Topology
 Problem Set 13

1. (10 points) Let $p, q \in \mathbb{Z}$ and consider the map $f: T^{2} \rightarrow T^{2}=S^{1} \times S^{1}$ defined by $(s, t) \mapsto\left(s^{p}, t^{q}\right)$, where multiplication is understood as multiplication in $S^{1} \subset \mathbb{C}$. Prove that for some identification $H_{1}\left(T^{2}\right) \cong \mathbb{Z}^{2}$ and $H_{2}\left(T^{2}\right) \cong \mathbb{Z}$ the map f_{*} corresponds to $(m, n) \mapsto(p m, q n)$ on $H_{1}\left(T^{2}\right)$ and to $m \mapsto p q m$ on $H_{2}\left(T^{2}\right)$.
Hint: One possibility is to use the Mayer-Vietoris sequence and naturality of the long exact sequence.
2. (10 points) Let X be a CW-complex and $K \subset X$ a compact subset. Prove that K is contained in a finite subcomplex of X.
3. (10 Points) Let X be a CW-complex. Prove that every point has a simply-connected neighbourhood. Also consider the Hawaiian earring i.e. the subspace of \mathbb{R}^{2} which is the union over $n \in \mathbb{N}$ of circles of radius $1 / n$ around the center $(1 / n, 0)$ and prove that it does not carry a CW-structure.
4. (10 Points) Define a CW-complex structure on $\mathbb{R} P^{n}$ for $n \geq 1$.

Please hand in your solutions on January 28 at the end of the lecture.

