Topology

Problem Set 6

- 1. (10 POINTS) Let X be path-connected, locally path-connected, and semilocally simply-connected.
 - (a) Let $p: \tilde{X} \to X$ be a covering and $U \subset X$ be a path-connected open neighbourhood of a point x for which the inclusion induces the trivial map $\pi_1(U, x) \to \pi_1(X, x)$. Show that U is *evenly covered* i.e. $p^{-1}(U)$ is a disjoint union of open sets which map homeomorphically to U under p.
 - (b) Let $p_1: \tilde{X}_1 \to \tilde{X}_2$ and $p_2: \tilde{X}_2 \to X$ be covering maps. Show that $p_2 \circ p_1$ is a covering map.
 - (c) Let $\tilde{X} \to X$ be the universal covering. Show that \tilde{X} is a covering of any other path-connected covering space over X.
- 2. (10 POINTS) Let X and Y be spaces with basepoints $x \in X$ and $y \in Y$ such that x and y are deformation retracts of respective open neighbourhoods in X and Y i.e. (in the case of x) there exists a neighbourhood $U \subset X$ of x and a homotopy $H: U \times I \to U$ such that H(p, 0) = p, H(p, 1) = x, and H(x, t) = x for all $p \in U$, $t \in I$. Show that $\pi_1(X \vee Y, \{x, y\})$ is generated as a group by the images of

$$i_*^X: \pi_1(X, x) \to \pi_1(X \lor Y, \{x, y\})$$
 and $i_*^Y: \pi_1(Y, y) \to \pi_1(X \lor Y, \{x, y\})$

where i^X and i^Y are the obvious maps from X and Y to $X \lor Y$.

- 3. (20 POINTS) Recall that the real projective plane $\mathbb{R}P^2$ is given as the quotient of S^2 obtained by identifying x and -x for any $x \in S^2$.
 - (a) Find the universal covering of $\mathbb{R}P^2$ and compute its group of deck transformations.
 - (b) Find the universal covering of $\mathbb{R}P^2 \vee \mathbb{R}P^2$ and show that its deck transformation group is generated by two elements of order 2 (i.e. whose square is zero).
 - (c) Show that there is a subgroup $H \subset G = \pi_1(\mathbb{R}P^2 \vee \mathbb{R}P^2)$ such that $H \cong \mathbb{Z}$ and $G/H \cong \mathbb{Z}_2$.

Please hand in your solutions on November 26 at the end of the lecture.