Prof. Dr. Sebastian Hensel Dr. Leopold Zoller

Topology

Problem Set 13

1. (10 POINTS) Let $p, q \in \mathbb{Z}$ and consider the map $f: T^2 \to T^2 = S^1 \times S^1$ defined by $(s,t) \mapsto (s^p, t^q)$, where multiplication is understood as multiplication in $S^1 \subset \mathbb{C}$. Prove that for some identification $H_1(T^2) \cong \mathbb{Z}^2$ and $H_2(T^2) \cong \mathbb{Z}$ the map f_* corresponds to $(m,n) \mapsto (pm,qn)$ on $H_1(T^2)$ and to $m \mapsto pqm$ on $H_2(T^2)$.

Hint: One possibility is to use the Mayer-Vietoris sequence and naturality of the long exact sequence.

- 2. (10 POINTS) Let X be a CW-complex and $K \subset X$ a compact subset. Prove that K is contained in a finite subcomplex of X.
- 3. (10 POINTS) Let X be a CW-complex. Prove that every point has a simply-connected neighbourhood. Also consider the *Hawaiian earring* i.e. the subspace of \mathbb{R}^2 which is the union over $n \in \mathbb{N}$ of circles of radius 1/n around the center (1/n, 0) and prove that it does not carry a CW-structure.
- 4. (10 POINTS) Define a CW-complex structure on $\mathbb{R}P^n$ for $n \ge 1$.

Please hand in your solutions on January 28 at the end of the lecture.