Topology

Problem Set 4

1. (10 points) Let $x_{0} \in X$ and $y_{0} \in Y$. Show that

$$
\pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \cong \pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y, x_{0}\right) .
$$

2. (10 points) Let $A \subset X$ be a subspace and consider the following statements:
(i) The collapsing map $X \rightarrow X / A$ is a homotopy equivalence.
(ii) The identity id_{X} is homotopic to a map $X \rightarrow X$ which sends A to a single point.
(iii) The inclusion $X \rightarrow C_{i}$ into the mapping cone of the inclusion $i: A \rightarrow X$ is a homotopy equivalence.
Show that $(i) \Rightarrow(i i) \Rightarrow(i i i)$.
3. (20 POINTS)
(a) Show that the sphere S^{3} is homeomorphic to the gluing of two solid tori $S^{1} \times D^{2}$ and $D^{2} \times S^{1}$ along their boundaries, i.e. $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if $(x, y)=\left(x^{\prime}, y^{\prime}\right) \in$ $S^{1} \times S^{1}$.
Hint: decompose $S^{3}=\left\{\left.(z, w) \in \mathbb{C}^{2}| | z\right|^{2}+|w|^{2}=1\right\}$ into the subsets with $|z|^{2} \leq 1 / 2$ and $|z|^{2} \geq 1 / 2$.
(b) Show that $S^{3} \backslash\left(\{0\} \times S^{1}\right) \subset \mathbb{C}^{2}$ is homotopy equivalent to S^{1}.
(c) Consider $X=\mathbb{R}^{3} \backslash K$, where K is the circle $\{(0, \cos (2 \pi t), \sin (2 \pi t)) \mid t \in[0,1]\}$. Show that the loop $\gamma:[0,1] \rightarrow X$ given by $\gamma(t)=(\sin (2 \pi t), \cos (2 \pi t)-1,0)$ is not contractible, i.e. it defines a nontrivial element of $\pi_{1}(X, 0)$.
Hint: to prove this formally, it can be helpful to recall that the inverse of the stereographic projection $S^{n} \backslash\{(1,0, \ldots, 0)\} \rightarrow \mathbb{R}^{n}$,

$$
\left(x_{0}, \ldots, x_{n}\right) \mapsto\left(1-x_{0}\right)^{-1} \cdot\left(x_{1}, \ldots, x_{n}\right)
$$

is given by

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(1+\sum x_{i}^{2}\right)^{-1} \cdot\left(-1+\sum x_{i}, 2 x_{1}, \ldots, 2 x_{n}\right) .
$$

Please hand in your solutions on November 12 at the end of the lecture.

