Topology

Problem Set 5

- 1. (15 POINTS) We call a graph Γ finite if the vertex and edge sets are finite. We call a graph Γ connected if for any two distinct $v_1, v_2 \in V(\Gamma)$ there are $e_1, \ldots, e_n \in E(\Gamma)$ so that $i(e_1) = v_1, t(e_n) = v_2$, and $t(e_j) = i(e_{j+1})$ for all $j = 1, \ldots, n-1$. We call a graph T a tree, if it is connected, and furthermore for any edge $e \in E(T)$ the graph obtained by removing e, \overline{e} from E(T) is not connected.
 - (a) Show that a graph is connected (in the sense above) if and only if its topological realisation is path-connected.
 - (b) Show that the realisation X_{Γ} of a finite tree deformation retracts (strongly) to a point, i.e. there exists a point $p \in X_{\Gamma}$ and a homotopy H from $\mathrm{id}_{X_{\Gamma}}$ to the constant map to p such that H(p,t) = p for any $t \in [0,1]$ (Hint: Show first that there needs to be a vertex which is the endpoint of a unique edge).
 - (c) Show that any finite, connected graph is homotopy equivalent to a wedge

 $S^1 \vee \cdots \vee S^1$

of finitely many circles (Hint: Show first that any graph has a subgraph containing all vertices which is a tree).

- 2. (15 points)
 - (a) For $0 < k \in \mathbb{N}$ construct a connected covering space of S^1 such that every fiber of the covering map consists of k elements.
 - (b) Construct a connected covering space of $S^2 \vee S^1$ such that every fiber of the covering map is infinite.
 - (c) Construct a connected covering space of $S^2 \cup \{(x, 0, 0) \mid x \in [-1, 1]\} \subset \mathbb{R}^3$ such that every fiber of the covering map is infinite.
- 3. (10 POINTS) Show that it is possible, using only a piece of thread and two nails, to hang a picture on a wall in such a way that it will drop if only one of the nails is removed. In mathematical terms: for distinct points $x, p, q \in \mathbb{R}^2$, show the existence of a nontrivial element of $\pi_1(\mathbb{R}^2 \setminus \{p,q\}, x)$ which maps to a trivial element of $\pi_1(\mathbb{R}^2 \setminus \{p\}, x)$ and $\pi_1(\mathbb{R}^2 \setminus \{q\}, x)$ under the maps induced by the inclusions $\mathbb{R}^2 \setminus \{p,q\} \to \mathbb{R}^2 \setminus \{p\}$ and $\mathbb{R}^2 \setminus \{p,q\}$.

Please hand in your solutions on November 19 at the end of the lecture.