Prof. Dr. Sebastian Hensel Anna Ribelles Pérez

Riemannian Geometry PROBLEM SET 1

- 1. Recall that we defined the (flat) torus T^n in three different ways:
 - (a) as a subset of \mathbb{C} :

$$T^n = \{ (z^1, \dots, z^n) \in \mathbb{C}^n : |z^i| = 1 \ \forall i \}$$

- (b) as the product manifold of n copies of S^1 , with the metric induced by the standard embedding of the unit circle in \mathbb{R}^2
- (c) as the quotient of \mathbb{R}^n by the action of a lattice \mathbb{Z}^n given by translation.

Show that these definitions are equivalent (up to scaling).

- 2. Consider the following group actions.
 - (a) $\mathbb{R} \setminus \{0\}$ acting on \mathbb{R} by multiplication
 - (b) $\{+\mathrm{Id}, -\mathrm{Id}\} \cong \mathbb{Z}/2\mathbb{Z}$ acting on \mathbb{R}^n or S^n by reflection along a hyperplane.
 - (c) $\mathbb{Z}/m\mathbb{Z}$ acting on \mathbb{R}^2 , where $[k] \in \mathbb{Z}/m\mathbb{Z}$ acts by rotation by $\frac{2\pi k}{m}$.

Explain why the Quotient Manifold Theorem does not apply in each of the cases.

- 3. Find a necessary and sufficient condition for a vector field X on \mathbb{R}^n to descend to a vector field on T^n .
- 4. Consider a tiling of the Euclidean plane by regular hexagons, and the surface obtained by taking the quotient of the translation action.
 - (a) Show that the quotient is in fact diffeomorphic to the standard torus.
 - (b) (*) Are both induced metrics the same (up to scaling)?
- 5. Compute the Levi-Civita connection on \mathbb{H}^n .