Topology

Problem Set 4

1. (10 POINTS) Let $x_0 \in X$ and $y_0 \in Y$. Show that

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, x_0).$$

- 2. (10 POINTS) Let $A \subset X$ be a subspace and consider the following statements:
 - (i) The collapsing map $X \to X/A$ is a homotopy equivalence.
 - (*ii*) The identity id_X is homotopic to a map $X \to X$ which sends A to a single point.
 - (*iii*) The inclusion $X \to C_i$ into the mapping cone of the inclusion $i: A \to X$ is a homotopy equivalence.

Show that $(i) \Rightarrow (ii) \Rightarrow (iii)$.

- 3. (20 points)
 - (a) Show that the sphere S^3 is homeomorphic to the gluing of two solid tori $S^1 \times D^2$ and $D^2 \times S^1$ along their boundaries, i.e. $(x, y) \sim (x', y')$ if $(x, y) = (x', y') \in S^1 \times S^1$.

Hint: decompose $S^3 = \{(z, w) \in \mathbb{C}^2 \mid |z|^2 + |w|^2 = 1\}$ into the subsets with $|z|^2 \le 1/2$ and $|z|^2 \ge 1/2$.

- (b) Show that $S^3 \setminus (\{0\} \times S^1) \subset \mathbb{C}^2$ is homotopy equivalent to S^1 .
- (c) Consider $X = \mathbb{R}^3 \setminus K$, where K is the circle $\{(0, \cos(2\pi t), \sin(2\pi t)) \mid t \in [0, 1]\}$. Show that the loop $\gamma: [0, 1] \to X$ given by $\gamma(t) = (\sin(2\pi t), \cos(2\pi t) - 1, 0)$ is not contractible, i.e. it defines a nontrivial element of $\pi_1(X, 0)$. Hint: to prove this formally, it can be helpful to recall that the inverse of the stereographic projection $S^n \setminus \{(1, 0, \dots, 0)\} \to \mathbb{R}^n$,

$$(x_0, \ldots, x_n) \mapsto (1 - x_0)^{-1} \cdot (x_1, \ldots, x_n)$$

is given by

$$(x_1, \ldots, x_n) \mapsto (1 + \sum x_i^2)^{-1} \cdot (-1 + \sum x_i, 2x_1, \ldots, 2x_n).$$

Please hand in your solutions on November 12 at the end of the lecture.