Topology

Problem Set 10

1. (10 Points) Consider a commutative diagram of Abelian groups

in which the rows are exact sequences. Prove:
(a) If f_{1} is surjective and f_{2}, f_{4} are injective, then f_{3} is injective.
(b) If f_{2}, f_{4} are surjective and f_{5} is injective, then f_{3} is surjective.

The combination of these two statements is known as the five lemma.
2. (10 Points) Consider a short exact sequence

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

of Abelian groups. Prove that the following are equivalent:
(a) There is a homomorphism $r: B \rightarrow A$ such that $r \circ f=\operatorname{id}_{A}$.
(b) There is a homomorphism $s: C \rightarrow B$ such that $g \circ s=\operatorname{id}_{C}$.
(c) There is an isomorphism $h: B \rightarrow A \oplus B$ such that the diagram

commutes, where the non-specified maps are the canonical inclusion and projection.
3. (10 Points) Let (X, x) and (Y, y) be spaces with basepoints, such that x and y are deformation retracts of respective open neighbourhoods. Show that for $n \geq 1$ we have

$$
H^{n}(X \vee Y) \cong H^{n}(X) \oplus H^{n}(Y)
$$

Hint: In this and the following exercises you may use the long exact sequence of a good pair (see Hatcher, Algebraic Topology, Theorem 2.13) even though the proof has not yet been completed in the lecture.
4. (10 points) Show that the homomorphism $\pi_{1}\left(X, x_{0}\right) \rightarrow H_{1}(X)$, as defined in Exercise 3 on sheet 9 , is surjective if X is path-connected.
5. (10 points) Let $T^{2}=I^{2} / \sim$ be the 2-torus and $p=\left(\frac{1}{2}, \frac{1}{2}\right)$. Let $A \subset T^{2} \backslash\{p\}$ be the intersection of $T^{2} \backslash\{p\}$ with the closed ball around p with radius $\frac{1}{4}$.
(a) Show that $\left(T^{2} \backslash\{p\}\right) / A$ is homeomorphic to T^{2}.
(b) Show that the map $H^{1}(A) \rightarrow H^{1}\left(T^{2} \backslash\{p\}\right)$ is zero.
(c) Compute $H^{k}\left(T^{2}\right)$ for all $k \geq 0$.
6. (10 points) A christmas tree Γ is obtained by gluing a finite number of 2 -spheres (preferably shiny ones) to a finite tree by identifying a single point in each sphere with some point of the tree. Compute $H^{k}(\Gamma)$ for all $k \geq 0$.

Please hand in your solutions on January 7 at the end of the lecture.

