Topology

Problem Set 1

- 1. (10 POINTS) Let $f: X \to Y$ be a continuous map between topological spaces.
 - (a) If X is compact, then im $f \subset Y$ is compact when endowed with the subspace topology.
 - (b) If $K \subset Y$ is compact and Y is Hausdorff, then K is closed
 - (c) If X is compact, Y is Hausdorff, and $f: X \to Y$ is bijective, then f is already a homeomorphism.
 - (d) Give an example of a bijective continuous map which is not a homeomorphism.
- 2. (10 POINTS) Let X be a topological space and let ~ be an equivalence relation on X. Let $\pi: X \to X/_{\sim}$ be the canonical projection where the space $X/_{\sim}$ is endowed with the quotient topology. Prove the following universal property: a map $f: X/_{\sim} \to Y$ is continuous if and only if the composition $f \circ \pi$ is continuous.
- 3. (10 POINTS) Let $I = [0,1] \subset \mathbb{R}$ be the unit interval and consider the space $I^2 = I \times I$ with the product topology. Let ~ be the equivalence relation on I^2 which is generated by the relations $(0,x) \sim (1,x)$ and $(x,0) \sim (x,1)$ for every $x \in I$ (it is the smallest equivalence relation containing the given relations). So the quotient space $I^2/_{\sim}$ is a square with opposite sides identified as indicated by the arrows in the following picture.

Show that $I^2/_{\sim}$ is homeomorphic to the two dimensional *torus* T^2 which is defined as $S^1 \times S^1$ with the product topology, where $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ is the *unit circle*.

4. (10 POINTS) Show that \mathbb{R}^1 and \mathbb{R}^2 are not homeomorphic.

Please hand in your solutions on Tuesday at the end of the lecture.