Topology

Problem Set 5

1. (15 points) We call a graph Γ finite if the vertex and edge sets are finite. We call a graph Γ connected if for any two distinct $v_{1}, v_{2} \in V(\Gamma)$ there are $e_{1}, \ldots, e_{n} \in E(\Gamma)$ so that $i\left(e_{1}\right)=v_{1}, t\left(e_{n}\right)=v_{2}$, and $t\left(e_{j}\right)=i\left(e_{j+1}\right)$ for all $j=1, \ldots, n-1$. We call a graph T a tree, if it is connected, and furthermore for any edge $e \in E(T)$ the graph obtained by removing e, \bar{e} from $E(T)$ is not connected.
(a) Show that a graph is connected (in the sense above) if and only if its topological realisation is path-connected.
(b) Show that the realisation X_{Γ} of a finite tree deformation retracts (strongly) to a point, i.e. there exists a point $p \in X_{\Gamma}$ and a homotopy H from $\mathrm{id}_{X_{\Gamma}}$ to the constant map to p such that $H(p, t)=p$ for any $t \in[0,1]$ (Hint: Show first that there needs to be a vertex which is the endpoint of a unique edge).
(c) Show that any finite, connected graph is homotopy equivalent to a wedge

$$
S^{1} \vee \cdots \vee S^{1}
$$

of finitely many circles (Hint: Show first that any graph has a subgraph containing all vertices which is a tree).
2. (15 POINTS)
(a) For $0<k \in \mathbb{N}$ construct a connected covering space of S^{1} such that every fiber of the covering map consists of k elements.
(b) Construct a connected covering space of $S^{2} \vee S^{1}$ such that every fiber of the covering map is infinite.
(c) Construct a connected covering space of $S^{2} \cup\{(x, 0,0) \mid x \in[-1,1]\} \subset \mathbb{R}^{3}$ such that every fiber of the covering map is infinite.
3. (10 points) Show that it is possible, using only a piece of thread and two nails, to hang a picture on a wall in such a way that it will drop if only one of the nails is removed. In mathematical terms: for distinct points $x, p, q \in \mathbb{R}^{2}$, show the existence of a nontrivial element of $\pi_{1}\left(\mathbb{R}^{2} \backslash\{p, q\}, x\right)$ which maps to a trivial element of $\pi_{1}\left(\mathbb{R}^{2} \backslash\{p\}, x\right)$ and $\pi_{1}\left(\mathbb{R}^{2} \backslash\{q\}, x\right)$ under the maps induced by the inclusions $\mathbb{R}^{2} \backslash\{p, q\} \rightarrow \mathbb{R}^{2} \backslash\{p\}$ and $\mathbb{R}^{2} \backslash\{p, q\} \rightarrow \mathbb{R}^{2} \backslash\{q\}$.

Please hand in your solutions on November 19 at the end of the lecture.

