Prof. Dr. Sebastian Hensel Leopold Zoller

Topology

Problem Set 2

- 1. (10 POINTS) Let X be a set and $\mathcal{T} \subset P(X)$ a topology. A subbasis for \mathcal{T} is a subset $\mathcal{B} \subset \mathcal{T}$ such that every $U \in \mathcal{T}$ can be written as a union of finite intersections of sets from \mathcal{B} (if one only needs to consider unions, then \mathcal{B} is called a *basis*).
 - (a) Show that for any subset $\mathcal{B} \subset P(X)$, there is a unique topology $\mathcal{T} \subset P(X)$ such that \mathcal{B} is a subbasis for \mathcal{T} .

A neighbourhood basis of a topology \mathcal{T} at a point $x \in X$ is a subset $\mathcal{B}_x \subset \mathcal{T}$ consisting of open neighbourhoods of x such that any $U \in \mathcal{T}$ which contains x also contains a neighbourhood from \mathcal{B}_x . We say that (X, \mathcal{T}) is a first-countable space if every point has a countable neighbourhood basis.

- (b) Prove that if $x \in X$ has a countable neighbourhood basis, then there is also a countable neighbourhood basis $(U_i)_{i \in \mathbb{N}}$ satisfying $U_{i+1} \subset U_i$. Furthermore, show that if $(x_i)_{i \in \mathbb{N}}$ is a sequence such that $x_i \in U_i$ then (x_i) converges to x.
- (c) Show that a compact first-countable space is sequentially compact.
- 2. (10 POINTS) Let (X, d) be a metric space. Show:
 - (a) If $K_1, K_2 \subset X$ are compact, then

$$\sup_{\substack{x\in K_1,\\y\in K_2}} d(x,y) < \infty.$$

(b) If $K \subset X$ is compact, $A \subset X$ is closed, and $K \cap A = \emptyset$, then

$$\inf_{\substack{x \in K, \\ y \in A}} d(x, y) > 0.$$

Hint: it can be helpful to observe that metric spaces are first-countable and argue via sequential compactness.

3. (20 POINTS) Let X and Y be topological spaces and denote by C(X,Y) the set of continuous maps from X to Y. Then one can endow C(X,Y) with the *compact* open topology, which is generated by the subbasis consisting of the sets of the form

$$U(K,V) = \{ f \in C(X,Y) \mid f(K) \subset V \}$$

for any compact $K \subset X$ and any open $V \subset Y$. We show that this rather abstract topology has a nice interpretation for metric spaces:

If (Y,d) is a metric space, then one can consider the topology on C(X,Y) with (sub)basis consisting of sets of the form

$$B_{\varepsilon}^{K}(f) = \{g \in C(X, Y) \mid d(g(x), f(x)) < \varepsilon \text{ for all } x \in K\}$$

where $K \subset X$ is any compact subset and $f \in C(X, Y)$ is any function.

- (a) Show that in this case both topologies agree.
- (b) In the case where X is compact and Y is a metric space, define a metric on C(X,Y) which induces the compact open topology.

Please hand in your solutions on October 29 at the end of the lecture.