Topology Problem Set 10

1. (10 POINTS) Consider a commutative diagram of Abelian groups

$$\begin{array}{cccc} G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow G_4 \longrightarrow G_5 \\ & & \downarrow f_1 & \downarrow f_2 & \downarrow f_3 & \downarrow f_4 & \downarrow f_5 \\ H_1 \longrightarrow H_2 \longrightarrow H_3 \longrightarrow H_4 \longrightarrow H_5 \end{array}$$

in which the rows are exact sequences. Prove:

- (a) If f_1 is surjective and f_2 , f_4 are injective, then f_3 is injective.
- (b) If f_2 , f_4 are surjective and f_5 is injective, then f_3 is surjective.

The combination of these two statements is known as the five lemma.

2. (10 POINTS) Consider a short exact sequence

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

of Abelian groups. Prove that the following are equivalent:

- (a) There is a homomorphism $r: B \to A$ such that $r \circ f = id_A$.
- (b) There is a homomorphism $s: C \to B$ such that $g \circ s = id_C$.
- (c) There is an isomorphism $h: B \to A \oplus B$ such that the diagram

commutes, where the non-specified maps are the canonical inclusion and projection.

3. (10 POINTS) Let (X, x) and (Y, y) be spaces with basepoints, such that x and y are deformation retracts of respective open neighbourhoods. Show that for $n \ge 1$ we have

$$H^n(X \lor Y) \cong H^n(X) \oplus H^n(Y).$$

Hint: In this and the following exercises you may use the long exact sequence of a good pair (see Hatcher, Algebraic Topology, Theorem 2.13) even though the proof has not yet been completed in the lecture.

4. (10 POINTS) Show that the homomorphism $\pi_1(X, x_0) \to H_1(X)$, as defined in Exercise 3 on sheet 9, is surjective if X is path-connected.

- 5. (10 POINTS) Let $T^2 = I^2 / \sim$ be the 2-torus and $p = (\frac{1}{2}, \frac{1}{2})$. Let $A \subset T^2 \setminus \{p\}$ be the intersection of $T^2 \setminus \{p\}$ with the closed ball around p with radius $\frac{1}{4}$.
 - (a) Show that $(T^2 \setminus \{p\})/A$ is homeomorphic to T^2 .
 - (b) Show that the map $H^1(A) \to H^1(T^2 \setminus \{p\})$ is zero.
 - (c) Compute $H^k(T^2)$ for all $k \ge 0$.
- 6. (10 POINTS) A christmas tree Γ is obtained by gluing a finite number of 2-spheres (preferably shiny ones) to a finite tree by identifying a single point in each sphere with some point of the tree. Compute $H^k(\Gamma)$ for all $k \ge 0$.

Please hand in your solutions on January 7 at the end of the lecture.