Solution to Set 3, Problem 2

(a) Let

$$
(p(t), v(t))
$$

be a path in $T M$, where p is a path in M, and v is a vector field along p. Take a chart φ for M around $p(0)$, and write

$$
p=\varphi \circ c
$$

We can write

$$
v(t)=\sum_{i} v^{i}(t){\frac{\partial \varphi}{\partial x^{i}} c(t)}
$$

and thus

$$
\frac{\nabla}{d t} v(0)=\sum_{i} \dot{v}^{i}(0) \frac{\partial \varphi}{\partial x^{i} c(t)}+v(0) \frac{\nabla}{d t} \frac{\partial \varphi}{\partial x^{i} c(t)}
$$

Further,

$$
\frac{\nabla}{d t}{\frac{\partial \varphi}{\partial x^{i}}{ }_{c(t)}=\nabla_{p^{\prime}(0)} \frac{\partial \varphi}{\partial x^{i}}, ~}_{\text {a }}
$$

This shows that $\frac{\nabla}{d t} v(0)$ depends only on $v^{\prime}(0)$ and $p^{\prime}(0)$, and thus the formula is well-defined.

The fact that it is a Riemannian metric is clear.
(b) A curve α in $T M$ is contained in a fiber, exactly if $\pi \circ \alpha$ is constant, which happens exactly if $\alpha^{\prime}(t) \in \operatorname{ker} d \pi$ for all t. Hence, the tangent vectors parallel to the fiber are exactly those where $d \pi(V)=0$ (in the description of a)). Such tangent vectors are those which can be realised as derivatives of paths $(p, w(t))$ where p is a point, and $w(t)$ is a path in $T_{p} M$. Observe that $\frac{\nabla}{d t} w=w^{\prime}$ in that case (the usual derivative in the real vector space $\left.T_{p} M\right)$.

Let $(p(t), v(t))$ be a path in $T M$. The scalar product with the derivative of the path $\left(p\left(t_{0}\right), w(t)\right)$ is therefore

$$
\left\langle p^{\prime}\left(t_{0}\right), 0\right\rangle+\left\langle\frac{\nabla}{d t} v\left(t_{0}\right), w^{\prime}\left(t_{0}\right)\right\rangle
$$

As $w^{\prime}\left(t_{0}\right)$ can be arbitrary, this is zero for all tangent vectors to the fiber exactly if $\frac{\nabla}{d t} v(0)=0$.
(c) We have seen that the trajectories to the geodesic field are exactly the curves $\left(\gamma, \gamma^{\prime}\right)$ for γ a geodesic. Since γ^{\prime} is parallel along γ for geodesics, this shows c$)$, using b$)$.
(d) Let $(\alpha(t), v(t))=\bar{\alpha}(t)$ be a path in $T M$. We have

$$
l(\bar{\alpha})=\int \sqrt{\left\langle d \pi\left(\alpha^{\prime}(t)\right), d \pi\left(\alpha^{\prime}(t)\right)\right\rangle+\left\langle\frac{\nabla}{d t} v(t), \frac{\nabla}{d t} v(t)\right\rangle}
$$

Hence,

$$
l(\bar{\alpha}) \geq \int \sqrt{\left\langle d \pi\left(\alpha^{\prime}(t)\right), d \pi\left(\alpha^{\prime}(t)\right)\right\rangle}=l(\alpha)
$$

with equality if and only if $\frac{\nabla}{d t} v=0$.
Now, suppose that $\left(\gamma(t), \gamma^{\prime}(t)\right)=\bar{\gamma}$ is a trajectory of the geodesic field, and suppose that γ is length-minimising between $\gamma(0), \gamma(\epsilon)$ (we know from class that any short enough geodesic segment has this property). We then have

$$
l(\bar{\gamma})=l(\gamma)
$$

Suppose $\bar{\alpha}=(\alpha, w)$ is any path in $T M$ joining $\bar{\gamma}(0)$ and $\bar{\gamma}(\epsilon)$ for some ϵ. Then $\alpha=\pi \circ \bar{\alpha}$ joins $\pi \bar{\gamma}(0)=\gamma(0)$ and $\bar{\gamma}(\epsilon)=\gamma(\epsilon)$. We thus have, since γ is length-minimising,

$$
l(\bar{\gamma})=l(\gamma) \leq l(\alpha) \leq l(\bar{\alpha}),
$$

and therefore $\bar{\gamma}$ is length-minimising. By a result from class, it is therefore a geodesic. Since being a geodesic is a local property, this shows that trajectories of the geodesic field are geodesics in $T M$.

