Prof. Dr. Sebastian Hensel Anna Ribelles Pérez

Riemannian Geometry PROBLEM SET 7

1. Sectional curvature and Jacobi fields. Let M be a two-dimensional Riemannian manifold. Let $p \in M$ and $V \subseteq T_p M$ be a neighborhood of the origin where \exp_p is a diffeomorphism. Let $S_r(0) \subseteq V$ be a circle of radius r around the origin, and let L_r be the length of $\exp_p(S_r)$ in M. Prove that the sectional curvature at p is

$$K(p) = \lim_{r \to 0} \frac{3}{\pi} \frac{2\pi r - L_r}{r^3}.$$

Hint: Recall from the previous exercise sheet that

$$||J(t)|| = t - \frac{1}{6}g(R(v, w)v, w)t^3 + o(t^3).$$

2. Second variation and geodesics. Let f be a differentiable function on a Riemannian manifold M. Define the Hessian of f as

$$\operatorname{Hess} f(X) = \nabla_X \operatorname{grad} f;$$

recall that $\operatorname{grad} f$ is the vector field on M defined by

$$g(\operatorname{grad} f, v) = df_p v$$

for $p \in M$ and $v \in T_p M$.

Show:

- (a) $g(\text{Hess}f(X), Y) = X(Yf) (\nabla_X Y)f$
- (b) Hessf is symmetric.
- (c) In critical points, $\operatorname{Hess} f$ is independent of the connection.
- 3. Totally geodesic submanifolds. Let M^m be a Riemannian manifold. Let $N_1^{n_1}$ and $N_2^{n_2}$ be totally geodesic, compact submanifolds with $n_1 + n_2 \ge m$.

Show:

- (a) There exists a length-minimizing geodesic c from N_1 to N_2 , and c meets both submanifolds orthogonally.
- (b) Let p and q be the endpoints of c. There exists a $v \in T_p N_1$ such that parallel transport of v along c lands in $T_q N_2$.
- (c) If M has strictly positive sectional curvature, N_1 and N_2 intersect. Hint: Argue by contradiction and use part (b) to find a suitable variation of c.