Prof. Dr. Sebastian Hensel Leopold Zoller

Topology

Problem Set 9

- 1. (10 POINTS) Let X be a reasonable space and $Y = X \coprod_f D^2$ the space that arises from X by attaching a disk via some map $f: S^1 \to X$, i.e. we identify $x \in S^1$ with f(x). Now let $p \in S^1$ and consider f as a loop in X based at f(p). Show that if $\pi_1(X, f(p)) = \langle S|R \rangle$ is a presentation and r is a word in the free group $F\langle S \rangle$ which represents the homotopy class of f, then $\pi_1(Y, f(p)) = \langle S|R \cup \{r\} \rangle$. Conclude that every finitely presented group (that is a group $\langle S|R \rangle$ with S and R finite) appears as the fundamental group of a space.
- 2. (10 POINTS) Let k be a field and C_* a chain complex of k-vector spaces. Prove that if only finitely many of the C_i are nonzero and those are finite dimensional, then we have

$$\sum_{i\in\mathbb{Z}}(-1)^i\dim_k C_i=\sum_{i\in\mathbb{Z}}(-1)^i\dim_k H_i(C_*).$$

We call the above number the *Euler characteristic* of the complex.

- 3. (20 POINTS) We fix an identification of the 1-simplex with the unit interval. Thus a path γ in a topological space X defines an element $c_{\gamma} \in C_1(X)$. Show:
 - (a) c_{γ} is closed if γ is a loop.
 - (b) if γ and η are paths with $\gamma(1) = \eta(0)$, then $c_{\gamma*\eta} c_{\gamma} c_{\eta}$ is exact.
 - (c) for homotopic loops γ and η the chain $c_{\gamma} c_{\eta}$ is exact.
 - (d) Show that $[\gamma] \mapsto [c_{\gamma}]$ defines a homomorphism $\pi_1(X, x) \to H^1(X)$. Give an example where it is not injective. Is it always surjective?

Please hand in your solutions on December 17 at the end of the lecture.