Riemannian Geometry

Problem Set 7

1. Sectional curvature and Jacobi fields. Let M be a two-dimensional Riemannian manifold. Let $p \in M$ and $V \subseteq T_{p} M$ be a neighborhood of the origin where $\exp _{p}$ is a diffeomorphism. Let $S_{r}(0) \subseteq V$ be a circle of radius r around the origin, and let L_{r} be the length of $\exp _{p}\left(S_{r}\right)$ in M. Prove that the sectional curvature at p is

$$
K(p)=\lim _{r \rightarrow 0} \frac{3}{\pi} \frac{2 \pi r-L_{r}}{r^{3}} .
$$

Hint: Recall from the previous exercise sheet that

$$
\|J(t)\|=t-\frac{1}{6} g(R(v, w) v, w) t^{3}+o\left(t^{3}\right) .
$$

2. Second variation and geodesics. Let f be a differentiable function on a Riemannian manifold M. Define the Hessian of f as

$$
\operatorname{Hess} f(X)=\nabla_{X} \operatorname{grad} f
$$

recall that $\operatorname{grad} f$ is the vector field on M defined by

$$
g(\operatorname{grad} f, v)=d f_{p} v
$$

for $p \in M$ and $v \in T_{p} M$.
Show:
(a) $g(\operatorname{Hess} f(X), Y)=X(Y f)-\left(\nabla_{X} Y\right) f$
(b) $\operatorname{Hess} f$ is symmetric.
(c) In critical points, Hess f is independent of the connection.
3. Totally geodesic submanifolds. Let M^{m} be a Riemannian manifold. Let $N_{1}{ }^{n_{1}}$ and $N_{2}{ }^{n_{2}}$ be totally geodesic, compact submanifolds with $n_{1}+n_{2} \geq m$.

Show:
(a) There exists a length-minimizing geodesic c from N_{1} to N_{2}, and c meets both submanifolds orthogonally.
(b) Let p and q be the endpoints of c. There exists a $v \in T_{p} N_{1}$ such that parallel transport of v along c lands in $T_{q} N_{2}$.
(c) If M has strictly positive sectional curvature, N_{1} and N_{2} intersect.

Hint: Argue by contradiction and use part (b) to find a suitable variation of c.

