f . To this end, we need the following lemma:

Lemma 3.11 (Continuity of equicontinuous functions). Let (fα)α∈A be an equicontinuous
family of functions on an interval [t1, t2], i.e., for every given ε > 0, there is a δ > 0
such that |fα(s) − fα(t)| < ε whenever |s − t| < δ, uniformly in α ∈ A. Furthermore,
suppose that supα∈A fα(t) < ∞ for each t ∈ [t1, t2]. Then t 7→ supα∈A fα(t) is continuous
on [t1, t2].

A proof of this standard result can be found e.g. in [102, Lemma 5.12].

Lemma 3.12 (Continuity). Assume that, for z ∈ (0, zc), χ′(z) ≤ cχ(z)2 for some constant
c. Then, the function f defined in (3.3.7) is continuous on (0, zc).

Proof. It is sufficient to show that f1, f2 and f3 are continuous. The continuity of f1 is
obvious. We show that f2 and f3 are continuous on the closed interval [0, zc − ε] for any
ε > 0 by taking derivatives with respect to z and bound it uniformly in k on [0, zc − ε].

We do f2 first. To this end, we consider the derivative

d

dz

Ĝz(k)

Ĉλz (k)
=

1

Ĉλz (k)2

[
Ĉλz (k)

dĜz(k)

dz
− Ĝz(k)

dĈλ(k)

dλ

∣∣∣∣
λ=λz

dλz

dz

]
. (3.4.13)

We proceed by showing that each of the terms on the right hand side is uniformly bounded
in k and z ∈ [0, zc − ε], and hence the derivative is bounded. First we recall the definition
of λz in (3.3.3) to see that

1

2
≤ 1

1− λzD̂(k)
= Ĉλz (k) ≤ Ĉλz (0) = χ(z). (3.4.14)
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Furthermore, χ(z) ≤ χ(zc−ε), and the latter is finite by the definition of zc in (1.4.8). For
every k ∈ [−π, π)d, the two-point function is bounded from above by

|Ĝz(k)| ≤ |Ĝz(0)| = χ(z) ≤ χ(zc − ε), (3.4.15)

For the derivative of the two-point function, we bound

∣∣∣∣
d

dz
Ĝz(k)

∣∣∣∣ =

∣∣∣∣∣
∑

x

eik·x d

dz
Gz(x)

∣∣∣∣∣ ≤
∑

x

d

dz
Gz(x) =

d

dz

∑
x

Gz(x) = χ′(z), (3.4.16)

where the exchange in the order of sum and derivative is validated by the fact that both∑
x eik·x Gz(x) and

∑
x Gz(x) are uniformly convergent series of functions. By the assumed

mean-field bound χ′(z) ≤ cχ(z)2, (3.4.16) is bounded above by cχ(zc − ε)2.

Moreover, we obtain from (3.2.3) that |dĈλ(k)/dλ| ≤ Ĉλ(k)2, and, for λ = λz, this is
in turn bounded by χ(zc − ε)2, cf. (3.4.14). Finally, |dλz/dz| = χ′(z)/χ(z)2 ≤ c by (3.3.3)
and our assumption.

We treat f3 in exactly the same way as f2, and omit the details here.

3.4.4 Improvement of the bounds

The following lemma covers the remaining prerequisite of Lemma 3.10 and thus proves the
final ingredient needed for the proof of Proposition 3.9.

Lemma 3.13 (Improvement of the bounds). There exists a constant c > 0 such that if the
assumptions of Proposition 3.9 are satisfied for some sufficiently small β and if f(z) ≤ 4,
then f(z) ≤ 1 + cβ for all z ∈ (0, zc). In particular, if β is small enough, then f(z) ≤ 3.

The following lemma will help us for the improvement of the bound on f3.

Lemma 3.14 (Slade [102]). Suppose that a(x) = a(−x) for all x ∈ Zd, and let

Â(k) =
1

1− â(k)
. (3.4.17)

Then, for all k, l ∈ [−π, π)d,
∣∣∣∆kÂ(l)

∣∣∣ ≤
(
Â(l − k) + Â(l + k)

)
Â(l)

(
|̂a|(0)− |̂a|(k)

)
(3.4.18)

+ 8Â(l − k) Â(l) Â(l + k)
(
|̂a|(0)− |̂a|(l)

) (
|̂a|(0)− |̂a|(k)

)
.

By |̂a| we denote the Fourier transform of the absolute value of a. The reader shall

be warned that |̂a| 6= |â|. The proof of Lemma 3.14 uses several bounds on trigonometric
quantities, and can be found in [102, Lemma 5.7].

Proof of Lemma 3.13. Fix z ∈ (0, zc) arbitrarily and assume f(z) ≤ 4. Our general strat-
egy will be to show that fi for i = 1, 2, 3 is smaller then (1 + const β) and thus, by taking
β small, f(z) ≤ 3.

The bound on f1 is easy. First note that λz = 1−χ(z)−1 ≤ 1. Using (3.3.3) along with
(3.4.6)–(3.4.9) and Proposition 3.2 (with K = 4) we obtain

f1(z) = λz

(
1 + Ψ̂z(0)

)
− Φ̂z(0)− Ψ̂z(0)

≤ λz

(
1 + |Ψ̂z(0)|

)
+ |Φ̂z(0)|+ |Ψ̂z(0)|

≤ 1 + 3 c4β. (3.4.19)
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The bound on f2 is slightly more involved. We write Ĝz = N̂/F̂ , with

N̂(k) =
1 + Ψ̂z(k)

1 + Ψ̂z(0)
, F̂ (k) =

1− τ(z)D̂(k)− Φ̂z(k)

1 + Ψ̂z(0)
. (3.4.20)

Recall from (3.2.3) that Ĉλz (k) = [1− λzD̂(k)]−1 and, by (3.3.2) and (3.3.3),

λz = 1− 1− τ(z)− Φ̂z(0)

1 + Ψ̂z(0)
. (3.4.21)

This yields

Ĝz(k)

Ĉλz (k)
= N̂(k) + Ĝz(k)

[
1− λzD̂(k)− F̂ (k)

]
, (3.4.22)

where

1− λzD̂(k)− F̂ (k) =
[1− D̂(k)]Ψ̂z(0) + [Φ̂z(k)− Φ̂z(0)]D̂(k) + [1− D̂(k)]Φ̂z(k)

1 + Ψ̂z(0)
.

By taking c4β ≤ 1/2, we obtain the bound

1 + `c4β

1− c4β
≤ 1 + (2` + 2) c4β, ` = 0, 1, 2, . . . , (3.4.23)

which we use frequently below. For example, together with Assumption 3.2, it enables us
to bound

∣∣∣N̂(k)
∣∣∣ =

∣∣∣∣∣
1 + Ψ̂z(k)

1 + Ψ̂z(0)

∣∣∣∣∣ ≤
1 + |Ψ̂z(k)|
1− |Ψ̂z(0)| ≤ 1 + 4 c4β.

Together with (3.3.12) we obtain in the same fashion that

∣∣∣1− λzD̂(k)− F̂ (k)
∣∣∣ ≤ [1− D̂(k)] |Ψ̂z(0)|+ |Φ̂z(k)− Φ̂z(0)|+ [1− D̂(k)] |Φ̂z(k)|

1− |Ψ̂z(0)|

≤ 2c4β[1− D̂(k)] + c4βĈλz (k)−1

1− c4β
≤ 12 c4β Ĉλz (k)−1

By our assumption that Ĝz(k) ≤ 4Ĉλz (k) (which follows from f(z) ≤ 4) and the above
inequalities, we can bound (3.4.22) from above by

∣∣∣∣∣
Ĝz(k)

Ĉλz (k)

∣∣∣∣∣ ≤ 1 + 4 c4β + 4 · 12 c4β
∣∣∣Ĉλz (k) Ĉλz (k)−1

∣∣∣ = 1 + 52 c4β. (3.4.24)

for every k ∈ [−π, π)d. This proves the bound on f2.

It remains to show the bound on f3. In the following, we write K for a positive constant,
whose value may change from line to line. Furthermore, we write

Ĝz(k) =
b̂(k)

1− â(k)
, where b̂(k) = 1 + Ψ̂z(k), â(k) = τ(z)D̂(k) + Φ̂z(k). (3.4.25)
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A straightforward calculation (see also [33, (4.18)]) shows that

∆kĜz(l) =
∆k b̂(l)

1− â(l)
+

∑

σ∈{1,−1}

(
â(l + σk)− â(l)

) (
b̂(l + σk)− b̂(l)

)

(1− â(l)) (1− â(l + σk))
+ b̂(l)∆k

[
1

1− â(l)

]
.

(3.4.26)
We now bound all three summands in (3.4.26), and start with the first one:

∣∣∣∣∣
∆k b̂(l)

1− â(l)

∣∣∣∣∣ =

∣∣∣∣∣
∆k b̂(l)

b̂(l)

∣∣∣∣∣
∣∣∣Ĝz(l)

∣∣∣ =

∣∣∣∣∣
∆k Ψ̂z(l)

1 + Ψ̂z(l)

∣∣∣∣∣
∣∣∣Ĝz(l)

∣∣∣ ≤
∣∣∣∆k Ψ̂z(l)

∣∣∣ 2(1 + Kβ) Ĉλz (l),

(3.4.27)
where the last bound uses (3.3.11) to bound the denominator, and (3.4.24). A basic

calculation shows that any function g : Zd → R with g(x) = g(−x) satisfies

|∆kĝ(l)| ≤
∑

x

[1− cos(k · x)] |g(x)| , (3.4.28)

cf. [25, (5.32)]. We apply this bound with g(x) = Ψz(x), combine it with (3.4.27) and

(3.3.11), and use Ĉλz (l ± k) ≥ 1/2 and the definition of Uλz (l, k) in (3.3.6) to obtain
∣∣∣∣∣
∆k b̂(l)

1− â(l)

∣∣∣∣∣ ≤ Kβ Ĉλz (k)−1Ĉλz (l) ≤ O(β) Uλz (l, k). (3.4.29)

The second term in (3.4.26) is bounded as follows. First, since

| eil·x(ei(±k·x)−1)| ≤ | sin(k · x)|+ 1− cos(k · x), (3.4.30)

we obtain∣∣b̂(l± k)− b̂(l)
∣∣ =

∣∣Ψ̂z(l± k)− Ψ̂z(l)
∣∣ ≤

∑
x

| sin(k · x)|
∣∣Ψz(x)

∣∣ +
∑

x

[1− cos(k · x)]
∣∣Ψz(x)

∣∣.

(3.4.31)

The second term on the right hand side of (3.4.31) is bounded by O(β) Ĉλz (k)−1; on the
first term we apply the Cauchy-Schwarz inequality and (3.3.10)–(3.3.11):

∑
x

| sin(k · x)|
∣∣Ψz(x)

∣∣ ≤
( ∑

x6=0

|Ψz(x)|
)1/2( ∑

x6=0

sin(k · x)2 |Ψz(x)|
)
1/2

≤ O(β)1/2
( ∑

x6=0

[1− cos(k · x)] |Ψz(x)|
)1/2

≤ O(β) Ĉλz (k)−1/2. (3.4.32)

Furthermore,

â(l ± k)− â(l) = τ(z)
(
D̂(l ± k)− D̂(l)

)
+

(
Φ̂z(l ± k)− Φ̂z(l)

)
. (3.4.33)

In a similar fashion as (3.4.31)–(3.4.32), we bound
∣∣∣Φ̂z(l ± k)− Φ̂z(l)

∣∣∣ ≤ O(β) Ĉλz (k)−1/2

and
∣∣∣D̂(l ± k)− D̂(l)

∣∣∣ ≤
( ∑

x

D(x)
)1/2( ∑

x

[1− cos(k · x)] D(x)
)1/2

+
∑

x

[1− cos(k · x)] D(x) (3.4.34)

= 1 · [1− D̂(k)]1/2 + [1− D̂(k)]

≤ 2Ĉλz (k)−1/2 + 2Ĉλz (k)−1 ≤ O(1) Ĉλz (k)−1/2, (3.4.35)
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where the last line uses (3.3.12). The combination of (3.4.31)–(3.4.35) and (3.4.19) yields

(
â(l ± k)− â(l)

) (
b̂(l ± k)− b̂(l)

) ≤ O(β) Ĉλz (k)−1. (3.4.36)

On the other hand, by (3.4.24)–(3.4.25),

1

1− â(l + σk)
=

1

b̂(l + σk)
Ĝ(l + σk) ≤ (1 + O(β)) Ĉλz (l + σk), σ ∈ {−1, 0, 1}. (3.4.37)

Combining (3.4.36) and (3.4.37) yields

(
â(l ± k)− â(l)

) (
b̂(l ± k)− b̂(l)

)

(1− â(l)) (1− â(l ± k))
≤ O(β) Ĉλz (k)−1 Ĉλz (l) Ĉλz (l ± k) ≤ O(β) Uλz (l, k).

(3.4.38)

For the third term in (3.4.26) we argue that |b̂(l)| = 1 + |Ψ̂z(l)| ≤ 1 + c4β by our

assumption on Ψ̂z. In order to apply Lemma 3.14 to bound ∆k(1− â(l))−1, we estimate

Â(l) :=
1

1− â(l)
=

1

b̂(l)
Ĝz(l) ≤ (1 + 2c4β) (1 + 51c4β) Ĉλz (l) ≤ (1 + Kβ)Ĉλz (l) (3.4.39)

by Assumption 3.2 and (3.4.24), and

|̂a|(0)− |̂a|(k) =
∑

x

[1− cos(k · x)]
∣∣τ(z)D(x) + Φz(x)

∣∣

≤ τ(z)[1− D̂(k)] +
∑

x

[1− cos(k · x)]
∣∣Φz(x)

∣∣

≤ (2(1 + c4β) + c4β) Ĉλz (k)−1 ≤ 5 Ĉλz (k)−1,

where the last line uses again (3.3.12) and, as usual, requires a certain smallness of β (here
we need c4β ≤ 1). Plugging these estimates into (3.4.18) yields

∆k
1

1− â(l)
≤ (1 + Kβ)3 · 8 · 52

Ĉλz (k){
Ĉλz (l − k)Ĉλz (l) + Ĉλz (l)Ĉλz (l + k) + Ĉλz (l − k)Ĉλz (l + k)

}
,

(3.4.40)

so that finally

|∆kĜz(l)|
Uλz (k, l)

≤ (1 + Kβ), (3.4.41)

as required. In conclusion f3(z) ≤ 1 + Kβ, and thus we obtain the improved bound
f(z) ≤ 1 + O(β).

Proof of Proposition 3.9. Note first that f is continuous on (0, zc) by Lemma 3.12 and
the assumed mean-field bound χ′(z) ≤ const χ(z)2. Whence the prerequisites of Lemma
3.10 are satisfied by Lemma 3.13 and the fact that f(0) = 1. Therefore, f(z) ≤ 3 for all
z < zc. Moreover, Lemma 3.13 shows that, if f ≤ 4, then in fact f ≤ 1 + O(β). Hence
f(z) ≤ 1 + O(β), uniformly for z < zc.
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3.5 Critical exponents

By discarding the term χ(z)−1 in (3.4.1), we obtain from Theorem 3.7 that (under the
assumptions formulated there)

Ĝz(k) ≤ 1 + O(β)

τ(z)[1− D̂(k)]
(3.5.1)

uniformly for z < zc.
Note that the bound

Gz(x)− δ0,x ≤ τ(z) (D ∗Gz) (x). (3.5.2)

holds in all our three models: for percolation see (2.1.34), for self-avoiding walk see (2.2.26),
and for the Ising model we use [95, (4.2)] in the infinite-volume limit, see also (A.8) in the
appendix. Thus for s = 2,

B(z) =
∑

x

Gz(x)2 ≤ 1 +
∑

x

τ(z)2 (D ∗Gz) (x)2 ≤ 1 + τ(z)2
∫

[−π,π)d
D̂(k)2 Ĝz(k)2

dk

(2π)d
.

(3.5.3)
A combination of (3.5.1) and (3.5.3) gives rise to

B(z) ≤ 1 + O(1)

∫

[−π,π)d

D̂(k)2

[1− D̂(k)]2
dk

(2π)d
≤ 1 + O(β), (3.5.4)

where we use that the integrated term is O(β) by Assumption 3.1 and Proposition 3.1
below. A similar calculation gives the corresponding result for s = 3. More specifically,

T (z) =
∑
x,y

Gz(0, x) Gz(x, y) Gz(y, 0) ≤ 1 + O(β) when s = 3. (3.5.5)

The bounds (3.5.3)–(3.5.5) hold uniformly for z < zc under the assumptions in Theorem
3.7. Note that in (3.5.5) we write Gz(x, y) = Gz(x− y). We call B(z) the bubble diagram
and T (z) the triangle diagram.

The two-point function Gz(x) seen as a function of z (for fixed x) is continuous on [0, zc].
For self-avoiding walk this fact follows from monotone convergence, and for percolation it
is a consequence of Aizenman, Kesten and Newman [8]. A general argument that holds for
all our three models is the following: the quantity Gz(x) can be realized as an increasing
limit (finite volume approximation) of a function which is continuous and non-decreasing
in z, hence Gz(x) is left-continuous (cf. [55, Appendix A]). It follows that (3.5.3)–(3.5.5)
even hold at criticality, i.e. when z = zc. In particular, this implies the bubble condition
(i.e., B(zc) < ∞) or the triangle condition (i.e., T (zc) < ∞) for s = 2 or 3, respectively.
We formulate this fact as a corollary:

Corollary 3.15 (Bubble/Triangle condition). Under the assumptions in Theorem 3.7,
B(zc) ≤ 1 + O(β) for s = 2 (self-avoiding walk and Ising model), and T (zc) ≤ 1 + O(β)
for s = 3 (percolation).

The bubble/triangle condition is important since it implies mean-field behavior of the
model, which is formulated in the next theorem. We recall from (3.4.3) that the infrared
bound in (3.4.1) extends to the critical case z = zc as

Ĝzc(k) =
1 + O(β)

1− D̂(k)
. (3.5.6)

We now use Theorem 3.7 to establish the existence of the formerly introduced critical
exponents.
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Theorem 3.16 (Critical exponents).

(i) Percolation. Consider the percolation model (s = 3). Under the assumptions in
Theorem 3.7, the critical exponents γP = 1, βP = 1 and δP = 2 for percolation exist.

(ii) Self-avoiding walk. Consider the self-avoiding walk model (s = 2). Under the
assumptions in Theorem 3.7, the critical exponent γS = 1 for the self-avoiding walk
exists.

(iii) Ising model. Consider the Ising model (s = 2). Under the assumptions in Theorem
3.7, the critical exponents γI = 1, βI = 1/2 and δI = 3 for the Ising model exist.

(iv) For all three models, under the assumptions in Theorem 3.7 and if 1−D̂(k) ³ |k|α∧2,
then

Ĝzc(k) ³ 1

|k|α∧2
as k → 0, (3.5.7)

i.e., the critical exponents ηS = ηP = ηI = 0 exist.

The derivation of the critical exponents from the bubble-/triangle condition (Corollary
3.15) is well-known in the literature. However, the mode of convergence required for the
existence of the critical exponents varies, and some derivations are stated only for finite
range models. We therefore add a more detailed discussion of the literature here.

For self-avoiding walk, the existence (and the value) of the critical exponent γS is based
on the inequality

zc

zc − z
≤ χ(z) ≤ B(zc)

(
zc

zc − z
+ 1

)
. (3.5.8)

Thus the bubble condition (3.5.3) is sufficient to prove that γS exists and γS = 1. The
inequality (3.5.8) is derived from a differential inequality in [102, Theorem 2.3], which was
proved there for uniform spread-out models. The derivation still holds for infinite-range
spread-out models due to the multiplicative structure of the weights of the self-avoiding
walks in (1.2.2). A version of (3.5.8) appeared earlier in [27, (5.30)–(5.33)].

The derivation of the exponents γP = 1, βP = 1 and δP = 2 from the triangle condition is
due to Aizenman–Newman [9] and Barsky–Aizenman [14]. While βP = 1 has been proven
in [14] in the fully general setting of partially oriented percolation models, for γP = 1 only
the upper bound is known in full generality [9]. The corresponding lower bound is stated in
[9] only for the nearest-neighbor model. In Section 3.5.1 below we show how the arguments
in [9] can be adjusted for an infinite range model. Also δP = 2 is known in full generality
[14], but only for a slightly different version of δP. We state the different version of δP and
prove equivalence of the two versions in Section 3.5.2.

For the Ising model, it has been proven by Aizenman [1, Proposition 7.1] that the
bubble condition implies γI = 1 as long as |J | =

∑
x J(x) < ∞ (which is equivalent

to
∑

x D(x) < ∞). Under the same condition, Aizenman and Fernández [6] proved the
existence and mean-field values of the critical exponents βI and δI.

The statement in (iv) is an immediate consequence of (3.5.6). The lower bound in

1 − D̂(k) ³ |k|α∧2 follows from (D3)/(D3’). The upper bound indeed holds for a number
of examples, and in particular if D is chosen as in the nearest-neighbor model (3.1.1), the
finite-variance spread-out model (3.1.6) or the spread-out power-law model (3.1.12) with

α 6= 2, cf. [33, 71]. However, if D is chosen as in (3.1.12) with α = 2, then 1 − D̂(k) ³
(L|k|)2 log(π/(L|k|)), cf. [33, Prop. 1.1].

Given (3.5.7) it is folklore that

Gzc(x) ³ |x|−d+(α∧2) (3.5.9)

holds in the general setting considered here. Partial results towards (3.5.9) have been
obtained. Indeed, Hara, van der Hofstad and Slade [62] proved (3.5.9) in the finite-range
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spread-out setting for self-avoiding walk and percolation, Hara [55] proved it in the nearest-
neighbor setting, and Sakai [95] proved it for the Ising model in finite-range spread-out
and nearest-neighbor setting.

3.5.1 Derivation of γP = 1 for percolation

Aizenman and Newman [9] prove that the triangle condition T (zc) < ∞ implies that the
critical exponent γP for percolation exists, and satisfies γP = 1. That is to say, they show
χ(z) ³ (zc − z)−1 as z ↗ zc. The lower bound γP ≥ 1 in [9, Prop. 3.1] holds for any
homogeneous bond percolation model. On the other hand, the upper bound γP ≤ 1 is
stated in [9, Prop. 3.1] for the nearest-neighbor model only. The aim of this section is to
show how the derivation in [9] can be extended to long range systems.

The argument requires a finite volume and range approximation in order to apply
Russo’s formula. We denote by

Tr := [−r, r]d ∩ Zd

a cube of sidelength 2r + 1. In order to achieve translation invariance, we equip the cube
with periodic boundary conditions, that is, Tr is a torus. In [9] free boundary conditions

were used. We write G(R)
z,Tr

(x, y) for the probability that the points x and y are connected

on the torus using only bonds {u, v} of length |u − v| ≤ R. For r > R (which we always
assume), this is equivalent to removing all bonds from Tr with length larger than R. Define
accordingly the restricted expected cluster size by

χ(R)
Tr

(z) :=
∑

x∈Tr

G(R)
z,Tr

(0, x), (3.5.10)

and the restricted triangle diagram by

∇(R)
Tr

(z) :=
∑

v,s,t∈Tr
|v|≤R

D(v) G(R)
z,Tr

(v, s) G(R)
z,Tr

(s, t) G(R)
z,Tr

(t, 0). (3.5.11)

We proceed as follows. We fix ε > 0 small, and first show that for z < zc − ε,

(
1−∇(R)

Tr
(zc − ε)− eR

)
(zc − z − ε) ≤ 1

χ(R)
Tr

(z)
− 1

χ(R)
Tr

(zc − ε)
≤ (zc − z − ε) (3.5.12)

holds uniformly in r and R, where eR = o(1) as R → ∞. We argue that indeed, for
z < zc − ε,

lim
R→∞

lim
r→∞

χ(R)
Tr

(z) = χ(z), (3.5.13)

and, for every R > 0,

∇(R)
Tr

(zc − ε) ≤ ∇(zc − ε) + o(1) as r ↗∞, (3.5.14)

where ∇(z) = (D ∗ Gz ∗ Gz ∗ Gz)(0). Note that ∇(z) differs from T (z) by the extra
displacement D. Then, taking r →∞ followed by R →∞, we obtain for every ε > 0,

(1−∇(zc − ε)) (zc − z − ε) ≤ 1

χ(z)
− 1

χ(zc − ε)
≤ zc − z − ε. (3.5.15)

The limit ε ↘ 0 then yields

(1−∇(zc)) (zc − z) ≤ 1

χ(z)
≤ zc − z. (3.5.16)
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since χ(zc − ε)−1 ↘ 0 as ε ↘ 0.
It follows from the infrared bound (3.4.1) and Assumption 3.1, together with the

Cauchy-Schwarz inequality, that ∇(zc) ≤ O(β1/2). Thus (3.5.16) implies γP = 1 if β
in Theorem 3.7 is sufficiently small, which suffices for our needs. It is possible to extend
the argument to any finite triangle diagram (rather than small triangle diagrams only) by
using ultraviolet regularization, as done in [9, Lemma 6.3].

We start by proving (3.5.12), and recall the notion of pivotal bonds from Section 2.1.
A crucial tool in the proof is Russo’s formula [50, Theorem 2.25], stating that

d

dz
G(R)

z,Tr
(x, y) =

∑

(u,v)∈Tr×Tr
|u−v|≤R

D(v − u) P(R)
z,Tr

((u, v) is pivotal for x ↔ y), x, y ∈ Tr.

(3.5.17)
The factor D(v−u) arises from the chain rule and the fact that the bond (u, v) is occupied
with probability zD(v − u). Since

{(u, v) is pivotal for x ↔ y} ⊂ {{x ↔ u} ◦ {v ↔ y}} ∪ {{x ↔ v} ◦ {u ↔ y}}, (3.5.18)

(3.5.17) and the BK-inequality (Proposition 2.3) imply

d

dz
G(R)

z,Tr
(x, y) ≤

∑

u,v∈Tr

D(v − u) P(R)
z,Tr

(x ↔ u)P(R)
z,Tr

(v ↔ y). (3.5.19)

Summing over y yields the upper bound

d

dz
χ(R)
Tr

(z) ≤
( ∑

u∈Tr

G(R)
z,Tr

(x, u)
)( ∑

v∈Tr

D(v − u)
)( ∑

y∈Tr

G(R)
z,Tr

(v, y)
)
≤ χ(R)

Tr
(z)2.(3.5.20)

Therefore,

d

dz

[
− 1

χ(R)
Tr

(z)

]
≤ 1. (3.5.21)

Integration over the interval (z, zc − ε) yields

1

χ(R)
Tr

(z)
− 1

χ(R)
Tr

(zc − ε)
≤ zc − z − ε. (3.5.22)

For the lower bound in (3.5.12) we use arguments as in [102, Section 9.4] to obtain

P(R)
z,Tr

((u, v) is pivotal for x ↔ y)

≥ G(R)
z,Tr

(x, u) G(R)
z,Tr

(v, y)−
∑

s,t∈Tr

G(R)
z,Tr

(x, t) G(R)
z,Tr

(t, s) G(R)
z,Tr

(t, u) G(R)
z,Tr

(s, v) G(R)
z,Tr

(s, y).

(3.5.23)

=

−
x

t s

y

vu

yx

u v
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(The contribution to the second line in (3.5.23) with u and v interchanged is hidden there,
but is incorporated in the next line when we sum over both, u and v.) With Russo’s
formula (3.5.17),

d

dz
χ(R)
Tr

(z) ≥ χ(R)
Tr

(z)2
∑

|v|≤R

D(v)− χ(R)
Tr

(z)2
∑

v,s,t∈Tr
|v|≤R

D(v) G(R)
z,Tr

(v, s) G(R)
z,Tr

(s, t) G(R)
z,Tr

(t, 0).

(3.5.24)
Since

∑
v∈Zd D(v) = 1, the quantity eR :=

∑
|v|>R D(v) is o(1) as R → ∞. Recalling the

definition of ∇(R)
Tr

(z) in (3.5.11) we arrive at

d

dz

[
− 1

χ(R)
Tr

(z)

]
≥ (1− eR)−∇(R)

Tr
(z) ≥ 1−∇(R)

Tr
(zc − ε)− eR (3.5.25)

for z < zc − ε, and an integrated version of this proves (3.5.12).

We now consider (3.5.13) and fix z < zc − ε. We write E(R)
z,Tr

|C| for the expected cluster

size under the measure P(R)
z,Tr

, i.e., E(R)
z,Tr

|C| = χ(R)
Tr

(z). We further denote by ∂RTr :=

Tr+R \ Tr the boundary of Tr of thickness R. Hence,

E(R)
z,Tr+R

|C| = E(R)
z,Tr+R

|C|1{0=∂RTr} + E(R)
z,Tr+R

|C|1{0↔∂RTr}. (3.5.26)

In the first summand, E(R)
z,Tr+R

can be replaced by E(R)
z (the expected cluster size on the

infinite lattice, where bonds are restricted to have length ≤ R), because the indicator
guarantees C ⊂ Tr. This leads to

E(R)
z,Tr+R

|C| = E(R)
z |C| − E(R)

z |C|1{0↔∂RTr} + E(R)
z,Tr+R

|C|1{0↔∂RTr}. (3.5.27)

By the tree graph bound [9] and the monotonicity of E(R)
z |C| in R,

E(R)
z |C|2 ≤ (

E(R)
z |C|)3 ≤ χ(z)3, (3.5.28)

and hence the Cauchy-Schwarz inequality yields

E(R)
z |C|1{0↔∂RTr} ≤ χ(z)3/2 Pz(0 ↔ ∂RTr)

1/2. (3.5.29)

For z < zc − ε, the first factor on the right is finite, and the latter vanishes as r →∞. For
the last summand in (3.5.27), we bound as follows:

E(R)
z,Tr+R

|C|1{0↔∂RTr} ≤ (2(r + R) + 1)d P(R)
z,Tr+R

(0 ↔ ∂RTr), (3.5.30)

but, for r > R,

P(R)
z,Tr+R

(0 ↔ ∂RTr) ≤ Pz,Tr+R(|C| ≥ r/R) ≤ Pz(|C| ≥ r/R) ≤ exp

{
− r

2Rχ(z)2

}
,

(3.5.31)
where in the first bound we use the fact that occupied bonds have length ≤ R in the
restricted model, the second bound utilizes the fact that clusters on the torus are a.s.
smaller than clusters in the infinite lattice (Proposition 4.1), and the third bound uses [9,
Prop. 5.1]. The expression on the right hand side of (3.5.31) decays exponentially as r
increases, hence the right hand side of (3.5.30) vanishes and (3.5.13) is established once we
have shown that E(R)

z |C| → Ez|C| as R →∞.
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This is done as follows. We write G(R)
z and χ(R) for the model on the infinite lattice where

bonds are restricted to have length ≤ R. Then obviously χ(z) ≥ χ(R)(z). Furthermore,

Gz(x)−G(R)
z (x) = Pz (0 ↔ x, ∃ pivotal bond (u, v) for {0 ↔ x} with |u− v| > R) ,

hence, using the BK-inequality,

χ(z)− χ(R)(z) ≤ χ(z)2


z

∑

v:|v|>R

D(v)


 .

Again, this vanishes as R →∞, because z < zc − ε and
∑

v D(v) = 1.
It remains to prove (3.5.14). We use again the coupling of Proposition 4.1 to write

P(R)
zc−ε,Tr+R

(0 ↔ x) ≤ Pzc−ε(0 ↔ x) + Pzc−ε(0 ↔ ∂RTr). (3.5.32)

Since the contribution from terms involving Pzc−ε(0 ↔ ∂RTr) is again exponentially small
in r (cf. (3.5.31)), we readily obtain (3.5.14).

3.5.2 Derivation of δP = 2 for percolation

Barsky and Aizenman [14] showed that the triangle condition implies βP = 1 and δP = 2,
where they used the mean-field bounds βP ≤ 1 and δP ≥ 2 due to [32] and [3], respectively.
It should be noted that in these references a different version of δP is considered, namely

δ̂P given by

M(zc, h) :=

∞∑

k=1

[1− e−kh]Pzc(|C| = k) ³ h1/δ̂P as h →∞. (3.5.33)

The quantity M is known as magnetization. If we consider the critical exponents in terms
of slowly varying functions only (and not our stronger version ³), then the equivalence of

δP and δ̂P can be seen directly via a Tauberian Theorem (e.g. [40, Theorem XIII.5.2]).
Our version of δP can be derived from (3.5.33), as we show now for the mean-field value

δP = 2. In particular, we show that

c/
√

n ≤ M(zc, 1/n) ≤ C/
√

n, 0 < c ≤ C < ∞, (3.5.34)

implies c̃/
√

n ≤ Pzc(|C| ≥ n) ≤ C̃/
√

n for certain constants c̃, C̃ ∈ (0,∞).
For an upper bound on Pzc(|C| ≥ n) we bound

Pzc(|C| ≥ n) =

∞∑

k=n

Pzc(|C| = k) ≤
∞∑

k=n

1− e−k/n

1− e−1
Pzc(|C| = k)

≤ [
1− e−1]−1

∞∑

k=1

[
1− e−k/n

]
Pzc(|C| = k)

=
[
1− e−1]−1

M(pc, 1/n), (3.5.35)

and hence Pzc(|C| ≥ n) ≤ C̃/
√

n for C̃ = [1− e−1]−1C.
The lower bound is more involved. For every ε > 0 we obtain

Pzc(|C| ≥ n) ≥
∞∑

k=n

[
1− e−εk/n

]
Pzc(|C| = k)

= M(pc, ε/n)−
n−1∑

k=1

[
1− e−εk/n

]
Pzc(|C| = k).
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We exploit 1− e−x ≤ x to bound further

n−1∑

k=1

[
1− e−εk/n

]
Pzc(|C| = k) ≤ ε

n

n−1∑

k=1

k Pzc(|C| = k).

Note

n−1∑

k=1

k Pzc(|C| = k) =

n−1∑

k=1

k∑

l=1

Pzc(|C| = k) =

n−1∑

l=1

n−1∑

k=l

Pzc(|C| = k) ≤
n−1∑

l=1

Pzc(|C| ≥ l),

whence

Pzc(|C| ≥ n) ≥ M(pc, ε/n)− ε

n

n−1∑

k=1

Pzc(|C| ≥ k).

We apply (3.5.35) and compare with (3.5.34) to obtain

Pzc(|C| ≥ n) ≥ c
√

ε√
n
− ε

n

n−1∑

k=1

C

[1− e−1]
√

k
︸ ︷︷ ︸
≤2C[1−e−1]−1√n

. (3.5.36)

This proves that Pzc(|C| ≥ n) ≥ c̃/
√

n with c̃ = c
√

ε − 2εC[1 − e−1]−1, and c̃ > 0 as long
as ε is small enough. With a modification in (3.5.36), the argument can be extended to
the case δP 6= 2, but we refrain from giving this argument.

3.6 Related lace expansion results

We now have seen how the lace expansion can be used to derive an infrared bound, and
we discussed various consequences of it. In fact, the lace expansion is used in much wider
context to obtain a variety of results on the high-dimensional behaviour of statistical me-
chanical models. Some of these results shall be briefly reviewed here.

Asymptotics for the critical two-point function Gz(x). In Theorem 3.7 we have

identified the asymptotics of the Fourier transform of the critical two-point function Ĝzc(k)
as |k| → 0. A natural question arising is the asymptotics of the (x-space) critical two-point
function Gzc(x) as |x| → ∞. Obtaining the x-space behavior from the k-space result is a
notoriously difficult problem, and such results (which are known as Tauberian theorems)
typically involve corrections by slowly varying functions. The following theorem provides
strong bounds on the decay of Gzc(x), and is obtained by doing the analysis of the lace
expansion in x-space directly (in contrast to our approach in Section 3.4). The theorem is
proven for finite-range systems only.

Theorem 3.17 (Asymptotics for the critical two-point function). Consider percolation,
self-avoiding walk or the Ising model with D given by (3.1.1) (nearest-neighbor case) with
d sufficiently large, or D given by (3.1.5) (finite-variance spread-out model) with d > 3s
and L sufficiently large with the additional requirement that the function h is supported in
[−1, 1]d. Then there exists a constant A such that

Gzc(x) =
A

(|x|+ 1)d−2
(1 + o(1)) . (3.6.1)
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The power law bound (3.6.1) is sometimes interpreted as the statement that the critical
exponent η exists and is equal to 0. In fact, this is a stronger version than (3.5.7). In
Chapter 4 we shall use the following weaker form of (3.6.1): there exist constants cτ , Cτ > 0
such that

cτ

(|x|+ 1)d−2
≤ Gzc(x) ≤ Cτ

(|x|+ 1)d−2
. (3.6.2)

For percolation and self-avoiding walk, Takashi Hara [55] gives a proof of Theorem 3.17
for the nearest-neighbor case, and Hara, van der Hofstad and Slade [62] prove it for the
uniform spread-out case. For the Ising model, both cases are proved by Sakai [95]. In fact,
the results proven in [55, 62, 95] are even stronger in the sense that they include rather
precise expressions for the constant A and good bounds on the error term.

Correlation length and exponential decay of the subcritical two-point function
for percolation. The next theorem provides an upper bound on the two-point function
for percolation in terms of the correlation length.

Theorem 3.18 (Correlation length and exponential decay of the subcritical two-point
function). Consider percolation in the nearest-neighbor setting (with d being sufficiently
large), or with the uniform spread out model (3.1.6) with d > 6 and L sufficiently large.
For any z < zc,

Gz(x) ≤ e−‖x‖∞/ξ(z), (3.6.3)

where the correlation length ξ(z) is defined by

ξ(z)−1 = − lim
n→∞

1

n
log Pz

(
(0, . . . , 0) ←→ (n, 0, . . . , 0)

)
. (3.6.4)

Furthermore, there exist constants cξ, Cξ > 0 such that the correlation length satisfies

cξ (zc − z)−1/2 ≤ ξ(z) ≤ Cξ (zc − z)−1/2 . (3.6.5)

The exponential bound (3.6.3) is well-known in percolation theory, see e.g. Grimmett
[50, Prop. 6.47]. Hara [54] proves the bound (3.6.5).

There is a rather loose interpretation of the term ‘correlation length’ in mathematical
physics as ‘natural length scale’ of the process in the following sense: it is the minimal
length scale on which percolation with parameter z differs qualitatively from percolation
with parameter zc.

Asymptotic of the critical threshold. The particular value of zc is known only in
certain special cases, for example on the two-dimensional nearest-neighbor lattice zc =
2d 1

2
= 2 for percolation [63, 79], and zc = log(1 +

√
2) for the Ising model. It is assumed

that in higher dimensions zc cannot be expressed in closed form, but the following expansion
is proved using lace expansion methodology.

Theorem 3.19. For the nearest-neighbor version of percolation and the self-avoiding walk,
the critical threshold zc = zc(d) obeys the following asymptotic expansion:

(i) for percolation,

zc = 1 +
1

2d
+

7

2(2d)2
+ O

(
(2d)−3); (3.6.6)
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(ii) for self-avoiding walk,

z−1
c = µ =1− 1

2d
− 1

(2d)2
− 3

(2d)3
− 16

(2d)4
− 102

(2d)5
− 729

(2d)6
− 5533

(2d)7
− 42229

(2d)8

− 288761

(2d)9
− 1026328

(2d)10
+

21070667

(2d)11
+

780280468

(2d)12
+ O

(
1

(2d)13

)
.

(3.6.7)

The asymptotic formula (3.6.6) has been proven by Hara and Slade [59] (and reproved,
using simpler methods, by van der Hofstad and Slade [72]). Clisby, Liang and Slade [36]
showed (3.6.7). See also [102, Sections 2.1 and 11.2] for a bibliography of partial results
towards (3.6.6)–(3.6.7). It seems likely that these asymptotic expansions have radius of
convergence zero, but there is no proof of this.

Incipient infinite cluster and scaling limit of high-dimensional percolation.
Consider nearest-neighbor percolation. Then it is believed (and proved for d = 2 or
d ≥ 19) that θ(zc) = 0. On the other hand, χ(zc) = ∞ by (1.1.5). This means that
critical percolation clusters are a.s. finite, but the expected size is infinite, and there exist
clusters at all length scales. Moreover, if z is increased a tiny little bit, then immediately
an infinite cluster emerges. These observations motivated the construction of an incipient
infinite cluster (IIC), which can be thought of as a critical cluster that is artificially made
infinite by considering an appropriate limit.

The first such construction of an IIC is due to Kesten [81]. Indeed, Kesten investigates
the local configuration close to the origin in the two-dimensional lattice Z2, and offers two
alternatives:

(i) To condition the origin to be connected to infinity at z > zc and take the limit
z ↘ zc.

(ii) To condition the critical cluster of the origin to be connected to the boundary of the
box {−n, . . . , 0, . . . , n}2 and take the limit n →∞.

Kesten proves that both limits exist and are equal. This limit is Kesten’s incipient infinite
cluster. Kesten was motivated to describe this IIC in order to study random walk on large
critical clusters [80], for which physicists have performed simulations showing subdiffusive
behavior.

Járai [76, 77] extended these results, and proved that several other natural conditioning
and limiting schemes give the same limit. In one of these constructions, Járai takes a
uniform point in the largest critical cluster on a box {0, . . . , r − 1}d, shifts it to the origin
and takes the limit r → ∞. In [70], the lace expansion was used to extend the proof of
existence of the IIC to high-dimensional percolation. The proof in [70] follows the proof
in [69], where the IIC was constructed for spread-out oriented percolation above 4 spatial
dimensions. Also Aizenman [2] introduces an IIC version suitable in high dimensions, this
construction is discussed at length in Chapter 4.

Hara and Slade [60, 61] study the geometry of large critical clusters on the spatially
rescaled nearest-neighbor lattice in sufficiently high dimension. Consider the quantity

τ(x, n) := Pzc(0 ↔ x, |C(0)| = n). (3.6.8)

The authors show that the Fourier transform of (3.6.8), rescaled in the spatial variable by

n−1/4, converges to the two-point function of integrated super-Brownian excursion (ISE)

scaled by n−1/2. Integrated super-Brownian excursion is a random mass distribution on
Rd introduced by Aldous [12] as a continuous-time branching process with branching at
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all time scales. It is known to be the scaling limit of critical branching random walk
conditioned on the total mass being equal to 1, [11, 12]. Furthermore, ISE is known to be
the scaling limit of high-dimensional lattice trees, [38].

The results by Hara and Slade [60, 61], which also include convergence of the corre-
sponding 3-point function, provide solid support for the conjecture that the scaling limit
of large critical clusters is integrated super-Brownian excursion. Furthermore, the results
indicate that critical percolation clusters have an almost tree-like structure, where loops
do not contribute in the scaling limit.

Exact enumerations of self-avoiding walks. Consider nearest-neighbor self-avoiding
walk, and denote by Nn := (2d)n cn the number of n-step nearest-neighbor self-avoiding

walks on Zd. So far we reported only about asymptotic results obtained by lace expansion
methodology. In a new development, Clisby, Liang and Slade [36] used the lace expansion to
compute the exact value of Nn for fixed n. Among various other quantities they compute
Nn for n = 1, 2, . . . 24 in all dimensions up to 12, and also the number of self-avoiding
polygons in these dimensions up to length 24. This is a computationally hard problem,
and in dimensions d > 2 little progress had been made before. The authors use the so-called
two-step method to calculate the number of lace graphs, and then use the lace expansion
to calculate Nn.



Chapter 4

Random graph asymptotics

on high-dimensional tori

In this chapter we consider a somewhat different problem, namely the comparison of perco-
lation on two different graphs: the infinite lattice Zd and the (finite) d-dimensional torus,
both in sufficiently high dimension. The basic question to be addressed is the following:
Let pc be the critical percolation threshold on Zd. What is then the size of the largest
connected cluster for percolation on the torus with this parameter pc? The main results
in this chapter are Theorems 4.2 and 4.4. The key to the proof of these theorems is a
coupling argument to be developed in Section 4.2. We do not use the lace expansion here,
but our proofs rely on a variety of results that have been proven using lace expansion. In
contrast to the previous chapters we consider here only the nearest-neighbor model (3.1.1)
and the uniform spread-out model (3.1.6). In line with most literature on these models
we will slightly change notation and write p for the probability that a certain bond will
be occupied (e.g. for the nearest-neighbor model, p corresponds to z/(2d) in the setup of
Chapter 3).

4.1 Percolation on a torus

We consider Bernoulli bond percolation on the graph G, where G is either the hypercubic
lattice Zd, or the finite torus Tr,d = {−br/2c, . . . , dr/2e − 1}d.

For G = Zd, we consider two sets of bonds. In the nearest-neighbor model (3.1.1), two
vertices x and y are linked by a bond whenever |x−y| = 1, whereas in the (uniform) spread-
out model (3.1.6), they are linked whenever 0 < ‖x − y‖ ≤ L. Throughout the chapter
we adopt the convention that ‖ · ‖ denotes the supremum norm. The degree of the graph,

which we denote by Ω, is thus Ω = 2d in the nearest-neighbor case and Ω = (2L + 1)d − 1
in the spread-out case. Bonds are occupied independently with probability p, and the
two-point function is now denoted by

τZ,p(x) := PZ,p(0 ←→ x), x ∈ Zd. (4.1.1)

All quantities related to Zd-percolation get a subscript Z, e.g. we write CZ(x) for the cluster
of x and χZ(p) for the expected cluster size.

For G = Tr,d, we also consider two related settings:

(i) The nearest-neighbor torus: an edge joins vertices that differ by 1 (modulo r) in
exactly one component. For d fixed and r large, this is a periodic approximation to
Zd. Here Ω = 2d for r ≥ 3. We study the limit in which r → ∞ with d > 6 fixed,
but large.

(ii) The spread-out torus: an edge joins vertices x = (x1, . . . , xd) and y = (y1, . . . , yd)
if 0 < maxi=1,...,d |xi − yi|r ≤ L (with | · |r the metric on Zr). We study the limit
r → ∞, with d > 6 fixed and L large (depending on d) and fixed. This gives
a periodic approximation to range-L percolation on Zd. Here Ω = (2L + 1)d − 1
provided that r ≥ 2L + 1, which we will always assume.

We consider bond percolation on these tori with bond occupation probability p and write
PT,p and ET,p for the product measure and corresponding expectation, respectively. We use
the notation τT,p(·), χT(p) and CT(·) analogously to the corresponding Zd-quantities.

57



58 Random graph asymptotics on high-dimensional tori

In this chapter, we will investigate the size of the maximal cluster on Tr,d, i.e.,

|Cmax| := max
x∈Tr,d

|CT(x)|, (4.1.2)

at the critical percolation threshold pc(Zd). An alternative definition for the critical perco-
lation threshold on the torus, denoted by pc(Tr,d), was given in [24, (1.7)] as the solution
to

χT(pc(Tr,d)) = λV 1/3, (4.1.3)

where λ is a sufficiently small constant, and V = |Tr,d| = rd denotes the volume of the
torus. The definition of pc(Tr,d) in (4.1.3) is an internal definition only, due to the fact
that [25] deals with rather general tori, for which an external definition (such as pc(Zd))
does not always exist. On the other hand, the internal definition in (4.1.3) assumes a
priori mean-field behaviour, and is therefore unsuitable outside this setting1. On the high-
dimensional torus Tr,d, we therefore have two sensible critical values, the externally defined
pc(Zd), and the internally defined pc(Tr,d) in (4.1.3). One of the goals of this chapter is to
investigate how close these two critical values are.

The most prominent example of percolation on a finite graph is the random graph, which
is obtained by applying percolation to the complete graph. This has been first studied by
Erdős and Rényi in 1960 [39]. They showed that, when p is scaled as (1 + ε)V −1, there
is a phase transition at ε = 0. For ε < 0, the size of the largest cluster is proportional to
log V , whereas for ε > 0, it is proportional to V . For ε = 0, the size of the largest cluster
divided by V 2/3 weakly converges to some (non-trivial) limiting random variable, while

the expected cluster size is, as in (4.1.3), proportional to V 1/3. This follows from results

by Aldous [13], see also [21, 74, 75, 87]. We will refer to the V 2/3-scaling as random graph
asymptotics.

In this chapter, we study the size of the largest cluster on the torus for p = pc(Zd). It
has been shown by Borgs, Chayes, van der Hofstad, Slade and Spencer [24, 25] that, if

pc(Zd) = pc(Tr,d) + O(V −1/3), (4.1.4)

then, with probability at least 1 − O(ω−1), |Cmax| is in between ω−1V 2/3 and ωV 2/3 as
V →∞, for ω ≥ 1 sufficiently large.

Aizenman [2] conjectured that this random graph asymptotics holds for the maximal
critical cluster in dimension d > 6, as we explain in more detail below. Also in [25] it
was conjectured that (4.1.4) holds. By means of a coupling argument, we prove that a
slightly weaker statement than (4.1.4) (with a logarithmic correction in the lower bound,
see (4.3.3) below) indeed holds for d sufficiently large in the nearest-neighbor model, or
d > 6 and L sufficiently large in the spread-out model. Furthermore, we give a criterion
which we believe to hold, and which implies (4.1.4) without logarithmic corrections.

Note that all our results assume that d is large in the nearest-neighbor model or d > 6
and L large in the spread-out model. That is, we require the torus to be in some sense
high-dimensional. We do believe that the results hold for all d > 6 and L ≥ 1, however,
the proof relies on various lace expansion results, which require that the degree Ω is large.
On the other hand, we do not expect these asymptotics to be true for d < 6.

Aizenman [2] studied a similar question, but now for percolation on a box of width r
under bulk boundary conditions, where clusters are defined to be the intersection of the box
{−br/2c, . . . , dr/2e− 1}d with clusters in the infinite lattice (and thus clusters need not to

be connected within the box). He assumed τZ,pc(x) ³ ‖x‖−(d−2), which was established in
[55, 62] for sufficiently large dimension, see Theorem 3.17. Aizenman showed that, under

1It is believed that this issue could be solved by considering λV 1/(1+δP) as the right hand side
of (4.1.3), where δP is the critical exponent introduced in (1.1.8).
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this condition on the two-point function, the size of the largest connected component under
bulk boundary conditions is, with high probability, bounded from above by a constant
times r4 log r, and bounded from below by εr r4 for any sequence εr → 0 as r → ∞.
Furthermore, he conjectures that the r4-scaling for the size of the largest cluster holds for
dimension d > 6 also under free boundary conditions (where no connections outside the

box are allowed), but changes to V 2/3 = r2d/3 À r4 under periodic boundary conditions.
This indicates the importance of boundary conditions at criticality in high dimensions. We
will further elaborate on the role of boundary conditions in Section 4.4.

4.2 A coupling result for clusters on the torus and on Zd

In this section, we prove that the cluster size for percolation on the torus is stochastically
smaller than the one on Zd by a coupling argument. We fix p, and omit the subscript p from
the notation. We use subscripts Z and T to denote objects on Zd and Tr,d, respectively.

The goal of this section is to give a coupling of the Tr,d-cluster and the Zd-cluster of
the origin. This will be achieved by constructing these two clusters simultaneously from a
percolation configuration on Zd, as we explain in more detail now.

The basic idea is that, on any graph, it is well-known that the law of a cluster C(0)
can be described by subsequently exploring the bonds one can reach from 0. We will first
describe this exploration of a cluster in some detail, before giving the coupling, which is
described by a more elaborate way of exploring the percolation clusters on the torus and
on Zd simultaneously from a percolation configuration on Zd. The exploration process is
defined in terms of colors of the bonds. Initially, all bonds are uncolored, which means
that they have not yet been explored. During the exploration process we will color the
bonds black if they are found to be occupied, and white if they are found to be vacant.
Furthermore, we distinguish between active and inactive vertices. Initially, only the origin
0 is active, and all other vertices are inactive.

We now explore the bonds in the graph according to the following scheme. We order
the vertices in an arbitrary way. Let v be the smallest active vertex. Now we explore (and
color) all uncolored bonds that have an endpoint in v, i.e., we make the bond black with
probability p and white with probability 1−p, independently of all other bonds. In case we
have assigned the black color, we set the vertex at the other end of the bond active (unless
it was already active and none of its neighboring edges are now uncolored, in which case
we make it inactive). In particular, the active vertices are those vertices that are part of a
black bond, as well as an uncolored bond. Finally, after all bonds starting at v have been
explored, we set v inactive. We repeat doing so until there are no more active vertices. In
the latter case, the exploration process is completed, i.e., there are no more black bonds
that share a common endpoint with an uncolored bond. The cluster C(0) is equal to the set
of vertices that are part of the black bonds. When the graph is finite, then this procedure
always stops. When the graph is infinite, then the exploration process continues forever
precisely when |C(0)| = ∞. This completes the exploration of a single cluster on a general
graph.

The exploration of a single cluster will be extended to explore the cluster on the torus
CT(0) and the cluster on the infinite lattice CZ(0) simultaneously from a percolation config-
uration on Zd. For CZ(0), the result of the exploration will be identical to the exploration
of a single cluster described above. The related cluster CT(0) is a subset of all vertices
that are r-equivalent to vertices part of a black bond. The main result in this section is
Proposition 4.1, whose proof gives the details of this simultaneous construction of the two
clusters.

To state the result, we need some notation. For x, y ∈ Tr,d, we write x
T↔ y when x is

connected to y in the percolation configuration on the torus, while, for x, y ∈ Zd, we write

x
Z↔ y when x is connected to y in the percolation configuration on Zd. We write x

r∼ y
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when x (mod r) = y (mod r), and call x and y r-equivalent when x
r∼ y. Also, we call

two distinct bonds {x1, y1} and {x2, y2} r-equivalent if there exists an element z ∈ Zd such
that {x1, y1} = {x2 + rz, y2 + rz}. We sometimes abbreviate r-equivalent to equivalent.

For a directed bond b = (x, y), we write b = x and b = y, and for two bonds b1 = (x1, y1)

and b2 = (x2, y2), we write b1
r∼ b2 when (x1, y1) = (x2 + rz, y2 + rz) for some z ∈ Zd. We

recall from Section 2.1 that A ◦ B denotes the event that the increasing events A and B
occur on disjoint sets of bonds.

Proposition 4.1 (The coupling). Consider nearest-neighbor percolation for r ≥ 3 or
spread-out percolation for r ≥ 2L+1, in any dimension. There exists a probability law PZ,T
on the joint space of Zd- and Tr,d-percolation such that, for all events E,

PZ,T(CT(0) ∈ E) = PT(CT(0) ∈ E), PZ,T(CZ(0) ∈ E) = PZ(CZ(0) ∈ E), (4.2.1)

and PZ,T-almost surely, for all x ∈ Tr,d,

{0 T↔ x} ⊆
⋃

y∈Zd : y
r∼x

{0 Z↔ y}. (4.2.2)

In particular, |CT(0)| ≤ |CZ(0)|. Moreover, for x
r∼ y, and PZ,T-almost surely,

{0 Z↔ y} ∩ {0 T↔ x}c (4.2.3)

⊆
⋃

b1 6=b2 : b1
r∼b2

⋃

z∈Zd

(0
Z↔ z) ◦ (z

Z↔ b1) ◦ (z
Z↔ b2) ◦ (b2 is Z− occ.) ◦ (b2

Z↔ y).

Equation (4.2.2) will be used to conclude that the expected cluster size on Tr,d is bounded
from above by the one on Zd. In order to prove our main results, we use (4.2.3) to prove

a related lower bound on the expected cluster size on Tr,d in terms of the one on Zd. See
Sections 4.3.3 and 4.3.4 for details. The inequality on the cluster sizes of Tr,d- and Zd-
percolation also follows from the coupling used by Benjamini and Schramm [16, Theorem
1]. However, (4.2.3) does not follow immediately from their work.

Proof of Proposition 4.1. The exploration of a single cluster, as described above, will be
generalized to construct CT(0) and CZ(0) simultaneously from a percolation configuration
on Zd. The difference between percolation on the torus and on Zd can be summarised by
saying that, on the torus, r-equivalent bonds have the same occupation status, while on Zd,
equivalent and distinct bonds have an independent occupation status. For the exploration
of the torus CT(0), we have to make sure that we explore equivalent bonds at most once. We
therefore introduce a third color, gray, indicating that the bond itself has not been explored
yet, but one of its equivalent bonds has. Therefore, at each step of the exploration process,
we have 4 different types of bonds on Zd:

• uncolored bonds, which have not been explored yet;

• black bonds, which have been explored and found to be occupied;

• white bonds, which have been explored and found to be vacant;

• gray bonds, of which an equivalent bond has been explored.
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0 b1

b2
y

zx

Figure 4.1: Illustration of the right hand side in (4.2.3). The bond b1 has been explored
first and is found to be Z-vacant and T-vacant. The bond b2 is r-equivalent and thus
has been explored in the Z exploration only, it is T-vacant (determined by b1 during the
T-exploration), but Z-occupied.

As in the exploration of a single cluster, we number the vertices of Zd in an arbitrary
way, and start with all bonds uncolored and only the origin active. Then we repeat choosing
the smallest active bond, and explore all uncolored bonds containing it. However, after
exploring a bond (and coloring it black or white), we color all bonds that are r-equivalent
to it gray. Again, this exploration is completed when there are no more active vertices.
This is equivalent to the fact that there are no more black (and therefore occupied) bonds
sharing a common endpoint with an uncolored bond.

The exploration process of CT(0) must be completed at some point, since the number
of bonds within CT(0) is finite and vertices turn active only if a bond containing it is
explored and is found to be occupied. We call the result of this exploration process the
T-exploration. The cluster CT(0) consists of all vertices in Tr,d that are contained in a bond
that is r-equivalent to a black bond. However, we have embedded the cluster CT(0) into

Zd, which will be useful when we also wish to describe the related cluster CZ(0).
For CZ(0), the exploration of the cluster is similar, but there are no gray bonds. We start

with the final configuration of the T-exploration, and set all vertices that are a common
endpoint of a black bond and a gray bond active. Then we make all gray bonds uncolored
again. From this setting we apply the coloring scheme that colors the uncolored bonds that
contain an active vertex. The coloring scheme is the one for the exploration cluster on Zd,
where no gray bonds are created. Again, we perform this exploration until there are no
more active vertices, i.e., no more black bonds attached to uncolored bonds. The result is
called the Z-exploration. In particular, the black bonds in the T-exploration are a subset

of the black bonds in the Z-exploration, which proves that {0 T↔ x} ⊆ ⋃
y

r∼x
{0 Z↔ y}, and

hence |CT(0)| ≤ |CZ(0)|.2
We now show (4.2.3). When {0 Z↔ y} occurs, then picture all Z-occupied paths from 0

to y in mind. Since x
r∼ y and {0 T↔ x}c occurs, each of these paths Z-connecting 0 and

y should contain a bond which is T-vacant. Fix such a (self-avoiding) path ω : 0 ←→ y
that is Z-occupied, and denote by b2 the first bond that is T-vacant, but Z-occupied, so

2To obtain a coupling for the full percolation configurations on Tr,d and Zd, we can finally let
all bonds that have not been explored be independently occupied with probability p, both in Tr,d

and in Zd, independently of each other. However, we do not rely on the coupling of the percolation
configuration, but only on the coupling of the clusters CT(0) and CZ(0).
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that (0
Z↔ b2) ◦ (b2 is Z − occ.) ◦ (b2

Z↔ y). Due to our coupling, this implies that there
exists a previously explored bond b1 that is r-equivalent to b2, which is (T- and Z-) vacant.

This, in turn, implies that there exists a vertex z that is visited by ω such that (z
Z↔ b1)

without using any of the bonds in ω. Therefore, the event (0
Z↔ z) ◦ (z

Z↔ b1) ◦ (z
Z↔

b2) ◦ (b2 is Z− occ.) ◦ (b2
Z↔ y) occurs, see Figure 4.1.

4.3 Random graph asymptotics

4.3.1 Results

Our first result gives asymptotic bounds on the size of the largest cluster.

Theorem 4.2. Fix d > 6 and L sufficiently large in the spread-out case, or d sufficiently
large for nearest-neighbor percolation. Then there exist constants b1, b2, C > 0, such that
for all ω1 ≥ C and ω2 ≥ 1,

PT,pc(Zd)

(
ω−1

1 V 2/3(log V )−4/3 ≤ |Cmax| ≤ ω2V
2/3

)
≥ 1− b1

ω
3/2
1 (log V )2

− b2

ω2
as r →∞.

(4.3.1)
The constant b1 can be chosen as 288 · 1203, and b2 equal to b6 in [24, Theorem 1.3].

One might compare this result with the work by Borgs, Chayes, van der Hofstad, Slade
and Spencer [24, 25]. These authors prove the following:

Theorem 4.3 (Scaling window [24, 25]). Assume the conditions in Theorem 4.2. Let
λ > 0 and Λ < ∞. Then there is a finite positive constant b (depending on λ and Λ) such

that, for p = pc(Tr,d) + Ω−1ε with |ε| ≤ ΛV −1/3 and ω ≥ 1,

PT,p
(
ω−1V 2/3 ≤ |Cmax| ≤ ωV 2/3

)
≥ 1− b

ω
. (4.3.2)

It should be noted that Theorem 4.3 is proven in [24] subject to a certain triangle
condition on the torus. Using the lace expansion, this triangle condition was established in
[25, Proposition 1.2 and Theorem 1.3] for d > 6 and sufficient spread-out or d sufficiently
large for nearest-neighbor percolation.

To prove Theorem 4.2, we will use the coupling argument in Proposition 4.1 relating
χT(p) and χZ(p) to show that there exists a constant Λ ≥ 0 such that, when r →∞,

pc(Tr,d)− Λ

Ω
V −1/3(log V )2/3 ≤ pc(Zd) ≤ pc(Tr,d) +

Λ

Ω
V −1/3. (4.3.3)

Combining (4.3.3) with Theorem 4.3 (and with Theorem 4.6 stated below) yields (4.3.1).

Inequality (4.3.1) implies that |Cmax|V −2/3 is a tight random variable, but it does not rule

out that |Cmax|V −2/3 → 0 as V →∞.
Our method is crucially based on the results in [24, 25], but we also rely on various

other mean-field results for percolation described in Section 3.6. The proof of each of these
results relies on the lace expansion, but the lace expansion will not be used in this chapter.

Note that in [24, 25], pc(Tr,d) was defined as in (4.1.3). The results in [24, 25], however,
do not establish rigorously that the exponent 1/3 in (4.1.3) is the only correct choice.
Indeed, [24, 25] suggest that a smaller exponent would also do, since the supercritical
results proved there are not sufficiently sharp. Theorem 4.2 shows that, at least in terms of
the power of V , the scaling of |Cmax| at pc(Zd) and at pc(Tr,d) is identical, thus establishing

that on Zd the choice (4.1.3) is appropriate.
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Unfortunately, the lower bound in Theorem 4.2 does not quite meet the upper bound.
Under a condition on the percolation two-point function, we can prove the matching lower
bound. To state this result, we introduce the quantity

χ̃Z(p, r) := sup
y

∑

z
r∼y, ‖z‖≥ r

2

τZ,p(z). (4.3.4)

Theorem 4.4. Under the assumptions in Theorem 4.2, suppose that there exists a K > 0
such that, for p = pc(Zd)−KΩ−1V −1/3 and some CK > 0, the bound

χ̃Z(p, r) ≤ CKV −2/3 (4.3.5)

holds. Then, for all ω ≥ 1 and b equal to b6 in [24, Theorem 1.3],

PT,pc(Zd)

(
1

ω
V 2/3 ≤ |Cmax| ≤ ωV 2/3

)
≥ 1− b

ω
. (4.3.6)

Inequality (4.3.6) implies that |Cmax|V −2/3 is tight, and that each possible weak limit along
any subsequence is non-zero. The result in (4.3.6) combined with the results in [24] would

indicate that the scaling of |Cmax| at pc(Tr,d) and at pc(Zd) agree, thus showing that there
is no significant difference between the internally and externally defined critical values.

Analogously to Theorem 4.2, we will show that when (4.3.5) holds, there exists a con-
stant Λ ≥ 0 such that, when r →∞,

pc(Tr,d)− Λ

Ω
V −1/3 ≤ pc(Zd) ≤ pc(Tr,d) +

Λ

Ω
V −1/3, (4.3.7)

and deduce (4.3.6) using Theorem 4.3.
We strongly believe that (4.3.5) holds, and we conclude this subsection by stating suf-

ficient conditions for it. Indeed, (4.3.5) follows when the two-point function is sufficiently
smooth. For example, the condition

max
‖z‖≥ r

2 , x∈Tr,d

τZ,p(z)

τZ,p(z + x)
≤ C (4.3.8)

for some positive constant C (independent of r), where we consider Tr,d = {−br/2c, . . . ,
dr/2e − 1}d as a subset of Zd, implies that

τZ,p(z) ≤ C

V

∑

x∈Tr,d

τZ,p(z + x) for ‖z‖ ≥ r

2
. (4.3.9)

Note that, for every y ∈ Zd, we have that
∑

z
r∼y

∑
x∈Tr,d

f(z + x) =
∑

x∈Zd f(x) for all

functions f : Zd 7→ R. Consequently,

χ̃Z(p, r) = sup
y

∑

z
r∼y, ‖z‖≥ r

2

τZ,p(z) ≤ C

V
sup

y

∑

z
r∼y, ‖z‖≥ r

2

∑

x∈Tr,d

τZ,p(z + x)

≤ C

V

∑

x∈Zd

τZ,p(x) =
C

V
χZ(p).

(4.3.10)

Thus, for p = pc(Zd)−KΩ−1V −1/3, we obtain by the fact that γP = 1 (see Theorem 3.16,

or (4.3.13) below) that χ̃Z(p, r) is bounded from above by a constant multiple of V −2/3.
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Another approach to (4.3.5) is to split the sum over z in (4.3.4). Note that, for p =

pc(Zd)−K1Ω
−1V −1/3, the sum due to ‖z‖ ≤ K1V

1/6 can be bounded, for any K1 > 0, as

sup
y

∑

z
r∼y, r

2≤‖z‖≤K1V 1/6

τZ,p(z) ≤ C sup
y

∑

z
r∼y, r

2≤‖z‖≤K1V 1/6

(‖z‖+ 1)−(d−2) ≤ CK2
1V −2/3.

(4.3.11)

Therefore, we are left to give a bound on the contribution from ‖z‖ ≥ K1V
1/6. The restric-

tion ‖z‖ ≥ K1V
1/6 is equivalent to ‖z‖ ≥ CK,K1ξ(p), where ξ(p) denotes the correlation

length. Indeed, ξ(p) is comparable in size to (pc(Zd)− p)1/2 (see Theorem 3.18), and the
constant CK,K1 can be made arbitrarily large by taking K1 large. However, in order to
bound this contribution we miss sufficient bounds on τZ,p(z) for ‖z‖ ≥ CK,K1ξ(p).

4.3.2 Discussion of related literature

In this section we discuss the relation between Theorems 4.2 and 4.4 and the literature.
Borgs, Chayes, Kesten and Spencer [22, 23] consider the largest cluster in a finite box

of width r under free boundary conditions, i.e., clusters are connected only within the box.
They show that, for p = pc(Zd), the largest critical cluster scales like V δP/(1+δP) (where δP

is defined in (1.1.8)) under some conditions related to the so-called scaling and hyperscaling
postulates. The hyperscaling postulates are proven in dimension d = 2, and are widely
believed to hold up to the upper critical dimension 6. For the mean-field value δP = 2
we would obtain the V 2/3 asymptotics. However, in [22, 23], it was assumed that crossing
probabilities of a cube of dimensions (r, 3r, . . . , 3r) remain uniformly bounded away from 1

as r →∞. In high dimensions, Aizenman [2] proves that any cube {0, . . . , r}d has crossings
with high probability, so that the results in [22, 23] do not apply. Also, in high dimensions,
the hyperscaling relations are not valid. More specifically, one hyperscaling relation is that

2− η = d
δ − 1

δ + 1
. (4.3.12)

Under the conditions of Theorem 4.2, we have η = 0 and δ = 2 (cf. Theorem 3.16), so that
this hyperscaling relation fails for d > 6.

Theorems 4.2 and 4.4 study the scaling of the largest critical percolation cluster on the
high-dimensional torus. These results indicate that the scaling limit of the largest critical
cluster should be described by |Cmax|V −2/3. We conjecture that, at p = pc(Zd), the random

variables |Cmax|V −2/3 converge as r → ∞ to some (non-trivial) limiting distribution. It
would be of interest to investigate whether, if the rescaled largest cluster converges, the
limit law is identical to the limit of |Cmax|n−2/3 for the largest cluster of the random graph

on n vertices, as identified by Aldous [13]. The convergence of |Cmax|V −2/3 would describe
part of the incipient infinite cluster (IIC) for percolation on the torus, as described by
Aizenman [2]. Aizenman’s IIC is closely related to the scaling limit of percolation on large
cubes, see [2, Section 5]. Mind also the warning at the bottom of [2, p. 553].

Recall our discussion of IIC in Section 3.6. We conjecture that, as r → ∞, the law
of local configurations around a uniform point in Cmax at criticality converges to the IIC
as constructed in [70]. This result would give a natural link between the scaling limit of
critical percolation on a large box in [2] and Kesten’s notion of the IIC in [81].

According to the conjecture in [2], the size of the largest connected component |Cmax|
on the cube {0, . . . , r − 1}d under free bondary conditions scales like r4 (as under bulk

boundary conditions), in contrast to the V 2/3-scaling under periodic boundary conditions.
Such qualitatively different behavior between free and periodic boundary conditions has
also been observed when studying loop-erased random walks and uniform spanning trees
on a finite box in high dimensions, as we will explain now.



4.3 Random graph asymptotics 65

Choose two uniform points x and y from the d-dimensional box of side length r, with
d > 4. We are interested in the graph distance between these two points on a uniform
spanning tree. Pemantle [92] showed that this graph distance has the same distribution as
the length of a loop-erased random walk starting in x and stopped when reaching y. Loop-
erased random walk above 4 dimensions converges to Brownian motion (cf. [85, Section
7.7]), that is, it scales diffusively. This suggests that, under free boundary conditions, the
graph distance between x and y scales like r2. On the other hand, the combined results of
Benjamini and Kozma [15] and Peres and Revelle [93] show that the distance between x and

y on a uniformly chosen spanning tree on the torus Tr,d is of the order V 1/2 = rd/2 > r2

for d > 4. Schweinsberg [98] identifies the logarithmic correction for the scaling on the
4-dimensional torus.

4.3.3 The upper bound on the maximal critical cluster

In Theorem 3.16 we have proven that the critical exponent γP for percolation exists and
is equal to 1 whenever d is sufficiently large in the nearest-neighbor model, or d > 6 and L
sufficiently large in the spread-out model. That is, under the conditions of Theorem 4.2,
there exists a constant Cχ > 1 such that3

1

Ω (pc(Zd)− p)
≤ χZ(p) ≤ Cχ

Ω(pc(Zd)− p)
as p ↗ pc(Zd). (4.3.13)

We will use (4.3.13) at various places throughout the proof of Theorems 4.2 and 4.4.
The following corollary establishes the upper bound on pc(Zd) and the upper bound

on |Cmax| in Theorem 4.2. For the proof, we first use Proposition 4.1 to obtain that
χT(p) ≤ χZ(p). Then we use (4.3.13) to turn this into relations between pc(Tr,d) and

pc(Zd). Finally, using Theorem 4.3 we obtain a bound on |Cmax|. We now present the
details of the proof.

Corollary 4.5. Under the conditions of Theorem 4.2 there exists a constant Λ ≥ 0 such
that, when r →∞,

pc(Zd) ≤ pc(Tr,d) +
Λ

Ω
V −1/3. (4.3.14)

Consequently, for b as in Theorem 4.3 and all ω ≥ 1,

PT,pc(Zd)

(
|Cmax| ≤ ωV 2/3

)
≥ 1− b

ω
. (4.3.15)

Proof. By Proposition 4.1,

χT(pc(Tr,d)) ≤ χZ(pc(Tr,d)). (4.3.16)

When pc(Tr,d) ≥ pc(Zd), then (4.3.14) holds with Λ = 0, so we will next assume that

pc(Tr,d) < pc(Zd). Using (4.1.3), (4.3.16) and (4.3.13), we obtain that

λV 1/3 ≤ Cχ

Ω(pc(Zd)− pc(Tr,d))
, (4.3.17)

so that

pc(Zd) ≤ pc(Tr,d) +
Cχ

λΩ
V −1/3, (4.3.18)

which is (4.3.14) with Λ = λ−1Cχ.

3Strictly speaking, Theorem 3.16 implies only that χZ(p)Ω
(
pc(Zd)− p

)
is bounded away from

0 and ∞. The fact that 1 is a lower bound follows from (3.5.16).
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The bound (4.3.15) follows from the fact that, with p = pc(Tr,d)+ΛΩ−1V −1/3 ≥ pc(Zd)
by (4.3.14),

PT,pc(Zd)

(
|Cmax| ≤ ωV 2/3

)
≥ PT,p

(
|Cmax| ≤ ωV 2/3

)
≥ 1− b

ω
(4.3.19)

for some constant b > 0 depending on λ and Λ, and all ω ≥ 1. We have used Theorem 4.3
in the last bound.

4.3.4 The lower bound on the maximal critical cluster

In this section, we will bound χT(p) − χZ(p) from below. First we use the results and
framework of Section 4.2 to prove such a lower bound in terms of χ̃Z(p, r). Subsequently,
assuming (4.3.5), we use Theorem 4.3, Corollary 4.5 and (4.3.2) to prove Theorem 4.4.

Some more work is required if we do not assume (4.3.5). We first deduce a bound on
χ̃Z(p, r) using the bounds in Theorems 3.17 and 3.18. Then we use this bound together with
Lemma 4.7 to show Theorem 4.2 with the same ingredients as for the proof of Theorem
4.4.

Also the proof of the lower bound makes essential use of results by Borgs, Chayes,
van der Hofstad, Slade and Spencer [24, 25] for percolation on Tr,d. It turns out that
for Theorem 4.2 it is not sufficient to use Theorem 4.3, since (4.3.3) does not match the
assumptions of Theorem 4.3. Instead, we use the following theorem providing bounds for
the subcritical phase.

Theorem 4.6 (Subcritical phase [24, 25]). Under the conditions in Theorem 4.2, for λ
sufficiently small and any q ≥ 0,

(
λ−1V −1/3 + q

)−1

≤ χT
(
pc(Tr,d)− Ω−1q

) ≤
(
λ−1V −1/3 + q/2

)−1

. (4.3.20)

Also, for p = pc(Tr,d)− Ω−1q and ω ≥ 1,

PT,p
(
|Cmax| ≥ χ2

T(p)

3600 ω

)
≥

(
1 +

36 χ3
T(p)

ω V

)−1

. (4.3.21)

Instead of the upper bound in (4.3.20), we will mainly use the cruder bound

χT
(
pc(Tr,d)− Ω−1q

) ≤ 2

q
. (4.3.22)

Theorem 4.6 is implied by combining [24, Theorem 1.2] with [25, Proposition 1.2 and
Theorem 1.3].

A lower bound on χT(p) in terms of χZ(p).

Lemma 4.7. For all p ∈ [0, 1] and r ≥ 3 in the nearest-neighbor model or r ≥ 2L + 1 in
the spread-out model,

χT(p) ≥ χZ(p)
(
1− χZ(p) χ̃Z(p, r)− p Ω2χZ(p)2χ̃Z(p, r)

)
. (4.3.23)

Proof. The bound (4.3.23) will be achieved by comparing the two-point functions on the
torus and on Zd. We will write P = PZ,T and omit the percolation parameter p from the
notation. Using (4.2.2), we write

τT(x) = P
( ⋃

y∈Zd:y
r∼x

{0 Z↔ y}
)
− P

( ⋃

y∈Zd:y
r∼x

{0 Z↔ y} ∩ {0 T↔ x}c
)
. (4.3.24)
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We further bound, using inclusion-exclusion,

P
( ⋃

y∈Zd:y
r∼x

{0 Z↔ y}
)
≥

∑

y∈Zd:y
r∼x

P
(
0
Z↔ y

)− 1

2

∑

y1 6=y2∈Zd:y1,y2
r∼x

P
(
0
Z↔ y1, y2

)
, (4.3.25)

so that

τT(x) ≥
∑

y∈Zd:y
r∼x

τZ(y)− 1

2

∑

y1 6=y2∈Zd:y1,y2
r∼x

P
(
0
Z↔ y1, y2

)−P
( ⋃

y∈Zd:y
r∼x

{0 Z↔ y}∩{0 T↔ x}c
)
.

(4.3.26)
Summation over x ∈ Tr,d and using

∑
x∈Tr,d

∑
y∈Zd:y

r∼x
=

∑
y∈Zd yields that

χT(p) ≥ χZ(p)− χT,1(p)− χT,2(p), (4.3.27)

where

χT,1(p) =
1

2

∑

y1 6=y2∈Zd:y1
r∼y2

P
(
0
Z↔ y1, y2

)
, (4.3.28)

χT,2(p) =
∑

x∈Tr,d

P
( ⋃

y∈Zd:y
r∼x

{0 Z↔ y} ∩ {0 T↔ x}c
)
. (4.3.29)

Here we use that the sum over x and over y1 and y2 such that y1, y2
r∼ x is the same as

the sum over y1 and y2 such that y1
r∼ y2. We are left to bound χT,1(p) and χT,2(p). We

start by bounding χT,1(p). Using the tree-graph inequality [9],

P
(
0
Z↔ x, y

) ≤
∑

z∈Zd

τZ(z) τZ(x− z) τZ(y − z), (4.3.30)

we obtain

χT,1(p) ≤ 1

2

∑
z

∑

y1 6=y2:y1
r∼y2

τZ(z) τZ(y1 − z) τZ(y2 − z)

=
1

2
χZ(p)

∑

y′1 6=y′2:y′1
r∼y′2

τZ(y
′
1) τZ(y

′
2). (4.3.31)

Here, and in the remainder of the proof, all sums over vertices will be over Zd unless written
explicitly otherwise.

Since y′1 6= y′2 and y′1
r∼ y′2, we must have that ‖y′1‖ ≥ r

2
or ‖y′2‖ ≥ r

2
. By symmetry,

these give the same contributions, so that,

χT,1(p) ≤ χZ(p)
∑

y′1

τZ(y
′
1)

∑

y′2:y′1
r∼y′2,‖y′2‖≥ r

2

τZ(y
′
2) ≤ χZ(p)2 χ̃Z(p, r), (4.3.32)

where we recall (4.3.4). We are left to prove that χT,2(p) ≤ p Ω2χ3
Z(p) χ̃Z(p, r).

We use (4.2.3) and note that the right hand side of (4.2.3) does not depend on x. Since∑
x∈Tr,d

∑
y∈Zd:y

r∼x
=

∑
y∈Zd , this brings us to

χT,2(p) ≤
∑

y∈Zd

P
( ⋃

b1 6=b2:b1
r∼b2

⋃

z∈Zd

(0
Z↔ z)◦ (z

Z↔ b1)◦ (z
Z↔ b2)◦ (b2 is Z−occ.)◦ (b2

Z↔ y)
)
.

(4.3.33)
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Therefore, by the BK-inequality (Proposition 2.3),

χT,2(p) ≤
∑
y,z

∑

b1 6=b2:b1
r∼b2

P
(
(0

Z↔ z) ◦ (z
Z↔ b1) ◦ (z

Z↔ b2) ◦ (b2 is Z− occ.) ◦ (b2
Z↔ y)

)

≤ p
∑
y,z

∑

b1 6=b2:b1
r∼b2

τZ(z) τZ(b1 − z) τZ(b2 − z) τZ(y − b2). (4.3.34)

We can perform the sums over z, y to obtain, with b′i = bi − z,

χT,2(p) ≤ p χZ(p)2
∑

b′1 6=b′2 : b′1
r∼b′2

τZ(b
′
1) τZ(b

′
2) = p Ω2χZ(p)2

∑

u6=v : u
r∼v

τZ(u) τZ(v), (4.3.35)

where the factor Ω2 arises from the number of choices for b′1 and b′2 for fixed b′1 and b′2.
Therefore, by (4.3.32), we arrive at the bound

χT,2(p) ≤ p Ω2χ3
Z(p) χ̃Z(p, r). (4.3.36)

The bounds (4.3.32) and (4.3.36) complete the proof of (4.3.23).

Proof of the main results.

Proof of Theorem 4.4. We assume (4.3.5) and take p = pc(Zd) − K1Ω
−1V −1/3 for K1

sufficiently large. Choose V sufficiently large to ensure that p > 0. When K1 ≥ K, the
bound (4.3.5) still holds. We obtain from Lemma 4.7 together with (4.3.13) and (4.3.5)
that

χT(p) ≥ K−1
1 V 1/3

(
1− CχCKK−1

1 V −1/3 − p Ω2C2
χCKK−2

1

)
≥ c̃K1V 1/3, (4.3.37)

where c̃K1 is chosen appropriately. Let K1 be so large that p < pc(Tr,d), which can be
done by (4.3.14). Then, by (4.3.22),

2

Ω(pc(Tr,d)− pc(Zd) + K1V −1/3)
≥ χT(p) ≥ c̃K1V 1/3, (4.3.38)

so that

pc(Zd) ≥ pc(Tr,d) +

(
K1 − 2

c̃K1Ω

)
V −1/3, (4.3.39)

which is (4.3.7) with Λ =
(
2 c̃−1

K1
− ΩK1

) ∨ 0. This, together with (4.3.14), permits using
Theorem 4.3. By doing so, we obtain that, for p equal to the right hand side of (4.3.39),

PT, pc(Zd)

(
ω−1V 2/3 ≤ |Cmax| ≤ ωV 2/3

)
≥ PT, p

(
ω−1V 2/3 ≤ |Cmax| ≤ ωV 2/3

)
≥ 1− b

ω
.

(4.3.40)
This completes the proof of Theorem 4.4.

Unfortunately, we cannot quite prove (4.3.5) so we will give cruder upper bounds on
χ̃Z(p, r). This is the content of the following lemma:

Lemma 4.8. Under the conditions in Theorem 4.2, choose K sufficiently large, and let
R = K(log V )(pc(Zd)− p)−1/2. Then for all p ≤ pc(Zd)−KΩ−1V −1/3,

χ̃Z(p, r) ≤ Cχ̃R2

V
. (4.3.41)

for some constant Cχ̃ > 0.



4.3 Random graph asymptotics 69

Note that it is here where the power of log V comes into play.

Proof. For p ≤ pc(Zd)−KΩ−1V −1/3, we bound

χ̃Z(p, r) = sup
y

∑

z
r∼y,‖z‖≥ r

2

τZ,p(z) ≤ sup
y

∑

z
r∼y,‖z‖≥R

τZ,p(z)+sup
y

∑

z
r∼y, r

2≤‖z‖≤R

τZ,p(z). (4.3.42)

We start with the second contribution, for which we use (3.6.2). Since ‖z‖ ≥ r
2
, we have

that

τZ,p(z) ≤ τZ,pc(Zd)(z) ≤ Cτ

(|z|+ 1)d−2
≤ C1

V

∑

x∈Tr,d

Cτ

(|z + x|+ 1)d−2
(4.3.43)

for constants Cτ , C1 > 0, where C1 depends on the dimension d only. Therefore,

sup
y

∑

z
r∼y: r

2≤‖z‖≤R

τZ,p(z) ≤ C1

V
sup

y

∑

x∈Tr,d

∑

z
r∼y:‖z‖≤R

Cτ

(|z + x|+ 1)d−2

≤ C1

V

∑

z:‖z‖≤2R

Cτ

(|z|+ 1)d−2
≤ C2R

2

V
,

(4.3.44)

where the positive constant C2 depends on d and L only. For the sum due to ‖z‖ ≥ R, we
use (3.6.3) and (3.6.5) in Theorem 3.18 to see that

sup
y

∑

z
r∼y, ‖z‖≥R

τZ,p(z) ≤ sup
y

∑

z
r∼y, ‖z‖≥R

exp
{
−C−1

ξ ‖z‖ (pc(Zd)− p)1/2
}

. (4.3.45)

Since ‖z‖ ≥ 1
d
(|z1|+ · · ·+ |zd|) for all z = (z1, . . . , zd) ∈ Zd, (4.3.45) can be further bounded

from above by

∑

z:‖z‖≥R

exp
{
−C−1

ξ ‖z‖ (pc(Zd)− p)1/2
}

≤

 ∑

z1:|z1|≥R

exp

{
−(dCξ)

−1 |z1|
(
pc(Zd)− p

)1/2
}


d

≤ C3

(
pc(Zd)− p

)−d/2

exp

{
− R

Cξ

(
pc(Zd)− p

)1/2
}

, (4.3.46)

for some constant C3 > 0. Since R = K(log V )(pc(Zd) − p)−1/2, the exponential term

can be bounded by V −K/Cξ . Furthermore,
(
pc(Zd)− p

)−d/2 ≤ (
KΩ−1

)−d/2
V d/6 by our

choice of p. Choose K so large that K/Cξ−d/6 > 1. Then the upper bound is of the order
o(V −1). This, together with (4.3.44), proves the claim.

We next use Lemma 4.8 to prove the lower bound in (4.3.3):

Lemma 4.9. Under the conditions in Theorem 4.2, there exists a constant Λ ≥ 0 such
that

pc(Zd) ≥ pc(Tr,d)− Λ

Ω
V −1/3(log V )2/3. (4.3.47)
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Proof. By Lemma 4.8, for all p ≤ pc(Zd)−KΩ−1V −1/3,

χ̃Z(p, r) ≤ Cχ̃K2(log V )2

V (pc(Zd)− p)
. (4.3.48)

With (4.3.13), this can be further bounded as

χ̃Z(p, r) ≤ Cχ̃K2 (log V )2

V
Ω χZ(p). (4.3.49)

Then, by Lemma 4.7 and χZ(p) ≥ 1,

χT(p) ≥ χZ(p)
(
1− (1 + pΩ2)χ̃(p, r) χZ(p)2

)
(4.3.50)

if Ω and r are sufficiently large. Combining (4.3.49) and (4.3.50) yields

χT(p) ≥ χZ(p)

(
1− (1 + pΩ2)Ω Cχ̃K2 (log V )2

V
χZ(p)3

)
. (4.3.51)

Let

p̂ := pc(Zd)− Ĉ

Ω
V −1/3(log V )2/3 (4.3.52)

for some (sufficiently large) constant Ĉ > 0. Depending on Ĉ, we take V large to ensure
that p̂ > 0. Then by (4.3.13),

χZ(p̂)3 ≤ C3
χ

Ω3 (pc(Zd)− p̂)3
=

(
Cχ

Ĉ

)3

V (log V )−2. (4.3.53)

Substituting (4.3.53) into (4.3.51) for p = p̂, using p̂ ≤ 1 and the lower bound in (4.3.13)
give

χT(p̂) ≥
(

1− (1 + Ω2)Ω Cχ̃K2C3
χ

Ĉ3

)
1

Ĉ

V 1/3

(log V )2/3
. (4.3.54)

We make the Ĉ in (4.3.52) so large that

ĉ :=

(
1− (1 + Ω2)Ω Cχ̃K2C3

χ

Ĉ3

)
1

Ĉ
> 0, (4.3.55)

so that (4.3.54) simplifies to

χT(p̂) ≥ ĉ V 1/3(log V )−2/3. (4.3.56)

The quantity

q := Ω (pc(Tr,d)− p̂) = ĈV −1/3(log V )2/3 − Ω
(
pc(Zd)− pc(Tr,d)

)
, (4.3.57)

is positive if V is large enough, by (4.3.14). Hence Theorem 4.6 is applicable, and (4.3.22)
yields

χT(p̂) = χT
(
pc(Tr,d)− q Ω−1) ≤ 2

Ω (pc(Tr,d)− p̂)
. (4.3.58)

Merging (4.3.56) and (4.3.58), we arrive at

pc(Tr,d)− pc(Zd) ≤ 1

Ω

[
2

ĉ
− Ĉ

]
V −1/3(log V )2/3, (4.3.59)

which is (4.3.47) with Λ = (2ĉ−1 − Ĉ) ∨ 0.
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Corollary 4.10. Under the conditions in Theorem 4.2, there exists a constant C > 0 such
that, for all ω1 ≥ C,

PT,pc(Zd)

(
|Cmax| ≥ ω−1

1 (log V )−4/3 V 2/3
)
≥

(
1 +

1203/2 · 288

ω
3/2
1 (log V )2

)−1

. (4.3.60)

Proof. Take V so large that λ−1 ≤ √
ω1 120−1(log V )2/3, and let

p̂ = pc(Tr,d)−√ω1 120−1Ω−1V −1/3(log V )2/3. (4.3.61)

Then, by (4.3.20),

χ2
T(p̂) ≥

(
1

λ−1V −1/3 +
√

ω1 120−1V −1/3(log V )2/3

)2

≥ 3600 ω−1
1 (log V )−4/3 V 2/3.

(4.3.62)
This enables the bound

PT,pc(Zd)

(
|Cmax| ≥ ω−1

1 (log V )−4/3 V 2/3
)
≥ PT,pc(Zd)

(
|Cmax| ≥ χ2

T (p̂)

3600

)
. (4.3.63)

By Lemma 4.9, p̂ ≤ pc(Zd) for ω1 ≥ C, and C > 0 large enough. Thus, we use (4.3.21)
and (4.3.22) to bound (4.3.63) further from below by

PT,p̂
(
|Cmax| ≥ χ2

T (p̂)

3600

)
≥

(
1 +

36 χ3
T (p̂)

V

)−1

≥
(

1 +
36 · 23 · 1203

ω
3/2
1 (log V )2

)−1

. (4.3.64)

Combining our results from Sections 4.3.3 and 4.3.4, we finally prove Theorem 4.2:

Proof of Theorem 4.2. By Corollaries 4.5 and 4.10, for ω1 ≥ C for some sufficiently large
C and ω2 ≥ 1,

PT,pc(Zd)

(
ω−1

1 (log V )−4/3 V 2/3 ≤ |Cmax| ≤ ωV 2/3
)
≥ 1−




1203·288
ω

3/2
1 (log V )2

1 + 1203·288
ω

3/2
1 (log V )2


− b2

ω 2
,

(4.3.65)
where the term in brackets on the right hand side vanishes for V →∞. Then b1 in (4.3.1)
can be taken as 1203 · 288. This proves Theorem 4.2.

4.4 The role of boundary conditions

In this section, we discuss the impact of boundary conditions on the geometry of the largest
critical cluster, reflecting remarks made by Michael Aizenman in personal communication
with Remco van der Hofstad (2005). The purpose of this discussion is to illustrate the
consequences of bulk vs. periodic boundary conditions, apart from the previously consid-
ered |Cmax|. In particular, the (conditional) probability of randomly chosen points to be
connected behaves rather differently for the two different boundary conditions, as we will
show now.

For the d-dimensional box {−br/2c, . . . , dr/2e − 1}d, we write Br,d if we consider it
with bulk boundary conditions, and we write Tr,d if it is equipped with periodic boundary
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conditions. We fix p = pc(Zd) and further omit this subscript. Furthermore, we write C for
a positive constant, whose value may change from line to line. Assume that the conditions
in Theorem 4.2 are satisfied. Let X1, X2, X3 and X4 be 4 uniformly chosen vertices in
Br,d. Then Aizenman notices that, with bulk boundary conditions,

PZ(X1 ←→ X3 | X1 ←→ X2, X3 ←→ X4) → 0, (4.4.1)

as the width of the torus r tends to infinity. Indeed,

PZ(X1 ←→ X3 | X1 ←→ X2, X3 ←→ X4) =
PZ(X1 ←→ X2, X3, X4)

PZ(X1 ←→ X2, X3 ←→ X4)
. (4.4.2)

We can compute

PZ(X1 ←→ X2, X3, X4) = V −4
∑

x∈Br,d

EZ[|CZ(x, r)|3], (4.4.3)

where CZ(x, r) is the set of vertices y ∈ Br,d for which x
Z↔ y, and the right hand side will

be bounded from above by the following lemma.

Lemma 4.11. Under the conditions of Theorem 4.2, for p = pc(Zd) and r ≥ 3∨ (2L +1),

EZ[|CZ(x, r)|3] ≤ Cr10, for all x ∈ Br,d. (4.4.4)

The proof will be given at the end of this section.
On the other hand,

PZ(X1 ←→ X2, X3 ←→ X4) = V −4
∑

x,y,u,v∈Br,d

PZ(x
Z↔ u, y

Z↔ v).

By the FKG-inequality, for all x, y, u, v ∈ Br,d,

PZ(x
Z↔ u, y

Z↔ v) ≥ PZ(x Z↔ u)PZ(y
Z↔ v), (4.4.5)

so that

PZ(X1 ←→ X2, X3 ←→ X4) ≥ V −4


 ∑

x,u∈Br,d

PZ(x
Z↔ u)




2

. (4.4.6)

For fixed x, by (3.6.2),

∑
u∈Br,d

PZ(x
Z↔ u) ≥

∑
u∈Br,d

cτ

(|x− u|+ 1)d−2
≥ Cr2. (4.4.7)

Summing over x gives an extra factor V . We obtain that

PZ(X1 ←→ X2, X3 ←→ X4) ≥ CV −2r4. (4.4.8)

Therefore, when d > 6,

PZ(X1 ←→ X3 | X1 ←→ X2, X3 ←→ X4) =
PZ(X1 ←→ X2, X3, X4)

PZ(X1 ←→ X2, X3 ←→ X4)

≤ V −3r10

CV −2r4
=

r6

CV
→ 0. (4.4.9)
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All this changes when we consider the torus with periodic boundary conditions and we
assume that

χT(pc(Zd)) ³ V 1/3. (4.4.10)

Note that (4.4.10) is a consequence of (4.3.7), which follows from (4.3.5), and Theorem
4.6. In this case,

PT(X1 ←→ X2, X3, X4) ≥ PT(X1, X2, X3, X4 ∈ Cmax). (4.4.11)

Thus, for ω ≥ 1 sufficiently large,

PT(X1 ←→ X2, X3, X4) ≥ PT
(
X1, X2, X3, X4 ∈ Cmax, |Cmax| ≥ 1

ω
V 2/3

)

≥ ω−4V −4/3PT
(
|Cmax| ≥ 1

ω
V 2/3

)
≥ 1

2
ω−4V −4/3. (4.4.12)

On the other hand, we have that

PT(X1 ←→ X2, X3 ←→ X4) ≤ PT
(
(X1 ←→ X2) ◦ (X3 ←→ X4)

)
+PT(X1 ←→ X2, X3, X4),

(4.4.13)
and, by the BK-inequality,

PT
(
(X1 ←→ X2) ◦ (X3 ←→ X4)

) ≤ PT(X1 ←→ X2)PT(X3 ←→ X4)

= V −2χT(pc(Zd))2 ≤ CV −4/3.
(4.4.14)

Therefore, assuming (4.4.10), we obtain

lim sup
V→∞

PT(X1 ←→ X3 | X1 ←→ X2, X3 ←→ X4) > 0. (4.4.15)

The difference between (4.4.9) and (4.4.15) was conjectured by Aizenman. The obvious
conclusion is that boundary conditions play a crucial role for high-dimensional percolation
on finite cubes.

We do not know that (4.4.10) holds, so now we will investigate the changes using
the results in Theorem 4.2 in the above discussion. Thus, we will use that, with high
probability,

V 2/3(log V )−4/3 ≤ |Cmax| ≤ ωV 2/3, (4.4.16)

and
1

ω
V 1/3(log V )−2/3 ≤ χT(pc(Zd)) ≤ ωV 1/3. (4.4.17)

We will see that the conclusion weakens. Indeed, by (4.4.9),

PZ(X1 ←→ X3 | X1 ←→ X2, X3 ←→ X4) ≤ Cr6V −1 = Cr6−d → 0, (4.4.18)

where the convergence is as an inverse power of r, while by an argument as in (4.4.12),
now using (4.4.16),

PT(X1 ←→ X3 | X1 ←→ X2, X3 ←→ X4) ≥ C(log V )−
16
3 , (4.4.19)

which only converges to zero as a power of log r. Therefore, the main conclusion that
boundary conditions play an essential role is preserved.

We have argued that the largest critical cluster with bulk boundary conditions is much
smaller than the one with periodic boundary conditions. We will now argue that, under
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the condition of Theorem 4.2, critical percolation clusters on the periodic torus Tr,d are
similar to percolation clusters on a finite box with bulk boundary conditions, where the
box has width V 1/6 = rd/6 À r. Here we rely on the coupling in Proposition 4.1. In
particular, when the origin 0 is T-connected to a uniformly chosen point X, then, with
high probability, there is no Z-connection at distance o(V 1/6) from 0 to a point that is
r-equivalent to X. In other words, an occupied path from 0 to X on the torus typically
wraps around the torus several times.

This will be illustrated by the following calculation. Assume for the moment that
χT(pc(Zd)) ³ V 1/3. This follows from our assumption (4.3.5). Choose the vertex X
uniformly from the torus Tr,d. Then, for any ε > 0,

PZ,T
(∃y ∈ Zd : y

r∼ X, |y| ≤ εV 1/6, 0
Z↔ y | 0 T↔ X

)

≤ PZ,T
(∃y ∈ Zd : y

r∼ X, |y| ≤ εV 1/6, 0
Z↔ y

)

PZ,T
(
0
T↔ X

) . (4.4.20)

For the denominator, we rewrite

PZ,T
(
0
T↔ X

)
= V −1χT(pc(Zd)) ≥ CV −2/3, (4.4.21)

whereas the numerator in (4.4.20) is bounded from above by

∑

y∈Zd

PZ,T
(
y

r∼ X, |y| ≤ εV 1/6, 0
Z↔ y

)
≤ 1

V

∑

y:|y|≤εV 1/6

1

(|y|+ 1)d−2
≤ Cε2V −2/3. (4.4.22)

Thus,

PZ,T
(∃y ∈ Zd : y

r∼ X, |y| ≤ εV 1/6, 0
Z↔ y | 0 T↔ X

) ≤ Cε2. (4.4.23)

We have seen that |Cmax| ³ r4 under bulk boundary conditions, whereas |Cmax| ³ V 2/3

under periodic boundary conditions. Thus, the maximal critical percolation cluster on a
high dimensional torus is of the order |Cmax| ³ R4 with R = V 1/6 À r, so that Cmax is
4-dimensional, but now in a box of width R. This suggests that percolation on a box Br,d

with periodic boundary conditions is similar to percolation on the larger box BR,d under

bulk boundary conditions, with R = V 1/6 À r.

Without assuming (4.3.5), the lower bound on the denominator is only CV −2/3(log V )2/3,
thus we obtain the weaker bound

PZ
(
∃y ∈ Zd : y

r∼ X, |y| ≤ εV 1/6(log V )−1/3, 0
Z↔ y | 0 T↔ X

)
≤ ε2. (4.4.24)

The conclusion that occupied paths are long is preserved.

We conclude this section with the proof of Lemma 4.11.

Proof of Lemma 4.11. For all x ∈ Br,d,

EZ[|CZ(x, r)|3] =
∑

s,t,u∈Br,d

PZ
(
x
Z↔ s

Z↔ t
Z↔ u

)
(4.4.25)

≤ 3
∑

s,t,u∈Br,d

v,w∈Zd

PZ
(
(x

Z↔ v) ◦ (v
Z↔ s) ◦ (v

Z↔ w) ◦ (w
Z↔ t) ◦ (w

Z↔ u)
)

.
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Using the BK-inequality, this can be further bounded from above by

3

(
sup
v∈Zd

∑
s∈Br,d

τZ(s− v)

)2 ∑
u∈Br,d

τ∗3Z (x− u), (4.4.26)

where τ∗3Z denotes the threefold convolution of τZ. We begin to bound the expression in
parenthesis. Fix v ∈ Zd. If the distance between v and the box Br,d is larger than r, then

τZ(s− v) ≤ Cr−(d−2) for all s ∈ Br,d, by (3.6.2). Hence, in this case,

∑
s∈Br,d

τZ(s− v) ≤ Cr2. (4.4.27)

Otherwise, ‖s− v‖ ≤ 2r for all s ∈ Br,d, and therefore, by (4.3.44),

∑
s∈Br,d

τZ(s− v) ≤
∑

z∈B2r,d

τZ(z) ≤ Cr2. (4.4.28)

Using [62, Prop. 1.7 (i)] for d > 6, we see that, for all z ∈ Zd, the upper bound in (3.6.2)
implies that

τ∗2Z (z) ≤ C

(|z|+ 1)d−4
, (4.4.29)

which in turn implies, when d > 6, so that (d− 2) + (d− 4) > d,

τ∗3Z (z) = (τZ ∗ τ∗2Z )(z) ≤ C

(|z|+ 1)d−6
. (4.4.30)

Thus we obtain, for x ∈ Br,d,

∑
u∈Br,d

τ∗3Z (x− u) ≤
∑

z∈B2r,d

τ∗3Z (z) ≤
∑

z∈B2r,d

C

(|z|+ 1)d−6
≤ Cr6. (4.4.31)

The combination of the bounds (4.4.25)–(4.4.31) yields the desired upper bound Cr10.





Chapter 5

The scaling limit of long-range

self-avoiding walk

In this chapter we consider the scaling limit of long-range self-avoiding walk in dimension
d > 2(α ∧ 2). Under appropriate scaling we prove convergence to Brownian motion for
α ≥ 2, and to α-stable Lévy motion for α < 2. This complements results by Slade
[100, 101], who proves convergence to Brownian motion for nearest-neighbor self-avoiding
walk in high dimension.

5.1 Weak convergence of the end-to-end displacement

We take D as in Section 3.1, satisfying either (D1)–(D3) (finite-variance spread-out model)
or (D1’)–(D3’) (power-law spread-out model). In this chapter we make the additional
assumption that there is α > 0 and a constant vα > 0 such that, as |k| → 0,

1− D̂(k) ∼
{

vα|k|α∧2 if α 6= 2,

v2|k|2 log(1/ |k|) if α = 2.
(5.1.1)

Our primary example of a D satisfying (5.1.1) is given in the following lemma:

Lemma 5.1 (Asymptotics of D̂(k)). Let D be given as in (3.1.5) with

h(x) = c|x|−d−α (1 + o(1)) as |x| → ∞ (5.1.2)

for some constant c. For α ≤ 2 we assume further that h(x) can be extended to a function

on Rd that is rotation invariant. Then D satisfies (5.1.1) with v = O
(
Lα∧2

)
.

The proof is given in Section 5.1.1. We write

kn :=

{
k (vαn)−1/α∧2 if α 6= 2,

k (v2n log
√

n)−1/2 if α = 2,
(5.1.3)

so that

lim
n→∞

n [1− D̂(kn)] = |k|α∧2. (5.1.4)

We consider self-avoiding walk with this step distribution D, and recall the basic defi-
nitions from Section 1.2.

Theorem 5.2 (Weak convergence of end-to-end displacement). Assume that D satisfies
either (D1)–(D3) (finite-variance spread-out model) or (D1’)–(D3’) (power-law spread-out
model), where the spread-out parameter L is sufficiently large. Assume further that also
(5.1.1) holds. Then self-avoiding walk in dimension d > dc = 2(α ∧ 2) satisfies

ĉn(kn)

ĉn(0)
→ exp{−Kα |k|α∧2} as n →∞, (5.1.5)

77
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where

Kα =
(
1 +

∑

x∈Zd

∞∑
n=2

n πn(x) zc
n−1

)−1





1, if α ≤ 2;

1 + (2d vα)−1
∑

x∈Zd

∞∑
n=0

|x|2 πn(x) zc
n, if α > 2.

(5.1.6)

The quantities πn(x) appearing in the theorem are the lace expansion coefficients from
Section 2.2. Under the conditions of Theorem 5.2, (5.1.44) and (5.1.72) below imply that
Kα is a finite constant.

In Chapter 3 it is shown that long-range self-avoiding walk exhibits mean-field behaviour
above dimension dc = 2(α ∧ 2). More specifically, it is shown that under the conditions

of Theorem 5.2, the Fourier transform of the critical two-point function satisfies Ĝzc(k) =

(1 + O(β))/(1 − D̂(k)), where β = O(L−d) is an arbitrarily small quantity. Hence, on
the level of Fourier transforms, the critical two-point functions of long-range self-avoiding
walk and long-range simple random walk are very close. Indeed, this suggests that the
two models behave similar for d > dc, and we prove this belief in a rather strong form by
showing that both objects have the same scaling limit.

Yang and Klein [105] prove a version of Theorem 5.2 for weakly self-avoiding walk jump-
ing m lattice sites along the coordinate axes with probability proportional to 1/m2; and
Cheng [35] extends their result to strictly self-avoiding walk with the same step distribu-
tion.

Chen and Sakai [34] prove an analogue of Theorem 5.2 for oriented percolation, and in
fact our method of proving Theorem 5.2 is very much inspired by the method in [34]. The
bounds on the diagrams are different for the two different models, but the general strategy
works equally well with either model. In particular, the spatial fractional derivatives as in
(5.1.49)–(5.1.51) are used for the first time in [34].

5.1.1 Asymptotics of the step function.

Before we start proving Theorem 5.2, we first prove Lemma 5.1.

Proof of Lemma 5.1. If the limit in (5.1.1) exists, then 0 ≤ vα ≤ O(Lα∧2) by [33, (1.7)].
We consider separately the cases α > 2 and α ≤ 2.

Case α > 2. Since cos(t) = 1− t2/2 + o(t2) as t → 0, we have

D̂(k) =
∑

x∈Zd

eik·x D(x) =
∑

x∈Zd

cos(k · x) D(x)

=
∑

x∈Zd

D(x)−
∑

x∈Zd

(
1

2

d∑
j=1

(kj xj)
2 + o

(|k · x|2)
)

D(x)

= 1− 1

2

∑

x∈Zd

(
d∑

j=1

k2
j x2

j + 2
∑

1≤j≤n≤d

kj kn xj xn

)
D(x) + o

(|k|2). (5.1.7)

By reflection symmetry,
∑

x∈Zd

∑

1≤j≤n≤d

kj kn xj xn D(x) = 0.

Furthermore, as D is symmetric under rotations by ninety degree,

∑

x∈Zd

x2
1 D(x) =

∑

x∈Zd

x2
2 D(x) = · · · = 1

d

∑

x∈Zd

|x|2 D(x),
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so that

D̂(k) = 1− |k|2
2d

∑

x∈Zd

|x|2 D(x) + o
(|k|2). (5.1.8)

Setting
∑

x∈Zd |x|2 D(x) = 2d vα proves the claim.

Case α ≤ 2. The case α ≤ 2 requires a more elaborate calculation. This part of the proof
is adapted from Koralov and Sinai [84, Lemma 10.18], who consider the one-dimensional
continuous case. We can write D(x) as

D(x) = c
1 + g(x)

|x|d+α
, (5.1.9)

where c is a positive constant and g is a bounded function on Rd obeying g(x) → 0 as
|x| → 0. By our assumption, g is rotation invariant for |x| > M . We might limit ourselves

to the case |k| ≤ 1/M and split the sum defining D̂(k) as

D̂(k) =
∑

|x|≤M

eik·x D(x) +
∑

M<|x|≤1/|k|
eik·x D(x) +

∑

1/|k|<|x|
eik·x D(x). (5.1.10)

Denote by S1, S2 and S3 the three sums on the right hand side of (5.1.10). A calculation
similar to (5.1.8) shows

S1 =
∑

|x|≤M

D(x) + O
(|k|2) =

∑

|x|≤M

D(x) +

{
o
(|k|α)

if α < 2,

o
(|k|2 log 1

|k|
)

if α = 2.
(5.1.11)

For S3 we substitue x by y/|k| yielding

S3 = |k|d+α
∑

y∈|k|Zd

|y|>1

c
1 + g(y/|k|)
|y|d+α

eiek·y, (5.1.12)

where ek = k/|k| is the unit vector in direction k. By translation invariance of g and
Riemann sum approximation we obtain

S3 = |k|α
(∫

|y|≥1

c
1 + g(y/|k|)
|y|d+α

eiy1 dy + o(1)

)
, (5.1.13)

with y1 being the first coordinate of the vector y. Finally, the dominated convergence
theorem obtains

S3 = |k|αc

∫

|y|≥1

eiy1

|y|d+α
dy + o

(|k|α)
, (5.1.14)

where the integral contributes towards vα.
Since D is symmetric, the sum defining S2 can be split as

S2 =
∑

M<|x|≤1/|k|

(
eik·x−1− ik · x

)
D(x) +

∑

M<|x|
D(x)−

∑

1/|k|<|x|
D(x). (5.1.15)

Consider first the last sum. As before, we substitute x by y/|k|, use Riemann sum approx-
imation and finally dominated convergence to obtain

∑

1/|k|<|x|
D(x) = |k|α+d

∑

y∈|k|Zd

|y|>1

c
1 + g(y/|k|)
|y|d+α

= |k|αc

∫

|y|≥1

eiy1

|y|d+α
dy + o

(|k|α)
. (5.1.16)
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It remains to understand the first sum on the right hand side of (5.1.15). We treat this
term with the same recipe as above yielding

∑

M<|x|≤1/|k|

(
eik·x−1− ik · x

)
D(x)

= |k|αc

∫

|k|M≤|y|≤1

1 + g(y/|k|)
|y|d+α

(
y2
1 + O

(|y1|2+ε)) dy + o
(|k|α)

.

(5.1.17)

For α < 2 the integral is uniformly bounded in k, and hence the dominated convergence
theorem can be used one more time to obtain the desired asymptotics. However, if α = 2
then the dominating contribution towards (5.1.17) is

|k|2
∫

|k|M≤|y|≤1

y2
1

|y|d+α
dy =

|k|2
d

∫

|k|M≤|y|≤1

1

|y|d dy = const |k|2
(

log
1

|k| + log
1

M

)
.

(5.1.18)
Summarizing our calculations, we obtain

D̂(k) =
∑

x∈Zd

D(x)− vα|k|α + o
(|k|α)

= 1− vα|k|α + o
(|k|α)

(5.1.19)

for α < 2, and

D̂(k) = 1− vα|k|2 log
1

|k| + o

(
|k|2 log

1

|k|

)
(5.1.20)

for α = 2, where vα is composed of the various integrals arising during the proof.

5.1.2 The scaling limit of the endpoint: Overview of proof

We recall the lace expansion for self-avoiding walk that was introduced in Section 2.2 (see
also [68, Sect. 2.2.1] or [102, Sect. 3] for a detailed derivation). The lace expansion obtains
an expansion of the form

cn+1(x) = (D ∗ cn)(x) +

n+1∑
m=2

(πm ∗ cn+1−m) (x) (5.1.21)

for suitable coefficients πm(x), cf. (2.2.1). We multiply (5.1.21) by zn+1 and sum over
n ≥ 0. By letting

Πz(x) =

∞∑
m=2

πm(x)zm (5.1.22)

for z ≤ zc, and recalling Gz(x) =
∑∞

n=0 cn(x)zn, this yields

Gz(x) = δ0,x + z(D ∗Gz)(x) + (Gz ∗Πz)(x), (5.1.23)

see also (2.2.2).
We proceed by proving Theorem 5.2 subject to certain bounds on the lace expansion

coefficients πn(x) to be formulated below. A Fourier transformation of (5.1.23) yields

Ĝz(k) = 1 + z D̂(k) Ĝz(k) + Ĝz(k) Π̂z(k), k ∈ [−π, π)d, (5.1.24)

and this can be solved for Ĝz(k) as

Ĝz(k)−1 = 1− z D̂(k)− Π̂z(k), k ∈ [−π, π)d. (5.1.25)
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Since zc is characterized by Ĝzc(0)−1 = 0, one has Π̂zc(0) = 1− zc, and hence

Ĝz(k)−1 = (zc−z) D̂(k)+
(
Π̂zc(k)− Π̂z(k)

)
+zc(1−D̂(k))+

(
Π̂zc(0)− Π̂zc(k)

)
. (5.1.26)

If we let

A(k) := D̂(k) + ∂zΠ̂z(k)
∣∣
z=zc

, (5.1.27)

B(k) := 1− D̂(k) +
1

zc

(
Π̂zc(0)− Π̂zc(k)

)
, (5.1.28)

Ez(k) :=
Π̂zc(k)− Π̂z(k)

zc − z
− ∂zΠ̂z(k)

∣∣
z=zc

, (5.1.29)

then

zc Ĝz(k) =
1

[1− z/zc] (A(k) + Ez(k)) + B(k)

=
1

[1− z/zc] A(k) + B(k)
−Θz(k), (5.1.30)

where

Θz(k) =
[1− z/zc] Ez(k)(

[1− z/zc] (A(k) + Ez(k)) + B(k)
) (

[1− z/zc] A(k) + B(k)
) . (5.1.31)

If Ĝz(k)−1 is understood as a function of z, then A(k) denotes the linear contribution,
Ez(k) denotes the higher order contribution (which will turn out to be asymptotically
negligible), and B(k) denotes the constant term.

For the first term in (5.1.30) we write

1

[1− z/zc] A(k) + B(k)
=

1

A(k) + B(k)

∞∑
n=0

(
z

zc

)n (
A(k)

A(k) + B(k)

)n

. (5.1.32)

For z < zc, we can write Θz(k) as a power series,

Θz(k) =

∞∑
n=0

θn(k) zn. (5.1.33)

Since Ĝz(k) =
∑∞

n=0 ĉn(k)zn and B(0) = 0, we thus obtained

ĉn(k) =
1

zc

(
z−n

c

A(k) + B(k)

(
A(k)

A(k) + B(k)

)n

+ θn(k)

)
, ĉn(0) =

1

zc

(
z−n

c

A(0)
+ θn(0)

)
.

(5.1.34)
In Section 5.1.4 we prove the following bound on the error term θn:

Lemma 5.3. Under the conditions of Theorem 5.2, |θn(k)| ≤ O(z−n
c n−ε) for all ε ∈(

0,
(

d
α∧2

− 2
) ∧ 1

)
uniformly in k ∈ [−π, π)d.

Equation (5.1.34) and Lemma 5.3 imply the following corollary:

Corollary 5.4. Under the conditions of Theorem 5.2,

ĉn(0) = Ξ z−n
c

(
1 + O(n−ε)

)
, (5.1.35)
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where ε ∈ (
0,

(
d/(α ∧ 2)− 2

) ∧ 1
)

and

Ξ = [zc A(0)]−1 =


zc +

∑

x∈Zd

∞∑
m=2

m πm(x) zm
c



−1

∈ (0,∞). (5.1.36)

By (5.1.34) and Lemma 5.3, for ε ∈ (
0,

(
d

α∧2
− 2

) ∧ 1
)
,

ĉn(kn)

ĉn(0)
=

(
1 + O(n−ε)

) A(0)

A(kn) + B(kn)

(
A(kn)

A(kn) + B(kn)

)n

+ O(n−ε)

=
(
1 + O(n−ε)

) A(0)

A(kn) + B(kn)
(5.1.37)

×
(

1 +
−n(1− D̂(kn)) A(kn)−1 B(kn)[1− D̂(kn)]−1

n

)n

+ O(n−ε).

As n →∞, we have that n(1− D̂(kn)) → |k|α∧2 by (5.1.4),

A(kn) → A(0) = 1 +
∑

x∈Zd

∞∑
m=2

m πm(x) zm−1
c .

The convergence

lim
n→∞

B(kn)

1− D̂(kn)
=

{
1, if α ≤ 2;

1 + (2d vα)−1 ∑
x∈Zd |x|2 Πzc(x), if α > 2.

(5.1.38)

follows directly from the following proposition:

Proposition 5.5. Under the conditions of Theorem 5.2,

lim
|k|→0

Π̂zc(0)− Π̂zc(k)

1− D̂(k)
=

{
0, if α ≤ 2;

(2d vα)−1 ∑
x∈Zd |x|2 Πzc(x), if α > 2.

(5.1.39)

If a sequence hn converges to a limit h, then (1 + hn/n)n converges to eh. The above
estimates imply

lim
n→∞

−n(1− D̂(kn)) A(kn)−1 B(kn)[1− D̂(kn)]−1 = −Kα |k|α∧2

and

lim
n→∞

A(0)

A(kn) + B(kn)
= 1.

We thus have proved Theorem 5.2 subject to Lemma 5.3 and Proposition 5.5. We want to
emphasize that the bounds on the lace expansion coefficients πn(x) enter the calculation
only through (5.1.39) and the error bound in Lemma 5.3.

5.1.3 Bounding the lace expansion coefficients

In this section we prove an estimate on moments of the lace expansion coefficients πn(x).
This estimate is used to prove Proposition 5.5. Let us begin by stating the moment
estimate.



5.1 Weak convergence of the end-to-end displacement 83

Lemma 5.6 (Finite moments of the lace expansion coefficients). For α > 0, d > 2(α ∧ 2)
and L sufficiently large, we let

δ

{
∈ (

0 , (α ∧ 2) ∧ (2− 2(α ∧ 2))
)

if α 6= 2,

= 0 if α = 2.
(5.1.40)

Then, for any z ≤ zc,
∑

x∈Zd

∞∑
n=0

|x|α∧2+δ |πn(x)| zn < ∞. (5.1.41)

The fact that the (α ∧ 2 + δ)th moment of Πzc(x) exists is the key to the proof of
(5.1.39). Interestingly, there is a crossover between the phases α < 2 and α > 2, with
α = 2 playing a special role. A version of Lemma 5.6 in the setting of oriented percolation
is contained in [34, Proposition 3.1].

Before we start with the proof of Lemma 5.6, we shall review some basic facts about
structure and convergence of quantities related to πn(x) introduced in (5.1.21)–(5.1.22).

For n ≥ 2, N ≥ 1, x ∈ Zd, there exist quantities π(N)
n (x) ≥ 0 such that

πn(x) =

∞∑
N=1

(−1)Nπ(N)
n (x). (5.1.42)

A combination of Proposition 2.4 with (3.3.48) (recall β = O(L−d)) and Abel’s limit
theorem shows ∑

x∈Zd

∞∑
n=2

π(N)
n (x) zn

c < O(L−d)N , (5.1.43)

where the constant in the O-term is uniform for all N . Consequently, (5.1.43) is summable
in N ≥ 1 provided that L is sufficiently large, and hence

Π̂zc(k) ≤
∑

x∈Zd

∞∑
n=2

|πn(x)| zn
c < ∞. (5.1.44)

Lemma 5.6 implies Proposition 5.5, as we will show now.

Proof of Proposition 5.5 subject to Lemma 5.6. We first prove the assertion for α ≤ 2, and
afterwards consider α > 2.

For α ≤ 2, we choose δ ≥ 0 as in (5.1.40), hence α + δ ≤ 2. Then we use 0 ≤
1− cos(k · x) ≤ O(|k · x|α+δ) to estimate

∣∣∣Π̂zc(0)− Π̂zc(k)
∣∣∣ ≤

∑

x∈Zd

∞∑
n=2

[1− cos(k · x)] |πn(x)| zn
c

≤
∑

x∈Zd

∞∑
n=2

O(|k · x|α+δ) |πn(x)| zn
c

≤ O(1) |k|α |k|δ
∑

x∈Zd

∞∑
n=2

|x|α+δ |πn(x)| zn
c . (5.1.45)

We use (5.1.1) and Lemma 5.6 to bound further

|Π̂zc(0)− Π̂zc(k)|
1− D̂(k)

=

{
O(|k|δ) if α < 2,

O(1/ log(1/|k|)) if α = 2,
(5.1.46)
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which proves (5.1.39) for α ≤ 2.
For α > 2, we fix δ ∈ (0, 2 ∧ (d− 4)). We apply the Taylor expansion

1− cos(k · x) =
1

2
(k · x)2 + O(|k · x|2+δ), (5.1.47)

together with spatial symmetry of the model and Lemma 5.6 to obtain

Π̂zc(0)− Π̂zc(k) =
∑

x∈Zd

∞∑
n=2

[1−cos(k ·x)] πn(x) zn
c =

|k|2
2d

∑

x∈Zd

∞∑
n=2

|x|2 πn(x) zn
c +O(|k|2+δ).

(5.1.48)
Eq. (5.1.39) for α > 2 now follows from (5.1.48) and (5.1.1).

In the remainder of the section we prove Lemma 5.6. A key point in the proof is the
use of a new form of (spatial) fractional derivative, first applied by Chen and Sakai [34] in
the context of oriented percolation.

Proof of Lemma 5.6. For t > 0, ζ ∈ (0, 2), we let

K′
ζ :=

∫ ∞

0

1− cos(v)

v1+ζ
dv ∈ (0,∞), (5.1.49)

yielding

tζ =
1

K′
ζ

∫ ∞

0

1− cos(ut)

u1+ζ
du. (5.1.50)

For α > 0 and d > 2(α ∧ 2), we choose δ as in (5.1.40). For x ∈ Zd we write x =
(x1, . . . , xd). Then by reflection and rotation symmetry of πn(x),

∑

x∈Zd

∞∑
n=0

|x|α∧2+δ |πn(x)| zn ≤ d (α∧2+δ)/2+1
∑

x∈Zd

∞∑
n=0

|x1|α∧2+δ
∞∑

N=2

π(N)
n (x) zn

c , (5.1.51)

cf. [34, Lemma 4.1]. We now apply (5.1.50) with ζ = δ1, δ2, given by

δ1 ∈ (
δ , (α ∧ 2) ∧ (2− 2(α ∧ 2))

)
, (5.1.52)

δ2 = α ∧ 2 + δ − δ1. (5.1.53)

This yields

O(1)

∫ ∞

0

du

u1+δ1

∫ ∞

0

dv

v1+δ2

∑

x∈Zd

∞∑
n=0

∞∑
N=2

[1− cos(u x1)] [1− cos(v x1)] π
(N)
n (x) zn

c (5.1.54)

as an upper bound of (5.1.51). We write the double integral appearing in (5.1.54) as the
sum of four terms, I1 + I2 + I3 + I4, where

I1 =

∞∑
N=2

∫ 1

0

du

u1+δ1

∫ 1

0

dv

v1+δ2

∑

x∈Zd

∞∑
n=0

[1− cos(
⇀
u · x)] [1− cos(

⇀
v · x)] π(N)

n (x) zn
c (5.1.55)

with
⇀
u = (u, 0, . . . , 0) ∈ Rd,

⇀
v = (v, 0, . . . , 0) ∈ Rd, (5.1.56)

and I2, I3, I4 are defined similarly:

I2 =

∫ 1

0

du

∫ ∞

1

dv · · · , I3 =

∫ 1

0

du

∫ ∞

1

dv · · · , I4 =

∫ ∞

1

du

∫ ∞

1

dv · · · . (5.1.57)
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We now show that I1, . . . , I4 are all finite, which implies (5.1.41). The bound I4 < ∞
simply follows from 1− cos t ≤ 2 and (5.1.44). In order to prove the bounds I1, I2, I3 < ∞
we need the particular structure of the π(N)

n (x)-terms.
We recall from (2.2.15) and (2.2.16) the definitions of

G̃z(x) = z(D ∗Gz)(x), x ∈ Zd, (5.1.58)

and
B̃(z) = sup

x∈Zd

(Gz ∗ G̃z)(x). (5.1.59)

Fix N ≥ 1. In Proposition 2.4 it is shown that for z ≥ 0,

∑

x∈Zd

[1− cos(k · x)] Π(1)
z (x) = 0 (5.1.60)

and

∑

x∈Zd

[1− cos(k · x)] Π(N)
z (x) ≤ N

2
(N + 1)

(
sup

x
[1− cos(k · x)] Gz(x)

)
B̃(z)N−1, N ≥ 2.

(5.1.61)
These bounds are called diagrammatic estimates, because the lace expansion coefficients
π(N)

z (x) are expressed in terms of diagrams, whose structure is heavily used in the derivation
of the above bounds. The composition of the diagrams, and their decomposition into two-
point functions as in (5.1.60)–(5.1.61), is sketched in Section 2.2 and described in detail in
[102, Sections 3 and 4]. It is clear that a slight modification of this procedure proves the
following bound:

∑

x∈Zd

∞∑
n=0

[1− cos(
⇀
v · x)] [1− cos(

⇀
u · x)] π(N)

n (x) zn

≤ O(N4) B̃(z)N−2

(
sup

x
[1− cos(

⇀
v · x)] Gz(x)

)

×
(

sup
y

∑

x∈Zd

[1− cos(
⇀
u · x)] Gz(x) Gz(y − x)

)
.

(5.1.62)

Given (5.1.62), it remains to show the following three bounds:

B̃(zc) = sup
x∈Zd

(Gzc ∗ G̃zc)(x) ≤ O
(
L−d)

; (5.1.63)

sup
x

[1− cos(
⇀
v · x)] Gzc(x) ≤ O

(
vα∧2) ; (5.1.64)

sup
y

∑

x∈Zd

[1− cos(
⇀
u · x)] Gzc(x) Gzc(y − x) ≤ O

(
u(d−2(α∧2))∧(α∧2)

)
. (5.1.65)

Suppose (5.1.63)–(5.1.65) were true, then

∑

x∈Zd

∞∑
n=0

[1− cos(
⇀
u · x)] [1− cos(

⇀
v · x)] π(N)

n (x) zc
n

≤ O
(
N4) O

(
L−d)N−2

O
(
vα∧2) O

(
u(d−2(α∧2))∧(α∧2)

)
.

(5.1.66)
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Since δ1 < (α ∧ 2) ∧ (d − 2(α ∧ 2)) and δ2 < α ∧ 2, we obtain that I1 is finite for L
sufficiently large, as desired. Similarly, it follows that I2 and I3 are finite. It remains to
prove (5.1.63)–(5.1.65), and we will use results from Chapter 3 to show it.

We start by referring to Proposition 3.9 for the fact that f(z) ≤ O(1) uniformly in
z ∈ [0, zc) under the conditions of Theorem 5.2. Since the bound is uniform and cn(x) ≥ 0,
we can conclude that even f(zc) < ∞. Therefore, (5.1.63) indeed follows from (3.3.16) and
the fact that β = O(L−d), cf. Proposition 3.1. Furthermore,

sup
x

[1− cos(k · x)] Gzc(x) ≤ O(1− D̂(k)), (5.1.67)

by Lemma 3.4 and (3.3.12), hence also (5.1.64) follows. It remains to prove (5.1.65). Since

sup
y

∑

x∈Zd

[1− cos(
⇀
u · x)] Gzc(x) Gzc(y − x)

= sup
y

∫

[−π,π)d
e−il·y

(
Ĝzc(l)−

1

2

(
Ĝzc(l −

⇀
u) + Ĝzc(l +

⇀
u)

))
Ĝzc(l)

dl

(2π)d

≤
∫

[−π,π)d

∣∣∣∣
1

2
∆⇀

u
Ĝzc(l)

∣∣∣∣ Ĝzc(l)
dl

(2π)d
, (5.1.68)

our bounds f2(zc) ≤ K and f3(zc) ≤ K, together with λzc = 1, imply that

sup
y

∑

x∈Zd

[1− cos(
⇀
u · x)] Gzc(x) Gzc(y − x)

≤ 100K2 Ĉ1(
⇀
u)−1

∫

[−π,π)d

(
Ĉ1(l − ⇀

u) Ĉ1(l +
⇀
u) + Ĉ1(l − ⇀

u) Ĉ1(l)

+ Ĉ1(l) Ĉ1(l +
⇀
u)

)
Ĉ(l)

dl

(2π)d

= O(1) [1− D̂(
⇀
u)]

∫

[−π,π)d

(
1

[1− D̂(l − ⇀
u)] [1− D̂(l +

⇀
u)] [1− D̂(l)]

+
1

[1− D̂(l − ⇀
u)] [1− D̂(l)]2

+
1

[1− D̂(l +
⇀
u)] [1− D̂(l)]2

)
dl

(2π)d
.

(5.1.69)

Chen and Sakai show that the integral term on the right hand side of (5.1.69) is bounded

above by O
(
u(d−3(α∧2))∧0

)
, cf. [34, (4.30)–(4.33)]. Furthermore, 1 − D̂(

⇀
u) ≤ O

(
uα∧2

)
by

(5.1.1). The combination of the above inequalities implies (5.1.65), and hence the claim
follows.

5.1.4 Error bounds

The proof of Lemma 5.3 is the final piece in the proof of Theorem 5.2. Our proof of Lemma
5.3 makes use of the following lemma:

Lemma 5.7. Consider a function g given by the power series g(z) =
∑∞

n=0 anzn, with zc

as radius of convergence.

(i) If |g(z)| ≤ O(|zc − z|−b) for some b ≥ 1, then |an| ≤ O(z−n
c log(n)) if b = 1, or

|an| ≤ O(z−n
c nb−1) if b > 1.

(ii) If |g′(z)| ≤ O(|zc − z|−b) for some b > 1, then |an| ≤ O(z−n
c nb−2).
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The proof of assertion (i) is contained in [38, Lemma 3.2], and (ii) is a direct consequence
of (i) since (i) implies that |n an| ≤ O(z−n

c nb−1). Lemma 5.7 is the key to the proof of
Lemma 5.3.

Proof of Lemma 5.3. We recall

Θz(k) =

∞∑
n=0

θn(k) zn, (5.1.70)

where

Θz(k) =
[1− z/zc] Ez(k)(

[1− z/zc] (A(k) + Ez(k)) + B(k)
) (

[1− z/zc] A(k) + B(k)
) . (5.1.71)

We fix ε ∈ (0, (d(α ∧ 2)−1 − 2) ∧ 1) and aim to prove |θn(k)| ≤ O(z−n
c n−ε), where the

constant in the O-term is uniform for k ∈ [−π, π)d. By Lemma 5.7 it is sufficient to show

|∂zΘz(k)| ≤ O
(|zc − z|−(2−ε)

)
, and we prove this now.

Before bounding ∂zΘz(k), we consider derivatives of Π̂z(k) (the Fourier transform of

Πz(x) introduced in (5.1.22)). The first derivative of ∂zΠ̂z(k) is converging absolutely for
z ≤ zc, i.e.,

∑

x∈Zd

∞∑
n=2

n |πn(x)| zn−1
c < ∞, (5.1.72)

cf. [88, Theorem 6.2.9] for a proof in the finite-range setting, and again Chapter 3 (in
particular Proposition 3.1) for the extension to long-range systems. Moreover, we claim
that

∑

x∈Zd

∞∑
n=2

n(n− 1)ε |πn(x)| zn−1
c < ∞; (5.1.73)

for ε ∈ (0, (d(α ∧ 2)−1−2)∧1). The bound (5.1.73) can be proved by considering temporal
fractional derivatives, as introduced in [88, Section 6.3]. In particular, the proof of [88,
Theorem 6.4.2] shows

sup
x∈Zd

∞∑
n=2

n(n− 1)ε cn(x) zn−1
c ≤ O(1)

∫

[−π,π)d

∑

n≥2

n(n− 1)εD̂(k)n−2 dk

(2π)d
, (5.1.74)

(see the first displayed identity in [88, p. 196]). On the one hand, D̂(k) = 1 − (1 −
D̂(k)) ≤ e−(1−D̂(k)) ≤ e−c1 |k|α∧2

for some constant c1 > 0, by (5.1.1). On the other hand,

−D̂(k) ≤ 1− c2 for a positive constant c2, by (3.1.4)/(3.1.9). Together these bounds yield

∫

[−π,π)d

D̂(k)n−2 dk

(2π)d
≤

∫

k∈[−π,π)d :

D̂(k)≥0

e−c1 (n−2) |k|α∧2 dk

(2π)d

+

∫

k∈[−π,π)d :

D̂(k)<0

(1− c2)
n−2 dk

(2π)d

≤ O(n−d/(α∧2)) + (1− c2)
n−2 ≤ O(n−d/(α∧2)). (5.1.75)
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Hence the right hand side of (5.1.74) is less than or equal to
∑

n≥2

n(n− 1)ε O(n−d/(α∧2)), (5.1.76)

and this is finite if 1 + ε− d/(α ∧ 2) < −1. Furthermore, the proof of [88, Corollary 6.4.3]
shows that

∑

x∈Zd

∞∑
n=2

n(n− 1)ε |πn(x)| zn−1
c ≤ O(1)

(
sup
x∈Zd

∞∑
n=2

n(n− 1)ε cn(x) zn−1
c

)
(5.1.77)

under the conditions of Theorem 5.2. This proves (5.1.73).
We first prove

Ez(k) ≤ O(|zc − z|ε) (5.1.78)

by considering the power series representation of Π̂z(k) in (5.1.29):

Ez(k) =
1

zc − z

∑
x

∑

n≥2

eik·x πn(x) (zn
c − zn)−

∑
x

∑

n≥2

eik·x πn(x) n zn−1
c . (5.1.79)

Since

zn
c − zn

zc − z
=

n−1∑
i=0

zi z(n−1)−i
c , (5.1.80)

one has

Ez(k) =
∑

x

∑

n≥2

eik·x πn(x)

n−1∑
i=1

(
zi − zi

c

)
z(n−1)−i

c . (5.1.81)

For every ζ, ε ∈ (0, 1) and n ≥ 2,

∣∣1− ζn−1
∣∣ =

∣∣∣∣(1− ζn−1)1−ε

(
1− ζn−1

1− ζ

)ε

(1− ζ)ε

∣∣∣∣

≤
∣∣∣∣∣
n−2∑

l=0

ζl

∣∣∣∣∣

ε

(1− ζ)ε ≤ (n− 1)ε (1− ζ)ε . (5.1.82)

Applying this for ζ = z/zc, we obtain for z < zc and 0 < i < n,

∣∣∣zi − zi
c

∣∣∣ z(n−1)−i
c =

∣∣∣∣∣1−
(

z

zc

)i
∣∣∣∣∣ zn−1

c ≤
∣∣∣∣∣1−

(
z

zc

)n−1
∣∣∣∣∣ zn−1

c

≤
∣∣∣∣1−

z

zc

∣∣∣∣
ε

(n− 1)ε zn−1
c . (5.1.83)

Insertion into (5.1.81) yields

|Ez(k)| ≤ (zc − z)ε
∑

x

∑

n≥2

n(n− 1)ε |πn(x)| zn−1
c ≤ O(|zc − z|ε), (5.1.84)

where the last bound uses (5.1.73). We further differentiate (5.1.29) to get

∂zEz(k) =
(zc − z) ∂z

(
Π̂zc(k)− Π̂z(k)

)
+

(
Π̂zc(k)− Π̂z(k)

)

(zc − z)2

=
1

zc − z

(
Π̂zc(k)− Π̂z(k)

zc − z
− ∂zΠ̂z(k)

)
. (5.1.85)
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A calculation similar to (5.1.79)–(5.1.84) shows

|∂zEz(k)| ≤
∣∣∣∣
Ez(k)

zc − z

∣∣∣∣ +
1

zc − z

∣∣∣∣∣∣
∑

x

∑

n≥2

eik·x πn(x) n
(
zn−1

c − zn−1)
∣∣∣∣∣∣
≤ O(|zc − z|ε−1).

(5.1.86)
We write D1 and D2 for the two factors in the denominator in (5.1.71). Then

z2
c ∂zΘz(k) =

zc

D1 D2

(
(zc − z) ∂zEz(k)− Ez(k)

)

− zc − z

(D1 D2)2
Ez(k)

((−A(k)− Ez(k) + (zc − z) ∂zEz(k)
)
D2 −D1 A(k)

)
.

(5.1.87)

After further cancelation of D1-, D2-terms we are left with D1 and D2 in the denominator
only, hence a lower bound on them suffices. Indeed, there is a constant c > 0 such that

|D1| =
∣∣∣zc Ĝz(k)

∣∣∣
−1

≥ z−1
c χ(z) ≥ c (zc − z) , (5.1.88)

since γS = 1 by Theorem 3.16 (cf. (1.4.9)). Furthermore,

|D2| ≥ c (zc − z) (5.1.89)

because D2 is a linear function in (zc− z). The lower bounds on D1 and D2, together with
the bounds on Ez(k) and ∂zEz(k) in (5.1.78) and (5.1.86), prove that (5.1.87) is uniformly
bounded for all z ≤ zc, and in particular

∂zΘz(k) ≤ O(|zc − z|−(2−ε)). (5.1.90)

Finally, assertion (ii) in Lemma 5.7 implies

θn(k) ≤ O(z−n
c n−ε) (5.1.91)

for all ε ∈ (0, (d(α ∧ 2)−1 − 2) ∧ 1), uniformly in k.

5.2 Mean-r displacement

The mean-r displacement is defined as

ξ(r)(n) :=

(∑
x∈Zd |x|rcn(x)

cn

)1/r

, (5.2.1)

where we recall that cn =
∑

x∈Zd cn(x) = ĉn(0). The mean-r displacement for r = 2
coincides with the radius of gyration, and it is already well understood. For example, van
der Hofstad and Slade [71] prove the following rather general version:

Theorem 5.8 (Radius of gyration [71]). Consider self-avoiding walk with step distribution
D in dimension d > 4 with spread-out parameter L sufficiently large, where D is given as in
the finite-variance spread-out model satisfying (D1)–(D3). Then there is a constant C > 0
such that, as n →∞,

1

cn

∑

x∈Zd

|x|2cn(x) = C n (1 + o(1)). (5.2.2)
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In the sequel we prove a complementary result for r < 2.

Theorem 5.9 (Mean-r displacement). Under the assumptions of Theorem 5.2, for any
r < α ∧ 2,

ξ(r)(n) ³
{

n1/(α∧2) if α 6= 2,

(n log n)1/2 if α = 2,
(5.2.3)

as n →∞.

In view of (5.2.2) we conjecture that (5.2.3) indeed holds for all r > 0, although our
methods apply only for r < α ∧ 2. When proving Theorem 5.9 we shall use methods similar
to those developed in Section 5.1, and again a key ingredient is the equality in (5.1.50).

Proof of Theorem 5.9. In order to deal with the cases α = 2 and α 6= 2 simultaneously, we
write

fα(n) =

{
(vαn)−1/(α∧2) if α 6= 2,

(v2n log
√

n)−1/2 if α = 2,
(5.2.4)

and note that (5.2.3) can be rewritten as ξ(r)(n) ³ fα(n)−1. Also, we write x1 for the first

component of the vector x ∈ Zd, and denote by
⇀
u the vector

⇀
u = (u, 0, . . . , 0) ∈ Rd, see

also (5.1.56). We use reflection and rotation symmetry of cn in the first line, and (5.1.50)
in the second line to obtain

1

cn

∑

x∈Zd

|x|rcn(x) ³
∑

x∈Zd

|x1|r cn(x)

cn

³
∑

x∈Zd

∫ ∞

0

du

u1+r
[1− cos(

⇀
u · x)]

cn(x)

cn

=

∫ ∞

fα(n)

du

u1+r

∑

x∈Zd

[1− cos(
⇀
u · x)]

cn(x)

cn

+

∫ fα(n)

0

du

u1+r

(
1− ĉn(

⇀
u)

ĉn(0)

)
. (5.2.5)

For the first integral on the right hand side of (5.2.5) we use 0 ≤ [1−cos(
⇀
u ·x)] ≤ 2 yielding

0 ≤
∫ ∞

fα(n)

du

u1+r

∑

x∈Zd

[1− cos(
⇀
u · x)]

cn(x)

cn
≤

∫ ∞

fα(n)

du

u1+r
= O

(
fα(n)−r). (5.2.6)

For the second integral, we substitute u by un := u fα(n) to obtain

∫ fα(n)

0

du

u1+r

(
1− ĉn(

⇀
u)

ĉn(0)

)
= fα(n)−r

∫ 1

0

du

u1+r

(
1− ĉn(

⇀
un)

ĉn(0)

)
, (5.2.7)

where
⇀
un = fα(n)

⇀
u (compare with kn in (5.1.3)). Suppose we know

∫ 1

0

du

u1+r

(
1− ĉn(

⇀
un)

ĉn(0)

)
³ 1, (5.2.8)

then it would follow that c−1
n

∑
x |x|rcn(x) ³ fα(n)−r, as desired.
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It remains to show (5.2.8) is indeed true. The idea is the following. If the ratio

ĉn(
⇀
un)/ĉn(0) is replaced by its limit exp{−Kαuα∧2} (cf. Theorem 5.2), then Taylor ex-

pansion shows

1− exp{−Kαuα∧2} = Kαuα∧2 + O
(
u2(α∧2)),

and since α ∧ 2 − (1 + r) > −1, the integral in (5.2.8) converges. However, a careful
consideration of error terms makes the argument look slightly more complicated.

We write

hn = −n(1− D̂(
⇀
un)) A(

⇀
un)−1 B(

⇀
un)[1− D̂(

⇀
un)]−1. (5.2.9)

By (5.1.37),

(
1− ĉn(

⇀
un)

ĉn(0)

)
=

(
1 + O(n−ε)

)
[
1− A(0)

A(
⇀
un) + B(

⇀
un)

(
1 +

hn

n

)n
]

. (5.2.10)

Taylor expansion shows

n log

(
1 +

hn

n

)
= hn + O

(
h2

n

n

)

and (
1 +

hn

n

)n

= en log(1+hn/n) = ehn

(
1 + O

(
h2

n

n

))
.

Insertion into (5.2.10) obtains

(
1− ĉn(

⇀
un)

ĉn(0)

)
=

(
1 + O(n−ε)

) A(0)

A(
⇀
un) + B(

⇀
un)

[
A(

⇀
un) + B(

⇀
un)

A(0)
− 1 +

(
1− ehn

)

−O

(
h2

n

n

)
ehn

]
.

(5.2.11)

We remark that the limit in (5.1.4) is uniform in u ∈ (0, 1], and the bound (5.1.46)

implies that B(
⇀
un) ³ [1 − D̂(

⇀
un)] uniformly in u ∈ (0, 1]. We show below that the limit

A(
⇀
un) → A(0) is also uniform. Consequently, also limn→∞ hn = −Kuα∧2 is a uniform

limit, and this is important since we are integrating u over the interval (0, 1].
We finally show that

A(
⇀
un) + B(

⇀
un)

A(0)
− 1 =

A(
⇀
un)−A(0) + B(

⇀
un)

A(0)
≤ uα∧2o(1) (5.2.12)

as n →∞, uniformly in u. By (5.1.38), B(
⇀
un) ³ [1− D̂(

⇀
un)] = O(1/n) uα∧2. We choose

δ as in (5.1.40), so that in particular 0 ≤ (α ∧ 2) + δ ≤ 2. Consequently,

∣∣∣A(
⇀
un)−A(0)

∣∣∣ ≤ [1− D̂(
⇀
un)] +

∑

x∈Zd

∞∑
n=2

[1− cos(
⇀
un · x)] n |πn(x)| zn−1

c

= uα∧2 O(1/n) +
∑

x∈Zd

∞∑
n=2

O
(|⇀un|(α∧2)+δ|x|(α∧2)+δ) n |πn(x)| zn−1

c
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Since |⇀un|(α∧2)+δ ³ u(α∧2)+δ/n1+δ/(α∧2) for α 6= 2, and |⇀un|(α∧2)+δ ³ u2/(n log
√

n) for
α = 2, we bound further

∑

x∈Zd

∞∑
n=2

O
(|⇀un|(α∧2)+δ|x|(α∧2)+δ) n |πn(x)| zn−1

c

≤ O
(
u(α∧2)+δ) ∑

x∈Zd

∞∑
n=2

|x|(α∧2)+δ |πn(x)| zn−1
c ×

{
n−δ/(α∧2), if α 6= 2,

(log n)−1, if α = 2,

(5.2.13)

and this is bounded above by uα∧2o(1) by appeal to Lemma 5.6. In particular, this implies

that A(
⇀
un) → A(0) uniformly in u.

We have proven that the only non-vanishing contribution towards (5.2.11) comes from
the term 1−ehn. Since the sequence hn converges uniformly to the negative limit −Kα uα∧2,
there is an n0 such that for all n ≥ n0, −2Kα uα∧2 ≤ hn ≤ −Kα uα∧2/2. Consequently,

1− ehn is positive for n ≥ n0, and 1− ehn ≤ O
(
uα∧2

)
by Taylor expansion. Therefore,

0 ≤
(

1− ĉn(
⇀
un)

ĉn(0)

)
≤ O

(
uα∧2) (5.2.14)

as n →∞, where the bounds on the error terms do not depend on n. Hence for r < α ∧ 2,
the integral ∫ 1

0

du

u1+r

(
1− ĉn(

⇀
un)

ĉn(0)

)
(5.2.15)

converges, and is positive for sufficiently large n. The combination of (5.2.6), (5.2.7) and
(5.2.14) implies the claim.

5.3 Convergence to Brownian motion and α-stable processes

We recall the definition of fα(n) from Section 5.2. Given an n-step self-avoiding walk w,
define

Xn(t) = (2dKα)−
1

α∧2 fα(n) w(bntc), t ∈ [0, 1]. (5.3.1)

We aim to identify the scaling limit of Xn, and the appropriate space to study the limit is
the space of Rd-valued càdlàg-functions D([0, 1],Rd) equipped with the Skorokhod topol-
ogy.

For α ∈ (0, 2], W (α) denotes the standard α-stable Lévy measure, normalized such that

∫
eik·B(α)(t) dW (α) = e−|k|

αt/(2d), (5.3.2)

where B(α) is a (càdlàg version of) standard symmetric α-stable Lévy motion (in the sense

of [96, Definition 3.1.3]). Note that W (2) is the Wiener measure, and B(2) is Brownian
motion. By 〈·〉n we denote expectation with respect to the self-avoiding walk measure Qn

of Section 1.2.

Theorem 5.10 (Weak convergence to α-stable processes and Brownian motion). Under
the assumptions in Theorem 5.2,

lim
n→∞

〈f(Xn)〉n =

∫
f dW (α∧2), (5.3.3)
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for every bounded continuous function f : D([0, 1],Rd) → R. That is to say, Xn converges
in distribution to an α-stable Lévy motion for α < 2, and to Brownian motion for α ≥ 2.
Equivalently, Qn converges weakly to W (α∧2).

Slade [100, 101] proves convergence of the nearest-neighbor self-avoiding walk to Brow-
nian motion in sufficiently high dimension, using a finite-memory cut-off. Hara and Slade
[57] provide an alternative argument by using fractional derivative estimates. An account
of the latter approach is contained in the monograph [88, Sect. 6.6], where also the uniform
spread-out case is considered.

Our proof of Theorem 5.10 follows the line of arguments in [88, Section 6.6], adapted
so as to deal with a different limit.

5.3.1 Convergence of finite dimensional distributions

In order to prove convergence in distribution, we need two properties: (i) the convergence
of finite-dimensional distributions, and (ii) tightness of the family {Xn}. In this section
we shall consider the former.

Convergence of finite-dimensional distributions means that for every N = 1, 2, 3, . . . ,
any 0 < t1 < · · · < tN ≤ 1, and any bounded continuous function g : RdN → R,

lim
n→∞

〈
g
(
Xn(t1), . . . , Xn(tN )

)〉
n

=

∫
g
(
B(α∧2)(t1), . . . , B

(α∧2)(tN )
)
dW (α∧2). (5.3.4)

The distribution of a random variable is determined by its characteristic function, hence
it suffices to consider functions g of the form

g(x1, . . . , xN ) = exp{ik · (x1, . . . , xN )}, (5.3.5)

where k =
(
k(1), . . . , k(N)

) ∈ (−π, π]dN and xi ∈ Rd, i = 1, . . . , N . We rather use the
equivalent form

g(x1, . . . , xN ) = exp{ik · (x1, x2 − x1, . . . , xN − xN−1)}, (5.3.6)

which better fits in our setting.
For n = (n(1), . . . , n(N)) ∈ NN , with n(1) < · · · < n(N), we define

ĉ(N)
n (k) :=

∑
x1,x2,...,x

n(N)

exp

{
i

N∑
j=1

k(j) · (xn(j) − xn(j−1))

}

×
n(N)∏
i=1

D(xi − xi−1)1{(0,x1,x2,...,x
n(N) ) is self-avoiding}

(5.3.7)

as the N -dimensional version of (1.2.2), with n(0) = 0. An alternative representation is

ĉ(N)
n (k) =

∑
w∈W

n(N)

eik·∆w(n) W (w) 1{w is self-avoiding}, (5.3.8)

where Wn =
⋃

x∈Zd Wn(x) = {0} × Zdn is the set of n-step walks on Zd,

k ·∆w(n) =

N∑
j=1

k(j) · (wn(j) − wn(j−1))

and W (w) =
∏|w|

i=1 D(wi − wi−1) is the weight of the walk w (|w| denotes the length).
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From (5.1.3) we recall that kn = fα(n) k, where fα(n) was defined in (5.2.4). We fix a
sequence bn converging to infinity slowly enough such that

fα(n)α∧1 bn = o(1), (5.3.9)

for example bn = log n.

Theorem 5.11 (Finite-dimensional distributions). Let N be a positive integer, k(1), . . . ,

k(N) ∈ (−π, π]d, 0 = t(0) < t(1) < · · · < t(N) ∈ R, and g = (gn) a sequence of real numbers
satisfying 0 ≤ gn ≤ bn. Denote

kn =
(
k(1)

n , . . . , k(N)
n

)
= fα(n)

(
k(1), . . . , k(N)),

nT =
(bnt(1)c, . . . , bnt(N−1)c, bnT c)

with T = t(N)(1− gn). Under the conditions of Theorem 5.2,

lim
n→∞

ĉ(N)
nT (kn)

ĉnT (0)
= exp

{
−Kα

N∑
j=1

|k(j)|α∧2 (t(j) − t(j−1))

}
(5.3.10)

holds uniformly in g.

Before we start proving the theorem, let us emphasize that (5.3.10) has indeed the
required form. Let gn ≡ 0 in Theorem 5.11, so that nT =

(bnt(1)c, . . . , bnt(N)c). Then

〈
exp

{
ik ·∆Xn(nT)

}〉
n

=
〈
exp

{
i (2dKα)−

1
α∧2 kn ·∆ • (nT)

}〉
n

=
ĉ(N)

nT

(
(2dKα)−

1
α∧2 kn

)

ĉnT (0)
,

and this converges to

exp

{
− 1

2d

N∑
j=1

|k(j)|α∧2 (t(j) − t(j−1))

}

as n → ∞, as we aim to show for (5.3.4). Thus the finite dimensional distributions of
long-range self-avoiding walk converge to those of an α-stable Lévy motion, which proves
that this is the only possible scaling limit.

Proof of Theorem 5.11. The proof is via induction over N , and is very much inspired by
the proof of [88, Theorem 6.6.2], where finite-range models were considered. The flexibility
in the last argument of nT is needed to perform the induction step. We shall further write
nt(j) and nT instead of bnt(j)c and bnT c for brevity.

To initialize the induction we consider the case N = 1. Since ĉ(1)
nT(kn) = ĉnT (k(1)

n ), the
assertion for N = 1 is a minor generalization of Theorem 5.2. In fact, if we replace n by
nT , then instead of (5.1.4) we have

nT [1− D̂(kn)] = nt(1)(1− gn)
[
1− D̂

(
fα(t(1)n) k (t(1))1/(α∧2))] → |k|α∧2 t(1) as n →∞.

(5.3.11)
With an appropriate change in (5.1.37) we obtain (5.3.10) for N = 1 from Theorem 5.2.

To advance the induction we prove (5.3.10) assuming that it holds when N is replaced
by N − 1. For a path w ∈ Wn and 0 ≤ a ≤ b ≤ n it will be convenient to write

K[a,b](w) := 1{(wa,...,wb) is self-avoiding}. (5.3.12)
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We further consider the quantity J[a,b](w) that arises in the algebraic derivation of the lace
expansion as in [102, Sect. 3.2]. For our needs it suffices to know that

∑

w∈Wn(x)

W (w)J[0,n](w) = πn(x) (5.3.13)

and, for any integers 0 ≤ m ≤ n and paths w ∈ Wn,

K[0,n](w) =
∑
I3m

K[0,I1](w) J[I1,I2](w) K[I2,n](w), (5.3.14)

where the sum is over all intervals I = [I1, I2] of integers with either 0 ≤ I1 < m < I2 ≤ n
or I1 = m = I2. We refer to [102, (3.13)] for (5.3.13), and to [88, Lemma 5.2.5] for (5.3.14).
By (5.3.8) and (5.3.14),

ĉ(N)
nT (kn) =

∑

I3nt(N−1)

∑
w∈WnT

eikn·∆w(nT) W (w) K[0,I1](w) J[I1,I2](w) K[I2,nT ](w). (5.3.15)

Let
≤
c (N) and

>
c (N) denote the contributions towards (5.3.15) corresponding to intervals I

with length |I| = I2 − I1 ≤ bn and |I| > bn, respectively. It will turn out that the latter
contribution is negligible. We take n sufficiently large so that (nt(N−1)−nt(N−2))∨(nt(N)−
nt(N−1)) ≥ bn and

≤
c (N)

nT (kn) =
∑

I3nt(N−1)

|I|≤bn

ĉ(N−1)

(nt(1),...,nt(N−2),I1)

(
k(1)

n , . . . , k(N−1)
n

) × ĉnT−I2(k
(N)
n )

×
∑

w∈W|I|
exp

{
ik(N−1)

n · wnt(N−1)−I1
+ ik(N)

n · (wI2−I1 − wnt(N−1)−I1
)
}

W (w) J[0,|I|](w).

(5.3.16)

We use ey = 1 + O(|y|α∧1) and (5.3.13) to see that the second line in (5.3.16) is equal to

∑
x

(
1 + O(|fα(n) x|α∧1)

)
π|I|(x). (5.3.17)

By the induction hypothesis,

ĉ(N−1)

(nt(1),...,nt(N−2),I1)

(
k(1)

n , . . . , k(N−1)
n

)

= ĉI1(0) exp

{
−Kα

N−1∑
j=1

|k(j)|α∧2 (t(j) − t(j−1))

}
+ o(1)

(5.3.18)

and

ĉnT−I2(k
(N)
n ) = ĉnT−I2(0) exp

{−Kα |k(N)|α∧2 (t(N) − t(N−1))
}

+ o(1), (5.3.19)

where the error terms are uniform in |I| ≤ bn.
Substituting (5.3.17)–(5.3.19) into (5.3.16) yields

≤
c (N)

nT (kn) = exp

{
−Kα

N∑
j=1

|k(j)|α∧2 (t(j) − t(j−1))

}
≤
c (N)

nT (0) + Θ + o(1) (5.3.20)
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where

|Θ| ≤
∑

I3nt(N−1)

|I|≤bn

ĉI1(0) ĉnT−I2(0)
∑

x

O
(|fα(n) x|α∧1) π|I|(x). (5.3.21)

In (5.3.21) there are precisely m − 1 ways to choose the interval I 3 nt(N−1) if |I| = m.
We further bound

|Θ|
ĉnT (0)

≤
bn∑

m=1

m
∑

x

O
(|fα(n) x|α∧1) πm(x) zm

c

≤ O(|fα(n)|α∧1 bn)

∞∑
m=1

∑
x

|x|α∧2 |πm(x)| zm
c = o(1), (5.3.22)

where Corollary 5.4 is used in the first inequality, m ≤ bn in the second, and the last

estimate uses (5.3.9) and Lemma 5.6. Recalling ĉ(N)
nT (k) =

≤
c (N)

nT (k)+
>
c (N)

nT (k),

≤
c (N)

nT (kn)

ĉnT (0)
= exp

{
−Kα

N∑
j=1

|k(j)|α∧2 (t(j) − t(j−1))

} (
1−

>
c (N)

nT (0)

ĉnT (0)

)
+

|Θ|
ĉnT (0)

+

>
c (N)

nT (kn)

ĉnT (0)
,

(5.3.23)

and it suffices to show
>
c (N)

nT (kn)/ĉnT (0) = o(1) as n →∞. By bounding | eikn·∆w(nT) | ≤ 1
in (5.3.15), and using again (5.3.13) and Corollary 5.4,

>
c (N)

nT (kn)

ĉnT (0)
≤ O(1)

∞∑

m=bn+1

m
∑

x

|πm(x)| zm
c , (5.3.24)

which vanishes as n → ∞ by (5.1.72) and the fact that bn → ∞ as n → ∞. We have
completed the advancement of the induction, and all error terms occurring are uniform in
sequences g = (gn) that satisfy 0 ≤ gn ≤ bn. This proves (5.3.10) for all N ≥ 1.

5.3.2 Tightness

In this subsection we prove tightness of the sequence Xn, the missing piece for the proof
of Theorem 5.10. Indeed, tightness is implied by Theorem 5.9 and the following tightness
criterion.

Proposition 5.12 (Tightness criterion [19]). The sequence {Xn} is tight in D([0, 1],Rd)
if the limiting process X has a.s. no discontinuity at t = 1 and there exist constants C > 0,
r > 0 and a > 1 such that for 0 ≤ t1 < t2 < t3 ≤ 1 and for all n,

〈|Xn(t2)−Xn(t1)|r |Xn(t3)−Xn(t2)|r〉n ≤ C|t3 − t1|a. (5.3.25)

This proposition is a slight modification of Billingsley [19, Theorem 15.6], where (15.21)
is replaced by the stronger moment condition on the bottom of page 128 (both references
to Billingsley [19]).

Corollary 5.13 (Tightness). The sequence {Xn} in (5.3.1) is tight in D([0, 1],Rd).

Proof. We first remark that α-stable Lèvy motion indeed has a version without jumps at
fixed times, and hence no discontinuity at t = 1 occurs, see e.g. [78, Theorem 13.1]. Fix
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r = 3/4 (α ∧ 2) (in fact, any choice r ∈ ((α ∧ 2)/2, α ∧ 2) is possible). Again we write nt
for bntc, for brevity. The left hand side of (5.3.25) can be written as

fα(n)2r

cn (2dKα)2r/(α∧2)

∑
w∈Wn

|w(nt2)− w(nt1)|r |w(nt3)− w(nt2)|r W (w) K[0,n](w), (5.3.26)

where K[0,n](w) was defined in (5.3.12). Since

K[0,n](w) ≤ K[0,nt1](w) K[nt1,nt2](w) K[nt2,nt3](w) K[nt3,n](w) (5.3.27)

and, by Corollary 5.4,

c−1
n ≤ O(1) c−1

nt1 c−1
nt2−nt1 c−1

nt3−nt2 c−1
n−nt3 , (5.3.28)

we can bound (5.3.26) from above by

〈|Xn(t2)−Xn(t1)|r |Xn(t3)−Xn(t2)|r〉n
≤ O(1) fα(n)2r 1

cnt2−nt1

∑
w∈Wnt2−nt1

|w(nt2 − nt1)|r

× 1

cnt3−nt2

∑
w∈Wnt3−nt2

|w(nt3 − nt2)|r

= O(1) fα(n)2r
(
ξ(r)(nt2 − nt1)

)r (
ξ(r)(nt3 − nt2)

)r

.

(5.3.29)

By Theorem 5.9 and (5.2.4),

(
ξ(r)(nt∗ − nt∗)

)r

≤ O(1) fα(n)−r (t∗ − t∗)
r/(α∧2) (5.3.30)

for any 0 ≤ t∗ < t∗ ≤ 1, so that

〈|Xn(t2)−Xn(t1)|r |Xn(t3)−Xn(t2)|r〉n ≤ O(1) (t3 − t1)
2r/(α∧2) = O(1) (t3 − t1)

3/2.
(5.3.31)

This proves tightness of the sequence {Xn}.
Proof of Theorem 5.10. The convergence in distribution in Theorem 5.10 is implied by
convergence of finite dimensional distributions and tightness of the sequence Xn, see e.g.
[19, Theorem 15.1]. Hence, Theorem 5.11 and Corollary 5.13 imply Theorem 5.10.





Appendix A

Diagrammatic bounds

for the Ising model

. This appendix is devoted to the proof of Proposition 3.6 for the Ising model. We proceed
by considering the quantities π(M)

Λ (M = 0, 1, 2, . . . ) defined in [95], which give rise to ΠΛ
M

and RΛ
M+1 by [95, (1.12) and (1.13)]:

δ0,x + ΠΛ
M(x) =

M∑
N=0

(−1)Nπ(N)
Λ (x), 0 ≤

∣∣∣RΛ
M(x)

∣∣∣ ≤ τ(z)
∑
u,v

π(M)
Λ (u) D(v − u) G(v, x).

(A.1)

We first discuss a bound on π(N)
Λ , and use this to prove Proposition 3.6. Note that (A.2)–

(A.3) is the Ising model analogue of Eq. (3.3.42)–(3.3.43) for percolation.

Proposition A.1 (Diagrammatic bounds for the Ising model). Suppose that, for the Ising
model, f(z) ≤ K for some z ∈ (0, zc), K > 1. Then there exists a constant c̄K > 0, such
that

δ0,N ≤
∑

x

π(N)
Λ (x) ≤

{
1 + c̄Kβ2 (N = 0),

(c̄Kβ)N (N ≥ 1),
(A.2)

and ∑
x

[1− cos(k · x)]π(N)
Λ (x) ≤ Ĉλz (k)−1(c̄Kβ)N∨1, (A.3)

uniformly in Λ.

This proposition is a variation of [95, Proposition 3.2]. However, it is important that

the bounds of the type
∑

x |x|2π(N)
Λ (x) in [95] have been replaced by bounds involving the

factor 1 − cos(k · x), as in (A.3). This replacement is a basic philosophy for this work.
The following heuristic reasoning explains why the factor |x|2 is not sufficient in the case
of infinite variance spread-out models.

By (A.28) below, π(0)
z (x) ≤ Gz(x)3. Let us assume that Gz(x) ≈ Cλz (x), as suggested

by Theorem 3.7. For z = zc, and using that C1(x) ≈ const /|x|d−(α∧2), that would lead to

∑
x

|x|2π(0)
zc

(x) ≈
∑

x

|x|2 1

|x|3(d−(α∧2))
,

and this is finite if and only if d < 3(d−(α∧2))−2. In particular, this suggests that for α < 2
and 2(α∧ 2) < d < 1 + 3/2(α∧ 2),

∑
x |x|2π(0)

zc
(x) = ∞ but

∑
x[1− cos(k · x)]π(0)

zc
(x) < ∞.

Thus, using
∑

x |x|2π(0)
zc

(x) < ∞ as a criterion for d > dc suggests a wrong value for the

critical dimension. Rather, it appears that we must assume
∑

x |x|α∧2π(0)
zc

(x) < ∞ instead.
We first show how Proposition A.1 implies Proposition 3.6, and afterwards discuss its

proof.

Proof of Proposition 3.6 subject to Proposition A.1. We proceed as in the proof of Propo-
sition 3.5. The bounds (3.3.52)–(3.3.53) follow immediately with cK = 2c̄K , where the
extra 1 in the (N = 0)-case is compensated by the substraction of δ0,x, and the factor 2
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comes from summing the geometric series (where we required β small enough to ensure
c̄Kβ ≤ 1/2). For the bounds on the remainder term RM , we see by (A.1) that

∑
x

|RΛ
M(x)| ≤ Kπ̂(M)

Λ (0) χ(z). (A.4)

However, by (A.2), (3.3.54) follows if z < zc and M = M(z) is so large that (cKβ)Mχ(z) ≤
cKβ. Finally, for (3.3.55), we use (2.1.50) below with n = 3 to see that

∑

x∈Zd

[1− cos(k · x)] |RΛ
M(x)| ≤7K[1− D̂(k)]π̂(M)

Λ (0)χ(z) + 7K
(
π̂(M)

Λ (0)− π̂(M)
Λ (k)

)
χ(z)

+ 7Kπ̂(M)
Λ (0)

(
Ĝz(0)− Ĝz(k)

)
.

(A.5)

For the first term, we use (3.3.12) and (A.2) to bound

7K[1− D̂(k)]π̂(M)
Λ (0)χ(z) ≤ 14K(c̄Kβ)Mχ(z)Ĉλz (k)−1.

For the second term, we use (A.3) to see that π̂(M)
Λ (0) − π̂(M)

Λ (k) ≤ Ĉλz (k)−1(c̄Kβ)M∨1.
Finally, for the third term in (A.5), we use the upper bound on f3 and the uniform bound

Ĉλz (k) ≤ (1− λz)
−1 = χ(z) to obtain

|Ĝz(0)− Ĝz(k)| = 1

2
|∆kĜz(0)| ≤ 16KĈλz (k)−1 (

3 (1− λz)
−2) = 48KĈλz (k)−1χ(z)2.

(A.6)
Together with (A.2), this yields the desired bound.

We now prove Proposition A.1 subject to the diagrammatic bounds in [95], and this
will occupy the remainder of the appendix. Our proof is an adaptation of the proof of [95,
Prop. 3.2], with a modified bootstrap hypothesis. In particular, the factor |x|2 at various
places in that proof is replaced by the factor 1 − cos(k · x) here. We fix z ∈ (0, zc) and
throughout the remainder of the section omit it from the notation (e.g., we write τ for
τ(z)). Also we fix some subset Λ containing the origin. We keep in mind that we are
interested in the thermodynamic limit Λ ↗ Zd, and in fact our bounds hold uniformly in
Λ. We elaborate on this after Prop. A.2 below. All sums below are taken over Zd, unless
stated otherwise.

Writing again
G̃(x) = τ(D ∗G)(x), (A.7)

we note the basic estimate
G(x) ≤ δ0,x + G̃(x) (A.8)

resulting from the random-current representation and the source switching lemma, cf. [95,
(4.2)].

As for self-avoiding walk, we write B = (G ∗ G)(0) =
∑

x G(x)2 for the bubble dia-

gram, but in contrast to (2.2.16) we denote B̃ = (G̃ ∗ G̃)(0) for the “non-vanishing bubble
diagram”. Under the hypothesis f(z) ≤ K, we have that

B ≤ 1 + O(β), B̃ ≤ O(β), (A.9)

by (3.3.15) for the former, and (3.3.19) for the latter. Furthermore, it is easy to see that,
by the Cauchy-Schwarz inequality, “open bubbles” are bounded by a “closed bubble”, i.e.,
for all x ∈ Zd,

(G ∗G)(x) =
∑

v

G(v) G(x− v) ≤ B, (G̃ ∗ G̃)(x) ≤ B̃. (A.10)
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Here is an outline of the proof of Proposition A.1. We bound certain diagrams to be
defined below in terms of B and B̃. In turn, these diagrams bound the lace expansion
coefficients π(j), [95]. Hence, by exploiting (A.9), we prove a sufficient decay of the lace
expansion coefficients subject to β being sufficiently small.

We now define various quantities needed to describe the bounding diagrams. All no-
tation is chosen consistently with [95], which provides our basic estimates. In order to

emphasize the diagrammatic structure, we write G and G̃ with two arguments, with the
understanding that G(y, x) = G(x− y), and for G̃ appropriately.

Let

ψ(y, x) :=

∞∑
j=0

(G̃2)∗j(y, x) = δy,x +

∞∑
j=1

∑
u0,u1,...,uj∈

{x}×(Zd)j−1×{y}

j∏

l=1

G̃(ul−1, ul)
2 (A.11)

denote a “chain of bubbles”, and

ψ̃(y, x) = ψ(y, x)− δy,x. (A.12)

If β is so small that B̃ < 1/2 (which we shall assume from now on), then a basic calculation
shows that

ψ̃ := sup
y

∑
x

ψ̃(y, x) ≤ 2B̃ = O(β). (A.13)

Let

P ′(0)u (y, x) := G(y, x)2G(y, u) G(u, x) =
y

u

x

,

(A.14)

P ′′(0)u,v (y, x) := G(y, x) G(y, u) G(u, x)
∑

v′
G(y, v′) G(v′, x) ψ(v′, v) =

y
u

x

(v )’

v

.
(A.15)

In the last equalities of (A.14)–(A.15) we used the pictorial representation introduced in
(2.1.40). A line between two points, say y and x, represents the two-point function G(y, x),

and vertices in brackets are summed over. The quantities P ′(0) and P ′′(0) are the leading
terms in the quantities P ′ and P ′′, defined in (A.22) below.

We further define
P (1)(v1, v

′
1) := 2ψ̃(v1, v

′
1) G(v1, v

′
1), (A.16)

and, for j = 2, 3, . . . ,

P (j)(v1, v
′
j) :=

∑
v2,...,vj

v′1,...,v′j−1

G(v1, v2) G(v2, v
′
1)

(
j∏

i=1

ψ̃(v1, v
′
1)

)

×
(

j−1∏
i=2

G(v′i−1, vi+1) G(vi+1, v
′
i)

)
G(vj , v

′
j−1).

(A.17)

The first three elements of the sequence look diagrammatically like

P (1)(v1, v
′
1) =

v1 v’1 ,
P (2)(v1, v

′
2) =

(v’)1

v’2(v )2

v1 ,

P (3)(v1, v
′
3) =

v3(v )3(v’)1

(v’)2
(v )2

v1 .
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We now obtain quantities P ′ and P ′′ as variations on P . To this end, we define
P ′(j)

u (v1, v
′
j) by replacing one of the 2j − 1 two-point functions, say G(z, z′), on the right-

hand side of (A.16)–(A.17) by the product of two two-point functions, G(z, u) G(u, z′), and
then summing over all 2j − 1 choices of this replacement. For example,

P ′(1)u (v1, v
′
1) = 2ψ̃(v1, v

′
1) G(v1, u) G(u, v′1) =

v1

u

v’1 ,

(A.18)

and

P ′(2)u (v1, v
′
2) =

∑

v2,v′1

( 2∏
i=1

ψ̃(vi, v
′
i)

)(
G(v1, u) G(u, v2) G(v2, v

′
1) G(v′1, v

′
2)

+ G(v1, v2) G(v2, u) G(u, v′1) G(v′1, v
′
2)

+ G(v1, v2) G(v2, v
′
1) G(v′1, u) G(u, v′2)

)
. (A.19)

We define P ′′(j)
u,v (v1, v

′
j) similarly as follows. First we take two two-point functions in

P (j)(v1, v
′
j), one of which (say, G(y1, y

′
1) for some y1, y

′
1) is among the aforementioned 2j−1

two-point functions, and the other (say, G̃(y2, y
′
2) for some y2, y

′
2) is among those of which

ψ(vi, v
′
i) − δvi,v′i for i = 1, . . . , j are composed. The product G(y1, y

′
1)G̃(y2, y

′
2) is then

replaced by

( ∑

v′
G(y1, v

′) G(v′, y′1) ψ(v′, v)

)(
G(y2, u)G̃(u, y′2) + G̃(y2, y

′
2) δu,y′2

)

+ G(y1, u) G(u, y′1)
∑

v′

(
G(y2, v

′)G̃(v′, y′2) + G̃(y2, y
′
2) δv′,y′2

)
ψ(v′, v). (A.20)

In our pictorial representation,

1y1 y’

2y 2y’

is replaced by

v

(v )’

u

1y1 y’

2y 2y’

+
v

(v )’

u 1y1 y’

2y 2y’ .

Finally, we define P ′′(j)
u,v (v1, v

′
j) by taking account of all possible combinations of G(y1, y

′
1)

and G̃(y2, y
′
2). For example, we define P ′′(1)u,v (v1, v

′
1) as

P ′′(1)u,v (v1, v
′
1) =

∑

u′,u′′,v′

(
2ψ(v1, u

′) G̃(u′, u′′)
(
G(u′, u) G̃(u, u′′) + G̃(u′, u′′) δu,u′′

)
ψ(u′′, v′1)

×G(v1, v
′) G(v′, v′1)ψ(v′, v) + (permutation of u and v′)

)

(A.21)

=
v1

u
v’1

(v )’

v

+ v1

u

v’1
(v )’

v ,
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where the permutation term corresponds to the second diagram.
We let

P ′u(y, x) =
∑

j≥0

P ′(j)
u (y, x) =

y

u x ,

P ′′u,v(y, x) =
∑

j≥0

P ′′(j)
u,v (y, x) =

y

u x

v

,
(A.22)

where P ′(0)u (y, x) and P ′′(0)u,v (y, x) are the leading contributions to P ′u(y, x) and P ′′u,v(y, x),
respectively.

Finally, we define

Q′u(y, x) =
∑

z

(
δy,z + G̃(y, z)

)
P ′u(z, x) =

y

u x

(z)

,

(A.23)

Q′′u,v(y, x) =
∑

z

(
δy,z + G̃(y, z)

)
P ′′u,v(z, x)

+
∑

v′,z

(
δy,v′ + G̃(y, v′)

)
G̃(v′, z) P ′u(z, x) ψ(v′, v), (A.24)

that is, pictorially,

Q′′u,v(y, x) =

y

u x

v

Q’’ =

y

u x

v
(z)

+

y

u x

v
(v’

(z)

)

.

(A.25)

Based on the lace expansion, Sakai proved the following diagrammatic bound:

Proposition A.2 (Diagrammatic bounds [95, Prop. 4.1]). For the ferromagnetic Ising
model,

π(0)
Λ (x) ≤ P ′(0)0 (0, x) (A.26)

and, for N ≥ 1,

π(N)
Λ (x) ≤

∑

b1,...,bj
v1,...,vj

P ′(0)v1 (0, b1)

(
N−1∏
i=1

τD(bi) Q′′vi,vi+1(bi, bi+1)

)
τD(bj) Q′vi,vi+1(bi, x),

(A.27)

where the sum is taken over vertices vi and (directed) bonds bi = (bi, bi), i = 1, . . . , j. We

denote D(bi) = D(bi − bi) and regard the empty product as 1 by convention. The bounds
(A.26)–(A.27) holds uniformly in Λ.

Proposition A.2 is the Ising model analogue of the diagrammatic bounds in Proposition
2.2 for percolation and Proposition 2.4 for self-avoiding walk. It should be noted that
Sakai [95] proved the bounds (A.26)–(A.27) on a finite graph Λ, where in particular all
quantities on the right hand side are defined on Λ. By Griffith’s second inequality [49],
the two-point correlation function Gz is monotonically increasing in Λ, and thus so are P ′,
Q′ and Q′′. Hence, the right hand side in (A.26)–(A.27) is monotonically increasing in Λ,

and we consider the thermodynamic limit Λ ↗ Zd as a uniform upper bound on π(N)
Λ (x).

However, it is not obvious how to obtain the thermodynamic limit on the left hand side
directly, since the quantities π(N)

Λ (x) are not monotone in Λ.
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Proof of (A.2). We first show that 1 ≤ ∑
x π(0)

Λ (x) ≤ 1+O(β2). By the definition of π(0)
Λ (x)

and (A.14), δ0,x ≤ π(0)
Λ (x) ≤ G(x)3. Whence

1 ≤
∑

x

π(0)
Λ (x) ≤ 1 +

∑

x 6=0

G(x)3 ≤ 1 +

(
sup
x6=0

G(x)

) ∑

x6=0

G̃2(x). (A.28)

The term
∑

x6=0 G̃2(x) is bounded above by a non-vanishing bubble B̃, yielding a factor

O(β) by (A.9). The term supx6=0 G(x) can be bounded as follows. We first apply (3.5.2),
to obtain

sup
x6=0

G(x) ≤ τ‖D‖∞ + ‖τD ∗ G̃‖∞. (A.29)

The first summand is bounded by Kβ, by our bound on f1 and (3.2.4). Furthermore,

‖τD∗G̃‖∞ ≤ ‖τD∗G̃∗G̃‖∞ ≤ 8K3β by (3.3.16). We thus obtain the bound on
∑

x π(0)
Λ (x).

We next consider the bound on
∑

x π(N)
Λ (x) for N ≥ 1. Here is a diagrammatic repre-

sentation of the bounds on
∑

x π(N)
Λ (x) for N = 3:

b

0 x

v

Q’’ Q’’

2

b1 b3

v v

2

31

where all vertices v1, v2, v3 and bonds b1, b2, b3 are summed over. Since the diagrammatic
bound (A.26)–(A.27) implies

∑
x

π(N)
Λ (x) ≤

(∑
v,x

P ′(0)v (0, x)

)(
sup

y

∑
w,v,x

τD(w − y) Q′′0,v(w, x)

)N−1

(
sup

y

∑
w,x

τD(w − y) Q′0(w, x)

)
,

(A.30)

it is sufficient to show that

(i)
∑

v,x P ′(0)v (0, x) ≤ O(1),

(ii) supy

∑
w,x τD(w − y) Q′0(w, x) ≤ O(β),

(iii) supy

∑
w,v,x τD(w − y) Q′′0,v(w, x) ≤ O(β).

We will now prove these bounds one at a time.
(i) We first show that

∑
v,x P ′(0)v (0, x) is uniformly bounded. Indeed, by (A.10) and

(A.14),

∑
v,x

P ′(0)v (0, x) =
∑
v,x

G(x)2G(v) G(v − x) ≤
(

sup
y

∑
v

G(v) G(v − y)

) ∑
x

G(x)2 ≤ B2.

(A.31)
(ii) We bound

∑
w,x

τD(w − y) Q′0(w, x) =
∑
u,x

(∑
w

τD(w − y)
(
δw,u + G̃(u− w)

)
)

P ′0(u, x), (A.32)
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cf. (A.23). The factor β comes from the nonzero line segment
∑

w τD(w−y)
(
δw,u + G̃(u−

w)
)
, as we have seen in the discussion around (A.29).

It remains to show that
∑

u,x P ′0(u, x) =
∑

u,x

∑∞
j=0 P ′(j)

0 (u, x) is uniformly bounded.

Claim A.3 (Bound on P ′). ∑
u,x

P ′0(u, x) ≤ O(1). (A.33)

Proof. To this end, it suffices to show

∑
u,x

P ′(j)
0 (u, x) ≤ (2j − 1) O(β)j , (j ≥ 1), (A.34)

since the case j = 0 has been treated in (A.31). The bound (A.34) will be achieved by
decomposing the diagrams describing P ′(j) into bubble diagrams, and we demonstrate this
for the case j = 4 explicitly.

Recall from (A.17) that

P (4)(u, x) =

u

x

,

(A.35)

and we obtain P ′(4)(u, x) from P (4)(u, x) by replacing one of the 7(= 2j − 1) factors of the
form G(u, v) by

∑
w G(u, w) G(w, v). In terms of diagrams, there is an extra vertex added

to either of the 7 straight lines in (A.35). This explains the factor (2j − 1) in (A.34).
In case this extra vertex falls to one of the horizontal lines, say the lower one, we bound

as follows. We first extend our diagrammatical notation in the following way: we mark
vertices that are summed over by a full dot, and fixed vertices (possibly with a supremum)
are marked with an open dot, i.e.,

∑
u,x

u

x

0

=

.

We decode the diagram as

=
∑

x1,x2,x3,x4,
x5,x6,x7,x8

x6

x1 x3 x4 x7

x2 x5 x8

y

;

(A.36)

and as a formula, this looks like

∑
x1,x2,x3,x4,
x5,x6,x7,x8

G(x1, x2) G(x2, x3) G(x3, y) G(y, x4) G(x4, x5) G(x5, x6)

×G(x6, x7) G(x7, x8) ψ̃(x1, x3) ψ̃(x2, x5) ψ̃(x4, x7) ψ̃(x6, x8).

(A.37)

We use translation invariance to replace the sum in (A.37) by

∑
x1,x2,y,x4,
x5,x6,x7,x8

· · · (expression as in (A.37) with x3 fixed) (A.38)
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The expression in (A.38) is bounded above by

(∑
x1

ψ̃(x1, x3)

) (
sup
x̄1

∑
x2

G(x̄1, x2) G(x2, x3)

)

×
(

sup
x̄2

∑
x5

ψ̃(x̄2, x5)

) (
sup
x̄4

∑
y

G(x3, y) G(y, x̄4)

)

×
(

sup
x5

∑
x4,x6,x7,x8

G(x4, x5) G(x5, x6) G(x6, x7) G(x7, x8) ψ̃(x4, x7) ψ̃(x6, x8)

)

=

.

(A.39)

For the remaining component on the right hand side, we again use translation invariance
and bound further as

= ≤
,

= ≤ ≤ ψ̃ B.

(A.40)
Hence,

≤ B4ψ̃4, (A.41)

and this can be made smaller than O(β)4, cf. (A.9) and (A.13).

However, if the extra vertex falls to one of the vertical lines, then the details are slightly
different:

=

≤ ≤ B2 ψ̃2

.

(A.42)

The remaining diagram in (A.42) is bounded by multiple use of translation invariance, as
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we will show now:

= sup
w

∑
v,x,y,z

0 x

yw

v

z

= sup
w

∑
x,y,z,v

0 x+v

y+vw

v

z+v

≤
(

sup
w,y

∑
v 0

v

w-y )



∑
x,y,z

0 x

y z


≤ B2 · ψ̃2. (A.43)

This proves (A.34) for j = 4. The cases j 6∈{0, 4} are omitted, since the same methods
will lead to the desired bounds.

(iii) We now turn to the bounds involving Q′′, i.e., we prove

sup
y

∑
w,v,x

τD(w − y)Q′′0,v(w, x) ≤ O(β). (A.44)

Recalling the definition of Q′′ in (A.24), (A.44) is established once we have shown

sup
y

∑

w,v,v′,z,x

τD(w − y)
(
δw,v′ + G̃(w, v′)

)
G̃(v′, z) P ′0(z, x) ψ(v′, v) ≤ O(β) (A.45)

and
sup

y

∑
w,v,z,x

τD(w − y)
(
δw,z + G̃(w, z)

)
P ′′0,v(z, x) ≤ O(β). (A.46)

A decomposition of the left hand side of (A.45) yields as an upper bound


sup

z

∑

w,v′
τD(w − y)

(
δw,v′ + G̃(w, v′)

)
G̃(v′, z)




(
sup
v′

∑
v

ψ(v′, v)

) (∑
z,x

P ′0(z, x)

)
,

(A.47)

where the first term is bounded by O(β), the second term is bounded by 1+ ψ̃ = O(1) and
the final term is bounded by O(1), by Claim A.3.

It thus remains to show the following claim:

Claim A.4 (Bound on P ′′). The estimate (A.46) is true.

Proof. In our pictorial representation, (A.46) can be expressed like

≤ O(β). (A.48)

Similarly to the proof of (A.33), it is sufficient to show

sup
y

∑
w,v,z,x

τD(w − y)
(
δw,z + G̃(w, z)

)
P ′′(j)

0,v (z, x) ≤ O(β)j∨1 (A.49)
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for j = 0, 1, 2, . . . . We explicitly perform this bound for j = 0, 1, and omit the details for
j ≥ 2.

For j = 0, we bound

≤
,

(A.50)

i.e.,

sup
y

∑
w,v,z,x

τD(w − y)
(
δw,z + G̃(w, z)

)
P ′′(0)0,v (z, x) ≤ O(β) B2 (1 + ψ̃), (A.51)

where the O(β)-factor arises from the open bubble involving the extra vertex, and the

chain of bubbles hanging off from the top produces a factor 1 + ψ̃.
For j = 1 we proceed similarly by recalling the definition of P ′′(1) in (A.21) and bound

sup
y

∑
w,v,z,x

τD(w − y)
(
δw,z + G̃(w, z)

)
P ′′(1)0,v (z, x)

= +

≤
1

2
3

4

5

+

1

2

3

4

5

,

where the numbers indicate the order in the decomposition. A calculation similar to
(A.43) shows that ≤ ( ) ( ) = B(1 + ψ̃) (if the initial two-

point function is dashed, then we obtain B̃(1 + ψ̃) as an upper bound). Hence (A.49) for
j = 1 follows. The terms for j ≥ 2 are bounded in the same fashion.

This completes the proof of (A.2).

Proof of (A.3). We now turn towards the proof of the bound (A.3) in Proposition A.1,
which we restate here for convenience:

∑
x

[1− cos(k · x)]π(N)
Λ (x) ≤ Ĉλz (k)−1(c̄Kβ)N∨1.

We start by considering the case N = 0. By (A.26) and (A.14),

∑
x

[1− cos(k · x)] π(0)
Λ (x) ≤

∑

x6=0

[1− cos(k · x)] G3(x). (A.52)

This is bounded above by

(
sup

x
[1− cos(k · x)] G(x)

) 
∑

x 6=0

G2(x)


 ≤

(
sup

x
[1− cos(k · x)] G(x)

)
B̃. (A.53)
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Then the desired bound follows from (A.9) and Lemma 3.4.
For N > 0, our strategy is to break the term 1 − cos(k · x) into parts using (2.1.50),

which is reminiscent of the decomposition of squares in [95, (5.39)].
In the case N = 1 this allows for the following calculation. Recall from Prop. A.2 the

upper bound on π(1)
Λ (x). An application of (2.1.50) for n = 2 yields

∑
x

[1− cos(k · x)]π(1)
Λ (x) ≤

∑
x

[1− cos(k · x)] 0 x

≤ 5


 +


 . (A.54)

In (A.54) we extend our pictorial representation to incorporate factors of the form [1 −
cos(k · x)]. Here a double line between two points, say y1 and y2, represents a factor
[1−cos(k·(y1−y2))] G(y1−y2), while, as before, a normal line represents a factor G(y1−y2).
For the second summand in (A.54) , there is not a single two-point function between the
two endpoints of the double line. Here our understanding is that

=
∑
x,y

[1− cos(k · (x− y))] 0 x

y .

(A.55)

In other words, the double line between the two points y and x gives rise to the factor
[1− cos(k · (x− y))].

The first term in (A.54) is estimated like

≤
(i)

(iii)

(iv)

(ii)

,

(A.56)

which yields factors BĈλz (k)−1 arising from (i) by Lemma 3.4, B from (ii), B̃ from (iii),
and O(1) from (iv) by Claim A.3. Thus,

≤ Ĉλz (k)−1O(β). (A.57)

For the second term in (A.54) we bound

≤ ≤ B2 ·
,

(A.58)

The remaining factor supy

∑
w,x[1−cos(k·x)] τD(w−y)Q′0(w, x) is bounded by the following

claim:

Claim A.5. Under the assumptions of Proposition A.1,

= sup
y

∑
w,x

[1− cos(k · x)] τD(w − y)Q′0(w, x) ≤ Ĉλz (k)−1O(β). (A.59)
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Proof. By (A.23),

sup
y

∑
w,x

[1− cos(k · x)] τD(w − y)Q′0(w, x)

= sup
y

∑
w,x,z

[1− cos(k · x)] τD(w − y)

∞∑
j=0

(
δw,z + G̃z(w, z)

)
P ′(j)

0 (z, x).

(A.60)

In diagrams, that is

≤ +

+


 + +


 + · · · ,

(A.61)

where contributions according to j = 0, 1, 2 are shown explicitly and higher order contri-
butions are indicated by dots. When we have a series of connected double lines (like in
the first term in parenthesis), this indicates a factor [1− cos(k · (y1− y2))], where y1 is the
starting point of the lines, and y2 is the endpoint. We then use (2.1.50) to decompose the
series of double lines. For example, for the first term in parenthesis we obtain

≤ 7


 + +


 ,

and a similar bound holds for the second term. With Lemma 3.4 it follows that the
contribution from j = 2 in (A.61) (the term in parenthesis) is bounded by O(β)3Ĉλz (k)−1.
The method can be generalized to j ≥ 3 showing

sup
y

∑
w,x,z

[1− cos(k · x)] τD(w − y)
(
δw,z + G̃z(w, z)

)
P ′(j)

0 (z, x) ≤ O(j2) O(β)j+1Ĉλz (k)−1.

(A.62)
By (A.60), this is sufficient for (A.59).

For N > 1, we proceed by distributing the spatial displacement 1− cos(k · x) along the
“bottom line” of the diagram. E.g., for N = 3, this yields

∑
x

[1− cos(k · x)]π(3)
Λ (x) ≤

∑
x

[1− cos(k · x)] 0 xQ’’ Q’’

= Q’’ Q’’

.

(A.63)
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By (2.1.50), the right hand side of (A.63) is bounded above by 9 times

Q’’ Q’’ + Q’’ Q’’

+ Q’’ Q’’ + Q’’ Q’’

.
(A.64)

In the following we refer by (I), (II), (III) and (IV) to the four terms in (A.64), respectively.

In fact, all 4 terms are bounded by Ĉλz (k)−1 O(β)N , as we will show now.
The bound on (IV) is an immediate consequence of (i) and (iii) below (A.30), and Claim

A.5. For the bound on (I), we use translation invariance to obtain the factorization

︸ ︷︷ ︸
(I-1)

Q’’

︸ ︷︷ ︸
(I-2)

Q’’

︸ ︷︷ ︸
(I-3)

︸ ︷︷ ︸
(I-4)

.

(A.65)

The terms indicated by
←−
Q ′′ in the diagram are obtaines from Q′′ by shifting the two-point

functions hanging off the left side of the Q′′-box to the next factor on the left hand side,
i.e. (compare with (A.25))

←−
Q ′′

0,v(y, x) =
∑

z,z′
P ′′0,v(y, z) τD(z′ − z)

(
δz′,x + G̃(z′, x)

)

+
∑

z,z′,w

G̃(y, w) P ′0(w, z) ψ(y, v) τD(z′ − z)
(
δz′,x + G̃(z′, x)

)
(A.66)

= Q’’

vy

x0 z
z’

.

The first factor (I-1) is bounded by Ĉλz (k)−1O(β) as in (A.56). The middle terms (I-2)

and (I-3) are equal to supx

∑
v,y

←−
Q ′′

0,v(y, x). Performing calculations as in (A.44)–(A.46),
it can be shown that actually

sup
x

∑
v,y

←−
Q ′′

0,v(y, x) ≤ O(β), (A.67)

and this term occurs N − 1 times in (I). The last term (I-4) is bounded by O(1), cf. Claim

A.3. The bounds on (I-1)–(I-4) show that (I) ≤ Ĉλz (k)−1O(β)N .
The terms (II) and (III) are bounded in a similar fashion by product structures:

(II) ≤ Q’’ Q’’Q’’

,

(A.68)

(III) ≤ Q’’ Q’’

.

(A.69)
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The term
∑

v,x P ′(0)v (0, x) on the left hand side is bounded by O(1) by (A.31); the term∑
u,x P ′0(u, x) (the gray triangle on the right) is bounded by O(1) by Claim A.3. The terms

involving Q′′ and
←−
Q ′′ are bounded by O(β) by (A.44) and (A.67), and together there are

N − 2 of these terms.
It remains to show that

Q’’ ≤ Ĉλz (k)−1O(β)2, Q’’ ≤ Ĉλz (k)−1O(β)2. (A.70)

Here the dashed arrow indicates that the supremum is taken over the difference between
the two vertices at top and bottom of the arrow; see also [95, (5.46)]. In order to achieve
the bounds in (A.70) we proceed as follows. First we use (2.1.50) to distribute the spatial

displacement of 1− cos(k · x) to single two-point functions G or G̃. Secondly, from each of
the emerging summands, we eliminate the term of the form supx,y[1−cos(k ·(y−x))]G(x, y)

(where x and y are chosen appropriately), and bound it by Ĉλz (k)−1O(1), cf. Lemma 3.4.
Finally, we bound the remaining quantity in the same fashion as in (A.44)–(A.46). Note
that the removed bond is compensated by an extra bond hanging off the lower / upper
right corner. The factor β2 arises from the bubbles involving the two non-zero two-point
functions hanging off the box. This finally leads to the required bound

(II) + (III) ≤ Ĉλz (k)−1O(β)N , (A.71)

and thus proves (A.3). This completes the proof of Proposition A.1.
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[83] G. Kirchhoff. Über die Auflösung der Gleichungen, auf welche man bei der Un-
tersuchung der linearen Verteilung galvanischer Ströme geführt wird. Annalen der
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Summary

The present thesis considers three models of statistical mechanics: percolation, self-avoiding
walk and the Ising model. We consider these models on the hypercubic lattice Zd, with
a coupling function D determining the local interaction: In percolation, a bond {x, y} is
occupied with probability proportional to D(y − x); for self-avoiding walk, D describes
the single step distribution of the underlying random walk; and for the Ising model, D
is related to the spin-spin coupling. The most prominent example for D is the nearest-
neighbor case, where D denotes the uniform distribution on the nearest neighbors of 0 on
the hypercubic lattice. However, also various other forms of D are considered, and special
attention is given to cases where D has infinite variance, so-called long-range models.

In Chapter 1 we introduce the above models and describe their basic features. In
particular, we discuss the fact that all three models obey a phase transition, and we
introduce the notion of critical exponents to describe the critical behavior. A priori these
critical exponents depend on the dimension d. However, it is believed that there is an
upper critical dimension dc, such that the critical exponents have the same value for all
d > dc (the mean-field value), but they do change when d < dc. This thesis provides
rigorous results for the high-dimensional case d > dc.

Our tool to analyze the high-dimensional behavior of these spatial systems is the lace
expansion. In Chapter 2 we sketch the lace expansion for percolation and self-avoiding
walk: We show that the lace expansion obtains a combinatoric identity involving certain
lace expansion coefficients, and demonstrate how the so-called diagrammatic bounds on
these lace expansion coefficients are obtained. These diagrammatic bounds are the main
ingredient in the analysis of the lace expansion of Chapter 3. The main result of this
chapter is the infrared bound of Theorem 3.7. As a consequence, various critical exponents
are shown to exist, and to take on their mean-field behavior, see Theorem 3.16.

Chapter 4 focusses on a somewhat different problem, namely the comparison of perco-
lation on two different graphs: the infinite lattice Zd and the (finite) d-dimensional torus,
both in sufficiently high dimension. The main result of this chapter is Theorem 4.2, whose
statement may be rephrased as follows: Let |Cmax| be the size of the largest connected
component obtained for critical percolation on the d-dimensional torus with V vertices,
where d is sufficiently large. Then |Cmax| ≈ V 2/3. The V 2/3-asymptotic is reminiscent of
the Erdős-Rényi random graph model, i.e., percolation on the complete graph. In that the
spatial model (percolation on the torus) shows the same asymptotics as the non-spatial
model (percolation on the complete graph). The key to the proof of Theorem 4.2 is a
coupling argument developed in Section 4.2.

Chapter 5 studies a long-range version of self-avoiding walk, where the single step dis-
tribution has the form D(x) ∝ |x|−(d+α). The main result of the chapter is Theorem 5.10,
stating that a rescaled version of long-range self-avoiding walk in dimension d > 2(α ∧ 2)
converges to α-stable Lévy motion if α < 2, and to Brownian motion if α ≥ 2.
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Leiden, Tübingen, Oberwolfach, Utrecht, Bath, Aachen, and Eindhoven. Starting January
2009, Markus will work as a postdoctoral researcher at Vrije Universiteit Amsterdam.

123



I am grateful to Remco van der Hofstad and Akira Sakai for their patient teaching and
unbounded support.

I thank EURANDOM and Maastricht University for kind hospitality.

M.H.


