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Abstract. We study dismantling properties of the arc, disc and sphere graphs.
We prove that any finite subgroup H of the mapping class group of a surface
with punctures, the handlebody group, or Out(Fn) fixes a filling (resp. simple)
clique in the appropriate graph. We deduce realisation theorems, in particular
the Nielsen Realisation Problem in the case of a nonempty set of punctures.
We also prove that infinite H have either empty or contractible fixed point sets
in the corresponding complexes. Furthermore, we show that their spines are
classifying spaces for proper actions for mapping class groups and Out(Fn).

1. Introduction

One of the most outstanding long open problems in mapping class groups is the
Nielsen Realisation Problem, which asks if a finite group of isotopy classes of home-
omorphisms of a surface can be realised as an actual group of homeomorphisms.
This question was answered affirmatively in 1980 by Steven Kerckhoff, by in fact
realising the isotopy classes as isometries of a suitable hyperbolic metric.

Theorem 1.1 ([Ker80,Ker83]). Let X be a connected oriented surface of finite type
and negative Euler characteristic. Let H be a finite subgroup of the mapping class
group Map(X). Then X admits a complete hyperbolic metric such that H acts on
X as a group of isometries.

Kerckhoff’s proof is analytic, based on proving convexity of length functions
along “earthquake paths”. Alternate but also involved proofs were later given by
Wolpert [Wol87] and Gabai [Gab92].
Similar realisation theorems are true in other contexts as well. As one example,

we can consider a handlebody U instead of a surface. Its mapping class group
Map(U) is called the handlebody group.

Theorem 1.2 ([Zim79]). Let U be a connected handlebody of genus ≥ 2. Let H
be a finite subgroup of the handlebody group Map(U). Then there is a hyperbolic
3–manifold M which is homeomorphic to the interior of U such that H acts on M
as a group of isometries.

Theorem 1.2 may be deduced from Theorem 1.1 using Marden isomorphism
theorem (see [Zim79]).
As a last example of realisation theorems we consider graphs. The groupOut(Fn)

acts by homotopy equivalences on a graph with fundamental group Fn.

Theorem 1.3 ([Zim81, Cul84, Khr85]). Let H be a finite subgroup of Out(Fn).
Then there is a graph with fundamental group Fn on which H acts as a group of
isometries.

The proofs require the description of virtually free groups as graphs of finite
groups.
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Theorem 1.3 is known to imply Theorem 1.1 for punctured surfaces. Namely,
a finite subgroup H of Map(X) with π1(X) = Fn embeds in Out(Fn). By Theo-
rem 1.3 the group H acts by isometries on a graph Γ with π1(Γ) = Fn. One can
then show that Γ has an H–invariant ribbon graph structure determining the action
of H on X . However, to better illustrate our approach, we will treat Theorem 1.1
separately.

The purpose of this article is to develop a unified and elementary combinatorial
approach to such realisation problems. We give proofs of Theorem 1.2 and Theo-
rem 1.3 in full generality, and we also prove Theorem 1.1 under any of the following
hypotheses:

(A) The set of punctures of X is nonempty.
(B) There is a nonempty set of disjoint essential simple closed curves on X , which
is H–invariant up to homotopy.

Our method is elementary and consists in finding the fixed point of the action
of H on the arc graph (resp. the disc graph, the sphere graph).

Metatheorem A. Let Γ be the arc graph (resp. the disc graph, the sphere graph).
Then any finite subgroup of the mapping class group (resp. the handlebody group,
Out(Fn)) fixes

(1) a clique in Γ,
(2) a filling (resp. simple) clique in Γ.

Assertion (2) of Metatheorem A is stronger than (1), but in order to prove (2), we
first prove (1) and then apply induction. To prove (1), the first step is to use an easy
surgery procedure to show that the graph Γ can be exhausted by finite subgraphs
enjoying a combinatorial nonpositive curvature feature called dismantlability. We
then show that, even though Γ is locally infinite, a finite subgroup of the ambient
group preserves a finite subgraph that is dismantlable. By a theorem of Polat [Pol93]
a finite dismantlable graph contains a clique fixed by all of its automorphisms.

Dismantlability is a feature shared by many graphs associated to mapping class
groups and related groups. In this article, we show it for the arc graph of a punc-
tured surface, the disc graph of a handlebody and the sphere graph of a doubled
handlebody. We note that the proofs of dismantlability follow easily from the known
proofs of contractibility for the arc and disc graph, but not for the sphere graph.
We also prove dismantlability for the Rips graph of a hyperbolic group.
Additionally, dismantlability is known for Kakimizu graphs of link complement

groups and 1–skeleta of weakly systolic complexes. In [PS10] we used the Kakimizu
graph to prove a fixed point theorem for finite subgroups of link complements. We
proved a weakly systolic fixed point theorem in [CO09].

In the second part of the article, we generalise Polat’s theorem to the following.

Theorem 1.4. Let Γ be a finite dismantlable graph and let Y = ΓN, the flag
simplicial complex spanned on Γ. Let H be a finite subgroup of Aut(Y ). Then the
set Y H of points of Y fixed by H is contractible.

Theorem 1.4 leads to the following metatheorems.

Metatheorem B. Let H be any subgroup of the mapping class group (resp. the
handlebody group, Out(Fn)). The fixed point set of the action of H on the arc
complex (resp. the disc complex, the sphere complex) is empty or contractible.

In the case where H is the trivial group Metatheorem B implies that the arc,
disc and sphere complexes are contractible. These facts were known before, see
[Har85, Hat91,McC91, Hat95]. For general H the results in Metatheorem B are
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new. In particular for H finite, in view of Metatheorem A(1), the fixed point set of
H is contractible.

The following builds on and generalises Metatheorem A(2).

Metatheorem C. Let H be a finite subgroup of the mapping class group (resp. the
handlebody group, Out(Fn)). The fixed point set of the action of H on the filling
arc system complex (resp. the simple disc system complex, the simple sphere system
complex) is contractible.

Consequently the filling arc system complex, as well as the simple sphere system
complex, is a finite model for EG— the classifying space for proper actions for the
ambient group G. This was known for Out(Fn) ([Whi93], [KV93]) for which the
corresponding complex is the spine of the Outer space [Hat95]. For the mapping
class group and the handlebody group Metatheorem C is new. When G is the
mapping class group other finite models for EG were constructed before in [JW10,
Mis10]. But it was not known if the filling arc system complex, which is a natural
candidate, is in fact a model for EG. In the case of a surface with one puncture
the filling arc system complex coincides with Harer’s spine of the Teichmüller space
[Har86]. Our method also answers affirmatively the question if Harer’s spine is in
general a model for EG for G the pure mapping class group.
Theorem 1.4 can be applied in many other situations. In particular it can be

used to show contractibility of sets of fixed points for weakly systolic complexes
(cf. [CO09]) or for Kakimizu complexes (cf. [PS10]). In our article we show how to
deduce from Theorem 1.4 a new proof of the following classical result.

Theorem 1.5 ([MS02, Thm 1]). Let G be a δ–hyperbolic group and let D ≥ 8δ+1.
Then the Rips complex PD(G) is a finite model for EG.

We believe that many simplicial complexes appearing elsewhere in the literature
can be studied using dismantlability and we intend to continue developing this
approach.

Organisation. The article is divided into two parts. In Sections 2–8 we prove
Metatheorem A and deduce realisation results. In Sections 9–12 we prove Metathe-
orems B and C. Each part is preluded by a graph-theoretic Section 2 or 9.
In Section 2 we discuss the notion of dismantlability. We include the proof

of Polat’s theorem (Theorem 2.4 in the text) and deduce a fixed clique criterion
which will be used for Metatheorem A(1). In Section 3 we prove Metatheorem A(1)
for the mapping class group (Theorem 3.1). In Section 4 we deduce from this
Metatheorem A(2) for the mapping class group (Theorem 4.1) and Theorem 1.1
under hypothesis (A) or (B).
In Section 5 we prove Metatheorem A(1) for the handlebody group (Theo-

rem 5.1). In Section 6 we derive Metatheorem A(2) for the handlebody group (The-
orem 6.1) and Theorem 1.2. Similarly, we prove Metatheorem A(1) for Out(Fn)
(Theorem 7.1) in Section 7 and promote it to Metatheorem A(2) for Out(Fn) (The-
orem 8.1) and to Theorem 1.3 in Section 8.
The second part of the article begins with Section 9, where we prove Theorem 1.4.

This section can be read alternatively directly as a continuation of Section 2. In
Section 10 we deduce from Theorem 1.4 the results of Metatheorems B and C
for the mapping class group (Theorems 10.1 and 10.3). We do the same for the
handlebody group and Out(Fn) in Section 11 (Theorems 11.1, 11.2, 11.3, and 11.4).
Consequently, we obtain finite models for classifying spaces for proper actions in
Corollaries 10.4, 10.5, and 11.5. We close the article with the proof of Theorem 1.5
in Section 12.
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2. Dismantlability

Our goal in this section is to give a criterion for a group of automorphisms of
a graph to have an invariant clique (Proposition 2.11). The criterion requires the
existence of “projections” and finite sets which are “convex” under sufficiently many
of these projections. This criterion will be used to obtain Metatheorem A(1), where
the role of projections will be played by surgeries.
Our proof of Proposition 2.11 relies on Polat’s fixed point theorem for disman-

tlable graphs [Pol93]. We include the proof of a special case of Polat’s theorem
for the article to be self-contained. The notion of dismantlability was brought into
geometric group theory by Chepoi and the second named author, and it was used
in particular to prove a fixed point theorem for weakly systolic complexes [CO09].
Later Schultens and the third named author used it to obtain contractibility and a
fixed point theorem for the Kakimizu complex [PS10].
The results of this section have a natural continuation and generalisation in

Section 9.
Unless stated otherwise, all graphs in this article are simple in the sense that

they do not have double edges or loops, i.e. edges connecting a vertex to itself. Let
Γ be a graph with vertex set V . A subgraph of Γ induced on a subset V ′ ⊂ V has
vertex set V ′ and all of the edges of Γ connecting the vertices in V ′.

Definition 2.1. For a vertex ρ of a graph its neighbourhood N(ρ) is the set of
vertices consisting of ρ and all its neighbours. We say that a vertex ρ of a graph is
dominated by a (dominating) vertex π 6= ρ, if N(ρ) ⊂ N(π). The symbol ⊂ here
allows equality.
A finite graph is dismantlable if its vertices can be ordered into a sequence

σ1, . . . , σm so that for each i < m the vertex σi is dominated in the subgraph
induced on {σi, . . . , σm}. We call such an order a dismantling order.

Definition 2.2. A clique in a graph is a nonempty subgraph all of whose vertices
are pairwise connected by edges. The vertex set of a clique is called a clique as
well.
For a graph Γ let ΓN denote the simplicial complex with 1–skeleton Γ and sim-

plices spanned on all cliques in Γ. A simplicial complex Y is flag if Y = ΓN, where
Γ is the 1–skeleton of Y . If S is a subset of the vertex set of Γ, then SN denotes
the subcomplex of ΓN spanned on S.

Remark 2.3. If a finite graph Γ is dismantlable, then ΓN is contractible. This
will be generalised in Section 9, where we prove contractibility of fixed point sets
of group actions.

We build on the following special case of a result of Polat (who proves an analogue
for some infinite graphs).

Theorem 2.4 ([Pol93, Thm A]). A finite dismantlable graph contains a clique
invariant under all of its automorphisms.

Note that there are finite group actions on finite contractible or even collapsible
simplicial complexes with no fixed points. Dismantlability seems to be the correct
strengthening of those notions.



REALISATION AND DISMANTLABILITY 5

For completeness we include a concise proof of Theorem 2.4. Roughly speak-
ing, the invariant clique is obtained by successively removing simultaneously all
dominated vertices.

Lemma 2.5. If a finite graph with vertex set V is dismantlable and σ ∈ V is
dominated, then the subgraph induced on V \ {σ} is dismantlable as well.

Proof. By dismantlability we can order the vertices of V into a sequence σ1, . . . , σm

so that for each i < m the vertex σi is dominated in the subgraph induced on
V i = {σi, . . . , σm} by some σf(i) with f(i) > i. Assume that σ = σj is dominated
in V by σk. Note that we might have k < j.
Let k1 = k. For i = 2, . . . , j define ki = ki−1 if ki−1 6= i − 1 and ki = f(ki−1)

otherwise. Observe that ki ≥ i and N(σki
) ∩ V i ⊃ N(σj) ∩ V i.

First assume that there is no i with ki = j. In that case we induce an order on
V \{σ} from V and put f ′(i) = f(i) if f(i) 6= j and f ′(i) = ki otherwise. Let i < m
be distinct from j. Then σi is dominated in the subgraph induced on V i \ {σ} by
σf ′(i). Hence this is a dismantling order.

If l is minimal with kl+1 = j, then kl = l and we have N(σl)∩ V l = N(σj)∩ V l.
Hence the subgraph induced on V l \ {σ} is isomorphic to the subgraph induced on
V l+1 which was dismantlable. Then in the order on V \ {σ} induced from V we
carry σl to the position j which was occupied in V by σ. For every i < l the vertex
σi is dominated in the subgraph induced on V i \ {σ} by σf ′(i) as before. �

Proof of Theorem 2.4. The proof is by induction on the number of vertices. If
the graph consists of one vertex, the theorem is trivial. Now assume we have a
dismantlable graph Γ with vertex set V and the theorem is true for all graphs with
smaller number of vertices. We treat separately two cases.

Case 1. There are no two vertices σ, ρ ∈ V with N(σ) = N(ρ). In this case,
let V ′ ⊂ V be the set of all dominated vertices. Note that each vertex of V ′ is
dominated by a vertex in V \ V ′. Let Γ′ be the subgraph of Γ induced on V \ V ′.
Note that every automorphism of Γ restricts to an automorphism of Γ′. Since
Γ′ is obtained from Γ by repeatedly removing dominated vertices, by Lemma 2.5
the graph Γ′ is dismantlable. By induction hypothesis, there is a clique ∆′ in Γ′

invariant under every automorphism of Γ′. The clique ∆′ is then also invariant
under every automorphism of Γ.

Case 2. There are vertices σ, ρ ∈ V with N(σ) = N(ρ). In this case, let Γ′ be
the graph obtained from Γ by identifying all vertices σ with common N(σ) (and
identifying the double edges and removing loops). More precisely, we consider
the equivalence relation ∼ on V for which σ ∼ ρ if and only if N(σ) = N(ρ).
Equivalence classes of ∼ are cliques. The vertex set of Γ′ is the set of equivalence
classes of ∼. Two vertices of Γ′ are connected by an edge if some (hence any) of its
representatives in Γ are connected by an edge.
Note that every automorphism of Γ projects to an automorphism of Γ′. More-

over, Γ′ can be embedded as an induced subgraph in Γ and obtained from Γ by
repeatedly removing dominated vertices. Again, by Lemma 2.5 the graph Γ′ is
dismantlable and by induction hypothesis there is a clique ∆′ in Γ′ invariant under
every automorphism of Γ′. Hence its preimage ∆ under the projection from Γ is a
clique invariant under every automorphism of Γ. �

Dismantlability can be verified if we have particular “projection” maps.

Definition 2.6. Consider a graph with vertex set V . Let σ ∈ V and let Π assign
to each vertex ρ ∈ V \{σ} a nonempty finite set Π(ρ) consisting of pairs of elements
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of V . We allow the two elements of a pair to coincide. Let Π∗(ρ) ⊂ V denote the
set of all vertices appearing in pairs from Π(ρ).
We call Π a σ–projection (or a dismantling projection if σ is not specified) if the

following axioms are satisfied:

(i) For each finite set of vertices R ⊂ V with nonempty R\{σ} there is an exposed
vertex ρ ∈ R \ {σ}, that is a vertex with N(ρ) ∩ R ⊂ N(π) for both π from
some pair of Π(ρ).

(ii) There is no cycle of vertices ρ0, . . . , ρm−1 ∈ V with ρi+1 ∈ Π∗(ρi), where i is
considered modulo m.

Note that axiom (ii) implies in particular that ρ /∈ Π∗(ρ).

Lemma 2.7. A finite graph with a dismantling projection is dismantlable.

Before we provide the proof of Lemma 2.7 we deduce a corollary.

Definition 2.8. Consider a graph with vertex set V and a σ–projection Π. We
say that a subset R ⊂ V is Π–convex if for every vertex ρ ∈ R \ {σ} each pair in
Π(ρ) intersects R.

We will see in a moment that if R is Π–convex for a σ–projection Π, then σ ∈ R.

Corollary 2.9. Let Γ be a graph with a dismantling projection Π and a finite Π–
convex subset R of its vertices. Then the subgraph of Γ induced on R is dismantlable.

Proof. Suppose Π is a σ–projection. For any pair P intersecting R consider P ∩ R
as a pair (of possibly two coinciding elements). Let ΠR assign to any ρ ∈ R \ {σ}
the set of pairs P ∩ R over P ∈ Π(ρ). The assignment ΠR satisfies axioms (i) and
(ii) of a σ–projection for the induced subgraph. The only non-immediate part is
to verify σ ∈ R, which can be deduced from axiom (ii): we consider the longest
sequence ρ0, . . . , ρm ∈ R with ρi+1 ∈ Π∗(ρi). Since the only vertex on which ΠR

might not be defined is σ, we have ρm = σ. �

Proof of Lemma 2.7. Letm denote the cardinality of the vertex set V of the graph.
Suppose the dismantling projection Π is a σ–projection. Define inductively σi for
i = 1, . . . , m − 1 so that σi is exposed (see axiom (i) of a σ–projection) in the set
V i = V \{σ1, . . . , σi−1} and put σm = σ. We will verify that this is a dismantling or-
der. Since σi are exposed, there are vertices π

1
1 , . . . , π1

m−1 in Π∗(σ1), . . . , Π
∗(σm−1)

satisfying N(σi) ∩ V i ⊂ N(π1
i ).

By construction the vertex σ1 is dominated in V 1 = V by π1
1 . However, the

vertices σi for i > 1 might not be dominated in V i by π1
i if the latter lie outside V i.

This might happen if σj for some j < i is chosen to be π1
i . However, in that case

we can replace π1
i with π1

j , if the latter is in V i, or else with yet another vertex.
Here is the systematic way to determine this choice.
By axiom (ii) of a σ–projection, the directed graph with vertices V = V 1 and

edges {(σj , π
1
j )}m−1

j=1 has no directed cycles. For i = 2 to m − 1 inductively define

πi
j , where j = i, i + 1, . . . , m − 1 so that πi

j = πi−1
j if πi−1

j 6= σi−1, and πi
j = πi−1

i−1

otherwise. We inductively see that in both cases πi
j ∈ V i and the directed graph

with vertices V i and edges {(σj , π
i
j)}

m−1
j=i has no directed cycles. We also claim the

following, which we will prove by induction on i = 1, . . . , m − 1:

(a) N(π1
i ) ∩ V i ⊂ N(πi

i),
(b) N(σi) ∩ V i ⊂ N(πi

i),

(c) N(πi
j) ∩ V i+1 ⊂ N(πi+1

j ) for j = i + 1, . . . , m − 1.

Note that part (b) means that σi is dominated in V i, which implies dismantla-
bility.
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First observe that part (a) implies part (b) by the choice of π1
i . Also note that

part (b) implies directly part (c) since in the case where πi+1
j = πi

j there is nothing

to prove and otherwise πi
j = σi and πi+1

j = πi
i . Finally, part (a) for i = k follows

from applying k − 1 times part (c) with j = k and i = 1, . . . , k − 1. �

We are now in position to prove our main criterion for the existence of an in-
variant clique.

Definition 2.10. Let H be a finite group of automorphisms of a graph with vertex
set V . A family of σ–projections {Πσ}σ∈S with S ⊂ V is H–equivariant if S is
H–invariant and

hΠσ(ρ) = Πhσ(hρ)

for all σ ∈ S, ρ ∈ V and h ∈ H .

Proposition 2.11. Let H be a group of automorphisms of a graph Γ with vertex set
V . Suppose that there is a σ–projection Πσ and a finite Πσ–convex subset R ⊂ V .
Furthermore suppose that

(i) R is H–invariant, or
(ii) the set HR is finite and for all σ′ ∈ S = Hσ ⊂ V there are σ′–projections Πσ′

for which R is Πσ′–convex. Moreover, the family {Πσ′}σ′∈S is H–equivariant.

Then the subgraph induced on HR ⊂ V is dismantlable and Γ contains an H–
invariant clique.

Proof. Part (i) follows directly from Corollary 2.9 and Theorem 2.4.
In part (ii), let T = HR ⊂ V . Then the subgraph induced on the finite vertex

set T is H–invariant and we want to reduce to part (i) with T in place of R.
Let τ ∈ T \ {σ}. Then τ = hρ for some ρ ∈ R, h ∈ H . Let P be a pair in
Πσ(τ) = Πhh−1σ(hρ). Then h−1(P ) is a pair in Πh−1σ(ρ). Since h−1σ ∈ S the
set R is Πh−1σ–convex. Then h−1(P ) ∩ R is nonempty and hence h−1(P ) ∩ T is
nonempty. Since T = h−1T we have P ∩ T 6= ∅, as desired. �

We conclude this section by stating a conjecture, whose validity would signifi-
cantly simplify the proofs of our realisation results and of similar results in future.
Define an infinite graph Γ to be dismantlable if the following holds: every finite set
of vertices of Γ is contained in another finite set of vertices S such that the finite
subgraph induced on S is dismantlable.

Conjecture 2.12. Let H be a finite group of automorphisms of a dismantlable
graph Γ. Then Γ contains an H–invariant clique.

3. Fixed clique in the arc graph

In this Section we prove Metatheorem A(1) in the case of the arc graph. Let X
be a (possibly disconnected) closed oriented surface with a nonempty finite set µ of
marked points on X . We require that homeomorphisms and homotopies of X fix
µ. The Euler characteristic of X is defined to be the Euler characteristic of X −µ.
A simple arc on X is an embedding of an open interval in X − µ which can

be extended to map the endpoints into µ. We require that homotopies of arcs fix
the endpoints and do not pass over marked points. An arc is essential, if it is not
homotopic into µ. Unless stated otherwise, all arcs are assumed to be simple and
essential.
The arc graph A(X) is the graph whose vertex set A0(X) is the set of homotopy

classes of arcs. Two vertices are connected by an edge in A(X) if the corresponding
arcs can be realised disjointly.
By Map(X) we denote the mapping class group of X , that is the group of ori-

entation preserving homeomorphisms of X up to isotopy. The action of Map(X)



8 S. HENSEL, D. OSAJDA, AND P. PRZYTYCKI

on homotopy classes of arcs induces an action of Map(X) on A(X) as a group of
automorphisms. We can now state the main theorem of this section.

Theorem 3.1. Let X be a closed oriented surface with nonempty set of marked
points, each component of which has negative Euler characteristic. Let H be a finite
subgroup of Map(X). Then H fixes a clique in the arc graph A(X).

We will obtain Theorem 3.1 using Proposition 2.11(ii). For that we need two
elements: on the one hand, we will use a surgery procedure for arcs to define
dismantling projections Πσ (see Subsection 3.1). On the other hand, we will define
a finite set in the arc graph which is Πσ–convex for all σ in some H–orbit (see
Subsection 3.2).

3.1. Arc surgery. We begin by describing the surgery procedure that will be used
to define the dismantling projections. This surgery procedure was used by Hatcher
[Hat91] to show contractibility of the arc complex.
Let a and a′ be two arcs on X . We say that a and a′ are in minimal position if

the number of intersections between a and a′ is minimal in the homotopy classes
of a and a′.
Now assume that a and a′ are in minimal position and suppose that a and a′

intersect. We say that a subarc b ⊂ a is outermost in a for a′, if b is a component
of a − a′ sharing an endpoint with a. There are two outermost subarcs in a for a′.
Consider an outermost subarc b in a for a′. Let p be the endpoint of b in the

interior of a. Then p ∈ a′. Let b′+, b′
−
be the two components of a′ − p. We say

that the arcs a′

+ = b ∪ b′+ and a′

−
= b ∪ b′

−
are obtained by outermost surgery of

a′ in direction of a determined by b (see Figure 1). Both a′

+ and a′

−
are essential,

since a and a′ are in minimal position. Furthermore both a′

+ and a′

−
are disjoint

from a′ up to homotopy.
Note that the homotopy classes α′

+ of a′

+ and α′

−
of a′

−
depend only on the

homotopy classes α of a and α′ of a′. We call the pair {α′

+, α′

−
} an outermost

surgery pair of α′ in direction of α.

a

a'

a'+

Figure 1. Surgery for arcs

If α′ is disjoint from α (but distinct), then we say that the only outermost surgery
pair of α′ in direction of α is {α, α}, interpreted as a pair both of whose elements
are equal to α. Let Πα(α′) be the set of all (two or one) outermost surgery pairs
of α′ in direction of α. If α′ = α, then Πα(α′) is undefined.

The following lemma states that the assignment Πσ satisfies the axioms of a
σ–projection for each σ ∈ A0(X). This lemma was essentially proved as Claim 3.18
of [Sch05].

Lemma 3.2. Let σ ∈ A0(X) be an arc on X.

(i) Let R ⊂ A0(X) be a finite set of arcs with R \ {σ} 6= ∅. Then there is an arc
ρ ∈ R \ {σ} with the following property: there is an outermost surgery pair
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{ρ+, ρ−} of ρ in direction of σ, such that each arc ρ′ ∈ R which is disjoint
from ρ is also disjoint from ρ+ and ρ−.

(ii) Every sequence (ρi) of arcs in A0(X) such that ρi+1 is contained in an outer-
most surgery pair of ρi in direction of σ terminates after finitely many steps
with the arc σ.

The proof requires us to consistently choose preferred representatives for each
homotopy class of arcs. This is made possible through the use of hyperbolic ge-
ometry. To this end, it is convenient to adopt a slightly different description of
the arc graph of X . Namely, let X̌ be the compact surface obtained from X by
replacing each marked point with a boundary component. Let A(X̌) be the graph
whose vertex set is the set of homotopy classes of (essential simple) arcs on X̌ that
are embedded properly, i.e. they intersect the boundary exactly at the endpoints.
Homotopies of arcs on X̌ are required to be homotopies of properly embedded arcs.
Two vertices are connected by an edge if the corresponding arcs may be realised
disjointly. Since homotopy classes of (properly embedded) arcs on X̌ are in one-
to-one correspondence with homotopy classes of arcs on X respecting disjointness,
the graph A(X̌) is isomorphic to A(X). We will implicitly use this identification,
and simply speak about representatives of arcs ρ ∈ A0(X) on X̌.
We now fix a hyperbolic metric on X̌ which makes the boundary geodesic. Then

each homotopy class of an arc contains a unique shortest geodesic representative,
and any two such representatives are in minimal position (see e.g. the discussion
in [FM12, Sec 1.2.7]).

Proof of Lemma 3.2. (i) We can assume that not all the arcs in R are disjoint
from σ, since otherwise the assertion follows trivially. Denote the shortest
geodesic representatives on X̌ of the elements of R by r1, . . . , rk and the
shortest geodesic representative of σ by s. Let b ⊂ s be a component of
s − (r1 ∪ · · · ∪ rk) sharing an endpoint with s. Denote by p the endpoint of b
in the interior of s. Let r be an arc in R containing p. Suppose r∗ is obtained
by outermost surgery of r in direction of s determined by b. Let now ri be
disjoint from r. Since ri is disjoint from b, it is also disjoint from r∗ ⊂ r ∪ b,
as desired.

(ii) By construction, each outermost surgery strictly decreases the geometric in-
tersection number with σ. Hence every sequence of surgeries eventually yields
an arc which is disjoint from σ.

�

For future reference, we also note the following easy fact.

Lemma 3.3. For every h ∈ Map(X) we have

hΠσ(ρ) = Πhσ (hρ)

for all arcs σ 6= ρ ∈ A0(X).

Proof. Let s, r be representatives of σ and ρ which are in minimal position. Let
~ : X → X be a representative of the mapping class h. Then ~(s) and ~(r) are
in minimal position, and ~ maps an outermost subarc in s for r to an outermost
subarc in ~(s) for ~(r). �

3.2. Finite hull for arcs. We now describe how a finite vertex set α1, . . . , αk ∈
A0(X) can be extended to a finite set which is Πσ–convex for all σ = αi.

Let α1, . . . , αk ∈ A0(X) be an arbitrary finite set of arcs, and let a1, . . . , ak be
their shortest geodesic representatives on X̌ . Let L be the maximum of the lengths
of the ai.
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We define H = H(α1, . . . , αk) to be the set of homotopy classes of arcs which
have a representative of length at most 2L on X̌ . The set H is finite, and contains
α1, . . . , αk by construction. However, note that the set H depends on the choice of
the hyperbolic metric.

Lemma 3.4. Let α1, . . . , αk ∈ A0(X) be a finite set of arcs. Put α = αi for some
i = 1, . . . , k, and let α′ ∈ H = H(α1, . . . , αk) be arbitrary. Then each outermost
surgery pair of α′ in direction of α contains at least one element of H.

Proof. Let a′ be the shortest geodesic representative of α′ and let a be the shortest
geodesic representative of α = αi. We can assume that a and a′ intersect.
Then an outermost subarc b in a for a′ has length at most L by the definition of

L. Let b′+, b′
−
be the two subarcs of a′ bounded by the endpoint of b. Then at least

one of b′+, b′
−
has length at most L, say b′+. As a consequence, the arc a′

+ = b ∪ b′+
has length at most 2L, and thus its homotopy class is contained in H. �

We are now in position to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.2 the assignment of outermost surgery pairs
satisfies the axioms of a dismantling projection. Let α1 be an arbitrary arc in
A0(X), and let α1, . . . , αk be the orbit of α1 under H . Lemma 3.4 shows that
H(α1, . . . , αk) is Παi

–convex for each i = 1, . . . , k. Finally, by Lemma 3.3 the
family Παi

is H–equivariant. Thus H fixes a clique by Proposition 2.11(ii). �

Remark 3.5. We could derive Theorem 3.1 also directly from Proposition 2.11(i)
by considering a different finite invariant set.
Namely, define a one-corner broken arc obtained from geodesic arcs a1, . . . , ak

to be an embedded arc a on X̌ of the following form: there are subarcs a+, a− of
ai, aj for some i, j such that a = a+ ∪ a−.

We then define H̃ to be the finite set of all one-corner broken arcs obtained from
a1, . . . , ak. If the set of homotopy classes of the arcs a1, . . . , ak is H–invariant, then

the set H̃ is H–invariant as well. Furthermore, one can show that H̃ is Παi
–convex

for the homotopy classes αi of ai. However, the proof is a bit more involved than
the simple length argument used for Lemma 3.4, and we decided to omit it.

4. Nielsen realisation for surfaces

In this section we prove Metatheorem A(2) for mapping class groups (Theo-
rem 4.1) and Theorem 1.1 under any of the hypotheses (A) or (B).

4.1. Fixed filling arc set. A set A of disjoint (simple essential) arcs on a surface
X with marked points µ is filling if the components of X − (µ ∪ A) are discs. A
clique ∆ ⊂ A0(X) is filling if some (hence any) set of disjoint representatives of
elements in ∆ is filling.

Theorem 4.1. Let X be a closed connected oriented surface with nonempty set
of marked points and negative Euler characteristic. Let H be a finite subgroup of
Map(X). Then H fixes a filling clique in A0(X).

Proof. By Theorem 3.1, there is a clique ∆ ⊂ A0(X) fixed by H . Assume that ∆
is a maximal clique fixed by H . We will prove that ∆ is filling. We can realise ∆
as a subset A ⊂ S of disjoint arcs. Equip X with a path-metric in which each arc
of A has length 1. By [Bus10, Thm A.5] we can also choose representatives of the
elements of H fixing A and restricting to a genuine isometric action on A. Note
that these representatives satisfy the composition rule up to isotopy fixing A. We
will prove that A is filling.
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Otherwise, let X0 be the nonempty union of open components of X − A which
are not discs, i.e. have nonpositive Euler characteristic. Let X0 be the path-metric
completion of X0. Let X ′ be the surface obtained from X0 by collapsing each
component of ∂X0 to a marked point. The group H maps into Map(X ′). Every
component of X ′ with zero Euler characteristic is a sphere with two marked points
and contains a unique (homotopy class of) an arc. In the case where X ′ has such
components, we consider the H–invariant clique ∆′ ⊂ A0(X ′) of unique arcs in
all of these components. Otherwise an H–invariant clique ∆′ ⊂ A0(X ′) exists by
Theorem 3.1. Denote ∆′ = {α′

1, . . . , α
′

k}.
Let A∗(X, A) denote the set of homotopy classes of (possibly non-simple) essen-

tial arcs on X0 with endpoints in ∂X0. We require homotopies to fix the endpoints.
Let P ⊂ ∂X0 be a family of points, one in each of the components of ∂X0. For
i = 1, . . . , k choose arcs α∗

i (0) ∈ A∗(X, A) with endpoints pi, qi ∈ P that project
to α′

i on X ′ and have representatives that are simple and disjoint outside P . For a
point p ∈ ∂X0, t ∈ R let γ∗(p, t) be the homotopy class of the (non-essential) arc
starting at p, moving clockwise along the boundary component c ⊂ ∂X0 containing
p and terminating after distance t|c|, where |c| denotes the length of c. In particular
for t ∈ Z the endpoint of γ∗(p, t) is p. To each point z = (x1, y1, . . . , xk, yk) ∈ R

2k

we assign the following sequence ∆∗(z) = (α∗

1, . . . , α
∗

k) of arcs in A∗(X, A). Each
α∗

i is the homotopy class of the concatenation γ∗(pi, xi)
−1α∗

i (0)γ∗(qi, yi).
Consider first the case where all of the components of X ′ have negative Euler

characteristic. In that case ∆∗ is injective, since Dehn twists along a pair of com-
ponents of ∂X0 are independent. Note that the set Z ⊂ R

2k of points z for which
∆∗(z) can be represented as a collection of disjoint simple arcs is nonempty, since
it contains 0. We claim that Z is convex.
The arc α∗

i might self-intersect only when its endpoints lie on the same compo-
nent of ∂X0, hence only when pi = qi. Self-intersection of α

∗

i arises when starting
from α∗

i (0) the two endpoints pass through one another. This is governed, up to
interchanging xi with yi, by the equation xi ≤ yi ≤ xi + 1, which is a linear con-
straint. The description is the same for intersections of distinct α∗

i , α
∗

j , where we
will get a constraint for each pair of coinciding endpoints of α∗

i (0), α∗

j (0). This
justifies the claim.
Under identification of Z with ∆∗(Z) the finite group H acts on Z by isometries

(each of which is a composition of a translation and an interchange of the coordinate
axes). Hence H fixes a point z ∈ Z (for example the centre of mass of some orbit).
Let ε ∈ R

2k be the vector with smallest nonnegative entries such that ∆∗(z + ε)
has endpoints in marked points of X under the map X0 → X . Note that z + ε is
also H–invariant. The arc set ∆∗(z + ε) can be interpreted as a subset of A0(X).
Then ∆∪∆∗(z+ε) forms an H–invariant clique larger than ∆ and we have reached
a contradiction.
In the case where α′

i lie in the components of X ′ of zero Euler characteristic
we have ∆∗(z + e2i−1 − e2i) = ∆∗(z), where ei denotes the i–th basis vector of
R

2k. Arcs α∗

i for each of the lines z + te2i−1 − te2i where t ∈ R form families of
parallel arcs. Each such family can be thought of as having the same “slope” in
the annulus component of X0. After quotienting Z ⊂ R

2k by all k such R–actions
we obtain an action of H on a convex subset of Rk = R

2k/Rk of “slopes”. In the
conclusion of the fixed-point theorem we obtain H–invariant “slope sets”: families
of parallel arcs in the components of zero Euler characteristic. We can improve
them to families of parallel arcs with endpoints in marked points as before. �

4.2. Fixed hyperbolic metric.
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Proof of Theorem 1.1 under hypothesis (A). By Theorem 4.1, the group H fixes a
filling clique ∆ ⊂ A0(X). We can realise ∆ as a set A of disjoint arcs on X . For
each component Y of X −A with k arcs in its boundary we consider a regular ideal

hyperbolic k–gon Ŷ . For any arc a ∈ A adjacent to components Y1, Y2 of X − A
we glue

Ŷ1 with Ŷ2 along the sides Â1 ⊂ Ŷ1, Â2 ⊂ Ŷ2 corresponding to a in such a way

that the projections of the centres of Ŷ1 and Ŷ2 onto Â1 and Â2 coincide under that
gluing. The hyperbolic metric on X − µ that we obtain as a result is complete and
H–invariant. �

Proof of Theorem 1.1 under hypothesis (B). We can assume that the set of marked
points on X is empty. Realise the curves of the fixed set as a set A of disjoint
simple curves on X . We can choose representatives of elements of H fixing A (see
[Bus10, Thm A.3]). Let X ′ be obtained from X − A by collapsing its boundary
components to marked points. Denote by µ′ the set of marked points on X ′.
By Theorem 1.1 under hypothesis (A) there is a complete hyperbolic metric on
X ′ − µ′ invariant under the image of H in Map(X ′). Let l be small enough so
that the horocycles of length l around the punctures embed on X ′. We remove
the puncture neighbourhoods bounded by these horocycles. This results in an H–
invariant complete hyperbolic metric dH on X − A whose boundary components
are horocycles of length l. If there are k curves in A, the ways of identifying
the boundary components of (X − A, dH) in order to obtain a (marked) conformal
structure on X are parametrised by points in an affine space Rk: changing the k–th
coordinate corresponds to a twist along the k–th boundary component. The group
H admits an action on this parameter space R

k by isometries (which are again
compositions of translations and axes interchanges). The fixed point of this action
gives an H–invariant conformal structure on X . By uniformisation this gives an
H–invariant complete hyperbolic metric on X . �

5. Fixed clique in the disc graph

In this section we prove Metatheorem A(1) in the case of the disc graph. We
denote by Ug a handlebody of genus g. A (disconnected) handlebody U is a disjoint
union of various Ug. The boundary ∂U is a closed surface which may be discon-
nected. An essential disc D in U is a disc properly embedded in U , such that ∂D
is an essential simple closed curve on ∂U . We say that an essential simple closed
curve d on ∂U is discbounding if there is an essential disc D with ∂D = d. Two
essential discs D, D′ are properly homotopic if and only if their boundary curves
∂D and ∂D′ are homotopic.
By D(U) we denote the disc graph of U . The vertex set D0(U) is the set of

homotopy classes of discbounding curves on ∂U . Two such vertices are connected
by an edge if the corresponding curves are disjoint (up to homotopy).
The handlebody group Map(U) is the mapping class group of U , i.e. the group of

orientation preserving homeomorphisms of U up to isotopy. It is well-known that
Map(U) can be identified with a subgroup of Map(∂U) by restricting homeomor-
phisms of U to the boundary.
The main theorem of this section is the following.

Theorem 5.1. Let U be a (possibly disconnected) handlebody each component of
which has genus ≥ 2. Let H be a finite subgroup of Map(U). Then H fixes a clique
in the disc graph D(U).

As an immediate consequence we obtain the following.

Corollary 5.2. Every finite order element of the handlebody group is reducible.
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Corollary 5.2 also follows from the Lefschetz fixed point theorem, since the disc
complex is contractible [McC91, Thm 5.3].

5.1. Disc surgery. In this section we describe the surgery procedure which will be
used to define dismantling projections on the disc graph. This surgery procedure
was used in [McC91] to prove contractibility of the disc complex.
Let D and D′ be two transverse essential discs in U . We say that D and D′ are

in minimal position, if the boundary curves d = ∂D and d′ = ∂D′ are in minimal
position, and D and D′ intersect only along arcs.
For any pair of discbounding curves d and d′ in minimal position, it is always

possible to find discs D and D′ in minimal position with ∂D = d, ∂D′ = d′.
However, at this point we want to warn the reader that the minimal position of
discs is not unique: in particular, the homotopy classes of d and d′ do not determine
which intersection points of d and d′ are connected by an intersection arc of D∩D′.

Let now D and D′ be two essential discs in minimal position, and let d and d′

denote their boundary curves. Assume that d and d′ intersect. We then say that
a subarc a of d is outermost in D for D′, if a bounds a disc in D together with
a component of D ∩ D′, and the interior of a is disjoint from D′. The endpoints
of a decompose d′ into two subarcs a′

+ and a′

−
. The unions d′+ = a ∪ a′

+ and
d′
−

= a ∪ a′

−
are simple closed curves on ∂U , both of which are discbounding

by construction. See e.g. [HH11a, Sec 5] or [Mas86] for a detailed description of
this surgery procedure. Since d and d′ are in minimal position, both d′+ and d′

−

are essential. We say that the discbounding curves d′+ and d′
−
are obtained by

outermost surgery of d′ in direction of d determined by a.
Note that the homotopy classes δ′+ of d′+ and δ′

−
of d′

−
depend only on the

homotopy classes δ of d and δ′ of d′, and the choice of an outermost subarc. We
call the pair {δ′+, δ′

−
} an outermost surgery pair of δ′ in direction of δ. Note that

there are only finitely many outermost surgery pairs for any choice of discbounding
homotopy classes δ and δ′.
If δ 6= δ′ have disjoint representatives, then we say that the only outermost

surgery pair of δ′ in direction of δ is {δ, δ}, interpreted as a pair both of whose
elements are equal to δ. For homotopy classes δ, δ′ ∈ D0(U) of discbounding curves
we define Πδ(δ

′) to be the set of all outermost surgery pairs of δ′ in direction of δ.

The next lemma shows that Πσ satisfies the axioms of a σ–projection for each
σ ∈ D0(U). This lemma essentially follows from the proof of [McC91, Thm 5.3].

Lemma 5.3. Let σ ∈ D0(U) be a discbounding curve on ∂U .

(i) Let R ⊂ D0(U) be a finite set of discbounding curves with R \ {σ} 6= ∅. Then
there is a discbounding curve ρ ∈ R \ {σ} with the following property: there
is an outermost surgery pair {ρ+, ρ−} of ρ in direction of σ such that each
discbounding curve ρ′ ∈ R which is disjoint from ρ is also disjoint from ρ+

and ρ−.
(ii) Every sequence (ρi) of discbounding curves in D0(U) such that ρi+1 is con-
tained in an outermost surgery pair of ρi in direction of σ terminates after
finitely steps with the discbounding curve σ.

Again, we will use hyperbolic geometry to choose preferred representatives in
the homotopy class of discbounding curves. To this end we fix a hyperbolic metric
on ∂U .

Proof. (i) Note that if each element of R can be realised disjointly from σ then
the assertion follows trivially.
Otherwise, let s be the geodesic representative of σ and let r1 be the ge-

odesic representative of an arbitrary element in R intersecting s. Choose an
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embedded disc D1 in U bounded by r1 and an embedded disc D bounded by
s which are in minimal position. Let a ⊂ ∂D be an outermost subarc in D
for D1. Let N be the set of geodesic representatives of all the elements in
R which are disjoint from r1. For each r′ ∈ N we may choose a disc D(r′)
bounded by r′ which is disjoint from D1 and in minimal position with respect
to D. Note that this means that outermost subarcs in D for the discs D(r′)
are either disjoint from a, contain a, or are contained in a. We distinguish
two cases.
If all outermost subarcs in D for the discs D(r′), r′ ∈ N are disjoint from

a or contain a, then both discbounding curves obtained by the outermost
surgery pair determined by a are disjoint from the curves in N , and therefore
the homotopy class ρ1 of r1 satisfies the condition in assertion (i).
On the other hand, assume that there is a disc D2 = D(r2) bounded by

r2 ∈ N which has an outermost subarc that is contained in a. In this case,
we replace r1 by r2, and inductively apply the same argument again. Since
the geodesic representatives of all elements in R intersect in finitely many
points, this process stops with the first case after finitely many steps with a
ρk satisfying the condition in assertion (i).

(ii) The proof of this is identical to the proof of Lemma 3.2(ii). Namely, each
outermost surgery strictly decreases the geometric intersection number with
σ.

�

The fact that homeomorphisms of U map outermost subarcs to outermost sub-
arcs immediately implies the following.

Lemma 5.4. For every h ∈ Map(U) we have

hΠσ(ρ) = Πhσ (hρ)

for all discbounding curves σ 6= ρ ∈ D0(U).

5.2. Finite hull for discs. Let δ1, . . . , δk ∈ D0(U) be a finite set of discbounding
curves. For a homotopy class α of an essential simple closed curve on ∂U , we denote
by l∂U (α) the length of the geodesic representative of α on ∂U . Put

L = max
i

l∂U (δi).

LetH = H(δ1, . . . , δk) be the set of discbounding curves δ which satisfy l∂U (δ) ≤ 2L.
Note that H(δ1, . . . , δk) is a finite set of curves which contains δ1, . . . , δk.
The following lemma shows that H is Πσ–convex for each σ = δi, i = 1, . . . , k.

Lemma 5.5. Let δ1, . . . , δk ∈ D0(U) be a finite set of discbounding curves. Put
δ = δi for some i = 1, . . . , k, and let δ′ ∈ H = H(δ1, . . . , δk) be arbitrary. Then
each outermost surgery pair of δ′ in direction of δ contains at least one element of
H.

Proof. Denote by d the geodesic representative of δ, and by d′ the geodesic repre-
sentative of δ′. We can assume that d and d′ intersect. Let a ⊂ d be an outermost
subarc. By definition of L, the subarc a has length at most L.
The endpoints of a decompose d′ into two subarcs a′

+ and a′

−
. Since d′ has

length at most 2L, at least one of these subarcs has length less or equal to L, say
a′

+. Then d′+ = a∪ a′

+ has length at most 2L. In particular, the homotopy class of
d′+ is contained in H as required. �

As a consequence of Lemmas 5.3, 5.5 and 5.4 we obtain Theorem 5.1 from Propo-
sition 2.11(ii) in the same way that we obtained Theorem 3.1.
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6. Nielsen realisation for handlebodies

6.1. Fixed simple disc system. Let {d1, . . . , dk} be a finite set of discbounding
curves which are pairwise disjoint. We say that {d1, . . . , dk} is a simple disc system,
if each complementary component of d1 ∪ · · · ∪ dk on ∂U is a bordered 2–sphere,
i.e. a 2–sphere minus open discs. Equivalently, the complementary components of
disjoint discs bounded by d1, . . . , dk in U are simply connected. A clique∆ ⊂ D0(U)
is called simple, if some (hence any) set of disjoint representatives of elements in ∆
is a simple disc system.
In this section we use the results obtained in Section 5 to show the following.

Theorem 6.1. Let U be a connected handlebody of genus g ≥ 2. Let H be a finite
subgroup of Map(U). Then H fixes a simple clique in the disc graph D0(U).

Before we give a proof, we note the following corollary.

Corollary 6.2. Let U be a connected handlebody of genus g ≥ 2. A finite order
mapping class h ∈ Map(∂U) is conjugate into the handlebody group Map(U) if and
only if h fixes a set of homotopy classes of disjoint essential simple closed curves
on ∂U all of whose complementary components are bordered 2–spheres.

Proof. If h is contained in a conjugate of the handlebody group, then Theorem 6.1
yields the desired set of curves. Let now h be a mapping class fixing a set of curves
{α1, . . . , αk} as required. We may then choose a mapping class g ∈ Map(∂U)
such that g(αi) are discbounding in U . This element g then conjugates h into the
handlebody group of U . �

Proof of Theorem 6.1. By Theorem 5.1 there is a clique∆ = {δ1, . . . , δn} in the disc
graph D(U) invariant under H . We will argue that if ∆ is a maximal H–invariant
clique, then it is simple.
As a first step, using Theorem 1.1 with hypothesis (B), we find that there is a

hyperbolic metric on X = ∂U such that H acts as a group of isometries on X .
Denote by di the geodesic representative of δi. Then H acts on X preserving the
set d1 ∪ · · · ∪ dn. Let X0 be the union of all the components of X − (d1 ∪ · · · ∪ dn)
which are not bordered 2–spheres. Denote by X0 the completion (with respect to
the path metric) of X0. We will prove that X0 is empty, which implies that ∆ is
simple.
Suppose on the contrary that X0 is nonempty. In this case, let X ′ be the

surface obtained from X0 by gluing a disc to each boundary component. Since X0

embeds naturally into X ′, we can identify X0 with a subsurface of X
′. Since H

acts as a group of isometries on X0, it maps into the mapping class group of X
′.

Furthermore, X ′ is in a natural way a (possibly disconnected) handlebody U ′ (cut
U along discs bounded by di) and so H maps into the handlebody group of U ′.
If U ′ has genus 1 components, then we consider the H–invariant clique ∆′ ⊂

D0(U ′) of unique discbounding curves in all of these components. Otherwise the
group H fixes a clique ∆′ ⊂ D0(U ′) by Theorem 5.1. Denote ∆′ = {δ′1, . . . , δ

′

k}.
For a homotopy class of an essential simple closed curve α′ on X ′ let F(α′) be

the set of all homotopy classes of simple closed curves α on X0 which are homotopic
to α′ as a curve on X ′. Note that each such α is essential. Furthermore, if α′ is
discbounding in U ′, then each element of F(α′) is discbounding in U . We put
F(∆′) = F(δ′1) ∪ · · · ∪ F(δ′k).
Set

L = min{lX0
(α)| α ∈ F(∆′)}

and

∆∗ = {α ∈ F(∆′)| lX0
(α) = L}.
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The group H , seen as a subgroup of the mapping class group of X0, preserves ∆
∗.

We claim that any two elements of ∆∗ correspond to disjoint curves. This claim
implies the theorem, since ∆∗ can be then interpreted as a clique in D(U). Thus
we can extend the initial clique ∆ by the clique ∆∗, contradicting maximality.
To prove the claim, let α1, α2 be two elements of ∆

∗, and let a1 and a2 be their
geodesic representatives on X0. Suppose that a1 and a2 intersect. Since a1 and a2

are homotopic to disjoint curves after gluing discs to the boundary components of
X0, there are subarcs ci ⊂ ai such that c1∪c2 bounds a bordered 2–sphere together
with boundary components of X0 (see Figure 2). Suppose that the length of the

Figure 2. Intersecting preimages are not shortest

geodesic arc c1 is smaller (or equal to) the length of c2. In this case, the curve â
obtained from a2 by replacing c2 with c1 is a broken geodesic which is homotopic to
a2 onX ′. Hence its homotopy class lies in F(∆′). However, the length of the broken
geodesic â is by construction at most L, and hence its geodesic representative has
length strictly less than L. This contradicts the choice of L, and therefore proves
the claim. �

6.2. Fixed Schottky group. In this section we obtain a Nielsen realisation the-
orem for the handlebody group.

Proof of Theorem 1.2. Let X = ∂U . By Theorem 6.1 there is a simple clique
∆ = {δ1, . . . , δn} which is fixed by the groupH . Let {d1, . . . , dn} be a set of disjoint
representatives of the δi and denote by X1, . . . , Xk the complementary components
of the di on X . For each such bordered 2–sphere Xi, denote by X ′

i the punctured
sphere obtained by replacing each boundary component of Xi by a puncture. Let
X ′ be the disjoint union of these punctured spheres. Note that H acts on X ′ as a
group of mapping classes. By Theorem 1.1 with hypothesis (A) there is a complete
hyperbolic metric on X ′ such that H acts as a group of isometries.
The hyperbolic metric on X ′

i can be interpreted as a conformal structure on a
punctured sphere. By the uniformisation theorem, it is biholomorphic to the com-
plement of a finite number of points p1

i , . . . , p
ki

i on a copy Ĉi of the Riemann sphere,

with ki ≥ 3. The group H acts on the union X ′ of X ′

i ⊂ Ĉi by Möbius transfor-

mations, since every conformal automorphism of Ĉ is a Möbius transformation.
Consider now a round disc Bj

i centred at one of the points pj
i , which is disjoint

from all other such points. Suppose that h ∈ H fixes the point pj
i . Since h is a

Möbius transformation of finite order which fixes pj
i and permutes ki − 1 ≥ 2 other

points pj′

i , it is in fact a rotation about pj
i and thus preserves Bj

i . Therefore we

may choose a collection of disjoint discs Bj
i , such that B

j
i is centred at p

j
i , which is

invariant under the action of H .
We interpret each Ĉi as the boundary of a copy H

3
i of the hyperbolic 3–space.

Let H(Bj
i ) be the halfspace in H

3
i which is the convex hull of B

j
i , and letMi be the

complement of the interiors of allH(Bj
i ) inH

3
i . Note that the boundary components

of the manifolds Mi correspond to punctures of X
′. The punctures of X ′ have a

natural pairing, since each marked point of X ′ corresponds to a side of a disc in
the simple disc system {d1, . . . , dn}. We now glue the manifolds Mi along their
boundaries according to this pairing, such that the closest projections of the points
pj

i to the boundary planes ∂H(Bj
i ) agree. By arguing as in the proof of Theorem 1.1
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under hypothesis (B) we can choose the twist parameters consistently such that H
acts on the resulting hyperbolic manifold M as a group of isometries. �

7. Fixed clique in the sphere graph

Let U be a (possibly disconnected) handlebody and let W = W (U) be the
3–manifold obtained by doubling U along its boundary. The manifold W is home-
omorphic to the disjoint union of iterated connected sums of S1 ×S2. A connected
component of W has rank n if its fundamental group has rank n. By Map(W )
we denote the mapping class group of W , i.e. the group of orientation preserving
homeomorphisms of W up to isotopy.
A 2–sphere embedded inW is called essential, if it does not bound a ball. Unless

stated otherwise, we assume that spheres are embedded and essential 2–spheres.
We define the sphere graph S(W ) ofW . Its vertex set S0(W ) is the set of isotopy

classes of spheres in W . Two vertices of S(W ) are connected by an edge, if the
corresponding spheres can be realised disjointly.
The fundamental group of a doubled connected handlebodyWn = W (Un) of rank

n is the free group on n generators. Hence, the mapping class group Map(Wn) of
Wn admits a homomorphism to Out(Fn). By a theorem of Laudenbach [Lau74,
Thm 4.3, Rem 1], this map is surjective and has finite kernel generated by Dehn
twists along spheres. Therefore the elements of the kernel act trivially on isotopy
classes of spheres. As a consequence, Out(Fn) acts as a group of automorphisms
on S(Wn) (see [Hat95] for a thorough treatment of this graph).
We can now state the main theorem of this section.

Theorem 7.1. Let W be a (possibly disconnected) doubled handlebody, each com-
ponent of which has rank ≥ 2. Let H be a finite subgroup of Map(W ). Then H
fixes a clique in the sphere graph S(W ).

By the discussion in the previous paragraph Theorem 7.1 immediately implies
that if H is a finite subgroup of Out(Fn), then it fixes a clique in S(Wn).
The strategy to prove Theorem 7.1 will be analogous to the strategy employed in

Sections 3 and 5. In the cases of the arc and disc graph we used hyperbolic metrics
on surfaces to select preferred representatives of arcs and discbounding curves. In
the manifold W we do not have such geometric tools. In the following section we
recall and extend the notion of normal position from [Hat95], which is a topological
tool allowing to put pairs of spheres in a preferred position with good properties.

7.1. Normal position. A sphere system S0 inW is a collection of disjoint spheres
in W , no two of which are isotopic. Note that two sphere systems are isotopic if
and only if they are homotopic by a theorem of Laudenbach (see [Lau74]). A sphere
system is maximal if it is not properly contained in another sphere system.
For a sphere system S0 in W we call the (path-metric) closures of the connected

components of W − S0 the complementary components of S0 (in W ). A sphere
system is maximal if and only if each of its complementary components in W is
homeomorphic to the 3–sphere minus three open balls. Associated to a sphere
system S0 is a dual graph Γ in the following way. The vertex set of Γ is the set
of complementary components of S0. Each sphere s0 ∈ S0 defines an edge in Γ,
connecting the vertices corresponding to the two (possibly coinciding) complemen-
tary components of S0 adjacent to s0. Note that the graph Γ might not be simple.
In particular, it might happen that a complementary component of S0 is adjacent
along two distinct boundary components to the same sphere in S0, and then Γ
contains a loop.
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Let s be a sphere which is transverse to S0. The intersection of s with a comple-
mentary component of S0 is a disjoint union of bordered 2–spheres. We call these
components sphere pieces of s with respect to S0.
A sphere s is in normal position with respect to a maximal sphere system S0 (see

[Hat95]) if s is transverse to S0 and each sphere piece P of s satisfies the following
two conditions:

(1) The piece P meets each boundary component of a complementary component
of S0 in at most one circle.

(2) The piece P is not a disc which is homotopic into S0 relative to its boundary.

We say that a sphere piece P is problematic of type (1) or (2), if it violates condition
(1) or (2) above. In that case we say that it is problematic with respect to s0 ∈ S0 if
the boundary component of the complementary component on which P shows the
excluded behaviour corresponds to s0. We say that a sphere system S is in normal
position with respect to S0 if each sphere s ∈ S is in normal position with respect
to S0.
Normal position of spheres is unique in the following sense: suppose that s, s′

are isotopic spheres which are in normal position with respect to some maximal
sphere system S0. Then by [Hat95, Prop 1.2] there is a homotopy between s and s′

which restricts to an isotopy on S0 (Hatcher considers only the case of connected
W , but the disconnected case follows immediately by considering the connected
components individually). We say that sphere pieces of s and s′ are corresponding,
if they are mapped to each other by such a homotopy. Correspondence identifies
the sphere pieces of s bijectively with the sphere pieces of s′.

Next, we characterise normal position using lifts to the universal cover W̃ of W .

Since W is allowed to be disconnected, we define W̃ to be the disjoint union of
the universal covers of the components of W . Note that since spheres are simply

connected, every sphere in W lifts homeomorphically to W̃ . The definitions of
sphere systems, complementary components, sphere pieces and normal position

extend verbatim to spheres in W̃ .

Lemma 7.2. Let S0 be a maximal sphere system in W and let s be a sphere in W .

Denote by S̃0 the full preimage of S0 in W̃ . Then the following are equivalent:

(i) The sphere s is in normal position with respect to S0.

(ii) One (and hence any) lift s̃ of s is in normal position with respect to S̃0.

(iii) (1) One (and hence any) lift s̃ of s intersects each component of S̃0 in at most
one circle, and

(2) there is no disc in s̃ homotopic relative to its boundary into S̃0.

Proof. Assertion (i) is equivalent to (ii) since a piece P̃ of s̃ that is a lift of piece P
of s is problematic if and only if P is problematic. It is clear that (iii) implies (ii).
It remains to prove that assertion (ii) implies (iii).

For part (1) let s̃0 be a sphere of S̃0. Suppose that s̃0 and s̃ intersect in at least
two circles c̃ and c̃′. Let a ⊂ s̃ be a path joining c̃ and c̃′ and crossing the least

number of complementary components of S̃0. Since the graph dual to S̃0 in W̃ is

a forest, there is a complementary component K̃ of S̃0 such that a intersects only

one boundary component of K̃. Then a sphere piece of s̃ in K̃ is problematic of
type (1).
For part (2) suppose there is a disc in s̃ homotopic relative to its boundary into

S̃0. Then it contains a subdisc which is a piece of s̃ problematic of type (2).
�

Motivated by Lemma 7.2, we say that two transverse spheres s̃ and s̃′ in W̃ are
in normal position if
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(1) s̃ and s̃′ intersect in at most one circle, and
(2) none of the discs in s̃ − s̃′ is homotopic into s̃′ relative to its boundary.

Note that this relation is symmetric with respect to s̃ and s̃′.
We say that two spheres s, s′ in W are in normal position if all of their lifts to

W̃ are in normal position. Note that given two spheres s, s′ we can change s by a
homotopy to be in normal position with s′. Namely, extend s′ to a maximal sphere
system S′. Then [Hat95, Prop 1.1] implies that we can homotope s to be in normal
position with respect to S′. By Lemma 7.2 the spheres s, s′ are then in normal
position as well. Similarly, given a sphere s′ in W we can homotope any sphere
system S in W so that s and s′ are in normal position for any s ∈ S.
We need the following uniqueness property of normal position for a pair of

spheres.

Lemma 7.3. Let s0 be a sphere in W , and let s, s′ be two isotopic spheres in W
which are in normal position with respect to s0. Then there is a homotopy between
s and s′ which restricts to an isotopy on s0.

Proof. Extend s0 to a maximal sphere system S0. We first claim that we can change
s and s′ to be in normal position with respect to S0 by a homotopy which restricts
to the identity on s0. We give the proof of the claim for s, the proof for s′ is
identical.
Suppose that s is not in normal position with respect to S0. Then there is a

sphere piece P of s with respect to S0 which is problematic. Following the proof of
[Hat95, Prop 1.1] we may modify s by a homotopy to remove this problematic piece.
This homotopy moves s through s0 if and only if the sphere piece P is problematic
with respect to s0. If P was problematic of type (1), then a lift of s would intersect
a lift of s0 in two circles. If P was problematic of type (2), then a lift of s would
contain a disc which is homotopic into a lift of s0 relative to its boundary. Both of
these cases are excluded by normal position of s and s0. Hence every problematic
piece P of s with respect to S0 can be removed by a homotopy of s which does not
move s through s0. Furthermore, such homotopies keep s in normal position with
respect to s0. This shows the claim.
Now the assertion of the lemma follows from [Hat95, Prop 1.2] which states that

there is a homotopy between s and s′ which restricts to an isotopy on S0. �

7.2. Sphere surgery. In this section we describe a surgery procedure for spheres.
This surgery procedure was defined and used in [Hat95] to show contractibility of
the sphere complex.
Suppose that spheres s and s′ in W intersect and are in normal position. We

say that a disc D ⊂ s is outermost in s for s′ if D ∩ s′ = ∂D.
Let D be an outermost disc in s for s′. Denote by D′

+ and D′

−
the two com-

ponents of s′ − ∂D. Then we say that the spheres s′+ = D′

+ ∪ D, s′
−

= D′

−
∪ D

are obtained by outermost surgery of s′ in direction of s determined by D. Normal
position of s and s′ implies that both s′+ and s′

−
are essential spheres.

By Lemma 7.3 the notion of outermost discs is well-defined for isotopy classes
of spheres. Hence the isotopy classes σ′

+, σ′

−
of s′+, s′

−
depend only on the isotopy

classes σ of s and σ′ of s′. We call the pair {σ′

+, σ′

−
} an outermost surgery pair of

σ′ in direction of σ.
If σ′ 6= σ are disjoint, then the only outermost surgery pair of σ′ in direction of

σ is {σ, σ}, interpreted as a pair both of whose elements are equal to σ. Let Πσ(σ′)
be the set of all outermost surgery pairs of σ′ in direction of σ.

We next show that Πσ satisfies the axioms of a σ–projection for all σ ∈ S0(W ).
The main technical result needed for this is given by the following lemma.
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Lemma 7.4. Let S0 be a maximal sphere system in W . Suppose that r1, . . . , rk is
a sequence of spheres in normal position with respect to S0. Assume that for each
1 ≤ i ≤ k − 1 the sphere ri+1 is disjoint from ri and that r1 is isotopic to rk. Let
ci ⊂ ri ∩ S0 be a sequence of intersection circles bounding discs Di ⊂ S0. Suppose
that Di+1 ⊂ Di for each 1 ≤ i ≤ k−1. If c1 and ck are boundaries of corresponding
sphere pieces of r1 and rk, then all ri are in fact isotopic.

Proof. Suppose that ri are spheres satisfying the hypothesis of the lemma. Denote
by K the complementary component of S0 which contains the corresponding sphere
pieces P1 of r1 and Pk of rk. For each 1 < i < k, let Pi be the sphere piece of ri

contained in K and bounded by ci. The complementary component K lifts into W̃

homeomorphically to a complementary component K̃ of the full preimage S̃0 of S0.

Let P̃i, D̃i be the lifts of Pi, Di into K̃. Let r̃i be the lifts of the ri containing P̃i.

Each sphere r̃i separates the universal cover W̃ into two connected components.

We call the component which contains D̃i the outside of r̃i. Since ri and ri+1

are disjoint, the lift r̃i+1 is completely contained on the outside of r̃i for each
1 ≤ i ≤ k − 1. In particular, r̃1 and r̃k are disjoint.
By the definition of correspondence, there is a homotopy of r1 to rk which

restricts to an isotopy on S0 and which maps P1 to Pk. Lifting this homotopy we
see that r̃1 is homotopic to r̃k. Therefore, r̃1 and r̃k bound a product region which
contains all the r̃i. In particular, all r̃i are homotopic, as desired. �

Lemma 7.5. Let σ ∈ S0(W ) be a sphere in W .

(i) Let R ⊂ S0(W ) be a finite set of spheres with R \ {σ} 6= ∅. Then there is a
sphere ρ ∈ R \ {σ} with the following property: there is an outermost surgery
pair {ρ+, ρ−} of ρ in direction of σ such that each sphere ρ′ ∈ R which is
disjoint from ρ is also disjoint from ρ+ and ρ−.

(ii) Every sequence (ρi) of spheres such that ρi+1 is obtained from ρi by an out-
ermost surgery in direction of σ terminates after finitely many steps with σ.

Proof. (i) We can assume that not all the spheres in R are disjoint from σ, since
otherwise the assertion follows trivially. Let s be a representative of σ and
let S be an extension of s to a maximal sphere system. Let r1 be a represen-
tative of an arbitrary element ρ1 ∈ R intersecting s in normal position with
respect to S. Let D ⊂ s be an outermost disc for r1 and let N be the set of
representatives of the spheres in R \ {ρ1} which are disjoint from r1.
We may assume that each r′ ∈ N is in normal position with respect to S.

Note that this means that outermost discs in s for the spheres r′ are either
disjoint from D, contain D, or are contained in D. We distinguish two cases.
If all outermost discs in s for all r′ ∈ N are disjoint from D or contain D,

then both spheres obtained by outermost surgery determined byD are disjoint
from the spheres in N , and therefore r1 satisfies the condition required in (i).
On the other hand, assume that there is a sphere r2 ∈ N for which an

outermost disc is contained in D. In this case, we replace r1 by r2, and
inductively apply the same argument again. By Lemma 7.4, this process
terminates after finitely many steps with the first case.

(ii) The proof of this part is similar to the proof of Lemma 3.2(ii). Namely,
suppose that s and s′ are two spheres in normal position which intersect in k
circles. Then both spheres obtained by an outermost surgery of s′ in direction
of s intersect s in at most k − 1 circles. Putting spheres in normal position
decreases the number of intersection circles (see the proof of [Hat95, Prop 1.1]).
Thus an induction on this value proves the assertion.

�
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The fact that homeomorphisms of W map outermost discs to outermost discs
immediately implies the following.

Lemma 7.6. For every h ∈ Map(W ) we have

hΠσ(ρ) = Πhσ (hρ)

for all spheres σ 6= ρ in S0(W ).

Remark 7.7. Let σ be the isotopy class of a sphere in W . In [HH11b] it is shown
that the stabiliser of σ in Map(W ) is an undistorted subgroup of Map(W ). Using
the techniques developed in this section, the proof in [HH11b] can be improved
to show that the stabiliser of σ in Map(W ) is in fact a coarse Lipschitz retract of
Map(W ).

7.3. Finite hull for spheres. For this section we fix a maximal sphere system S0

in W . Let S̃0 be the full preimage of S0 in W̃ . We say that a surface in W̃ has

width w with respect to S̃0, if it crosses w complementary components of S̃0 in W̃ .
We say that a sphere s in W has width w with respect to S0, if one (hence any) lift

of s to W̃ has width w. A sphere σ ∈ S0(W ) has width w, if its representative s
in normal position with respect to S0 has width w. In other words, s has w sphere
pieces. This does not depend on the choice of s. Analogously we define the width

for the isotopy classes of spheres in W̃ . In fact, the width of the class does not
exceed the width of a representative:

Lemma 7.8. If s̃ is a sphere in W̃ of width w, and s̃′ is an isotopic sphere in

normal position with respect to S̃0, then s̃′ has width at most w.

Proof. Following the proof of [Hat95, Prop 1.1] we can homotope s̃ to a sphere s̃′ in
normal position by successively removing problematic sphere pieces. In each such

step one slides the problematic piece through a sphere s̃0 ∈ S̃0. Such a homotopy
does not increase the width, since the side of s̃0 that we push s̃ towards already
contains a piece of s̃. �

We are now able to describe the finite hull construction for the sphere graph.
Let σ1, . . . , σk ∈ S0(W ) be a collection of spheres with representatives s1, . . . , sk.
Let w be the maximal width of any σi with respect to S0. Let H = H(σ1, . . . , σk)
be the set of isotopy classes of spheres with width ≤ 2w with respect to S0. By
construction, the set H is finite and contains all the σi. The following lemma shows
that H is Πσ–convex for all σ = σi.

Lemma 7.9. Let σ1, . . . , σn ∈ S0(W ) be a finite set of spheres. Put σ = σi, and
let ρ ∈ H = H(σ1, . . . , σn) be arbitrary. Then each outermost surgery pair of ρ in
direction of σ contains at least one element of H.

Proof. Let s, r be representatives of σ, ρ which are in normal position with respect
to S0. We can assume that s and r intersect. Let sr be a representative of σ which
is in normal position with respect to r Let r+, r− be obtained by outermost surgery
of r in direction of sr determined by an outermost disc D ⊂ sr.

Let r̃ be a lift of r to W̃ , and let s̃r be the lift of sr which intersects r̃ in the lift
of ∂D. Denote by s̃ the lift of s which is isotopic to s̃r.
We may homotope s̃ to be in normal position with respect to r̃ without increasing

its width. Namely, let W̃ (s̃) be the union of all the complementary components

of S̃0 crossed by s̃. The manifold W̃ (s̃) is homeomorphic to a bordered 3–sphere
(i.e. a 3–sphere minus a finite disjoint union of open balls). Since r is in normal

position with respect to S0, the lift r̃ of r intersects W̃ (s̃) in a connected surface.

Therefore, we may homotope s̃ within W̃ (s̃) as in the proof of [Hat95, Prop 1.1]
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so that s̃ and r̃ intersect in a single circle c̃. The circle c̃ cuts r̃ into two discs

D̃+, D̃−. The normal position of r̃ and s̃ is determined by their isotopy classes by

Lemma 7.3. Therefore, there is a disc D̃ ⊂ s̃ bounded by c̃, such that the spheres

r̃+ = D̃+ ∪ D̃, r̃− = D̃− ∪ D̃ are isotopic to lifts of r+ and r−.

Since r̃ is in normal position with respect to S̃0, each component of r̃ − W̃ (s̃)

belongs to exactly one of the discs D̃+, D̃−. Since r̃ has width at most 2w, without

loss of generality we may assume that the union D̃∗

+ of all the components of

r̃ − W̃ (s̃) contained in D̃+ crosses at most w complementary components of S̃0.

The surface r̃+ − D̃∗

+ is contained in W̃ (s̃). Hence it also has width at most w.
Consequently, the sphere r̃+ has width at most 2w. By Lemma 7.8, the width

of its isotopy class with respect to S̃0 is at most 2w. Since r̃+ is isotopic to a lift of
r+, the isotopy class of r+ has width at most 2w and the lemma is proved. �

As a consequence of Lemmas 7.5, 7.9 and 7.6 we obtain Theorem 7.1 from Propo-
sition 2.11(ii) in the same way that we obtained Theorem 3.1.

8. Nielsen realisation for graphs

Let {s1, . . . , sk} be a finite set of disjoint spheres in W . We say that {s1, . . . , sk}
is a simple sphere system if the complementary components of s1 ∪ · · · ∪ sk are
bordered 3–spheres or, equivalently, simply-connected. A clique ∆ ⊂ S0(W ) is
called simple if some (hence any) set of disjoint representatives of elements in ∆ is
a simple sphere system. In this section we use the results of Section 7 to show the
following.

Theorem 8.1. Let W be a (possibly disconnected) doubled handlebody, each com-
ponent of which has rank ≥ 2. Let H be a finite subgroup of Map(W ). Then H
fixes a simple clique in the sphere graph S(W ).

As an immediate consequence of Theorem 8.1 we obtain Theorem 1.3. Namely,
let H be a finite subgroup of Out(Fn). By Theorem 8.1 the group H fixes a simple
clique ∆ in S(Wn) (see the discussion at the beginning of Section 7). Then H acts
as isometries on the dual graph of a simple sphere system representing ∆.

The proof of Theorem 8.1 is similar to the one employed for the handlebody
group in Section 6.1 — with one additional complication:
In the handlebody group case, if a finite group fixes a clique ∆ in the disc graph,

then using Theorem 1.1 with hypothesis (B) there is an H–invariant hyperbolic
metric on the boundary of the handlebody. We used curves of a certain type that
minimise length with respect to this metric to extend ∆ to a simple clique.
The manifold W does not have a preferred geometry. We will instead imitate

the length argument using a combinatorial and topological argument. The role of
length will be played by the geometric intersection number of sphere systems with
arc systems, which we define next.

8.1. Arc systems. We need a slight generalisation of the doubled handlebodies
considered in Section 7. Namely, let W l

n be the 3–manifold obtained from Wn by
removing l open balls. Let W0 be the disjoint union of a finite number of such
manifolds.
An embedded sphere inW0 is called essential if it does not bound a ball inW0 and

if it is not homotopic into a boundary component of W0. The definitions of sphere
systems and normal position then extend to the manifold W0 in a straightforward
way. Furthermore, normal position has the same properties as described for W in
Section 7.
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An arc is a proper embedding of an interval into W0, where the endpoints are
allowed to coincide. Let S be a simple sphere system in W0 and let a be an arc.
We call the intersections of a with complementary components of S the arc pieces
of a with respect to S. An arc piece a′ ⊂ a is called returning, if its endpoints lie on
the same boundary component of the complementary component of S containing
a′. We say that an arc a is in minimal position with respect to S if no arc piece of
a is returning.

Lemma 8.2. Let S, S′ be two simple sphere systems in W0 which are in normal
position and let a be an arc. Then a can be homotoped to be in minimal position
with respect to both S and S′.

Proof. We replace a with a homotopic arc in minimal position with respect to S′

and intersecting S in the minimal possible number of points. We will prove that a
is in minimal position with respect to S.
Otherwise, there is a returning arc piece a′ ⊂ a with respect to S, contained in

a complementary component K of S. Let n be the number of sphere pieces of S′

in K intersected by a′. We will argue by induction that n can be decreased to 0.
If n = 0, then a′ is disjoint from S′. We can then homotope the arc piece a′ out

of K keeping a in minimal position with respect to S′. Such a homotopy decreases
the number of intersection points between a and S. This contradicts the minimality
assumption on a.
If n > 0, orient a′ and let P ′ be the first sphere piece of S′ intersected by a′.

Note that a′ intersects P ′ in a single point, since P ′ separates K into two connected
components, and a has no returning arc piece with respect to S′. In particular, the
sphere piece P ′ intersects the boundary component of K containing the endpoints
of a′. Therefore we can slide a′ along P ′, keeping a in minimal position with respect
to S′ to decrease the number n of sphere pieces of S′ in K intersected by a′ (see
Figure 3), as desired. Note that such a homotopy does not increase the number of
intersection points between a and S. �

a'

Figure 3. Sliding a returning arc piece to intersect fewer sphere pieces

If an arc a is in minimal position with respect to a simple sphere system S, then
the number of intersection points between a and S depends only on the homotopy
classes α of a and Σ of S. It will be called the intersection number i(α, Σ).

An arc system in W0 is a finite collection of arcs in W0. We say that an arc

system A is generating if the following holds for each connected component Ŵ of
W0.

(i) The graph whose vertices are boundary components of Ŵ and edges corre-

spond to arcs of A in Ŵ is connected.

(ii) There is a system of loops of A in Ŵ based at a point on ∂Ŵ , which generates

the fundamental group of Ŵ .
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If A and A′ are arc systems in the same homotopy class Λ, then A is generating
if and only if A′ is generating. In that case we also call Λ a generating arc system.
The intersection number i(Λ, Σ) is the sum of i(α, Σ) over all α ∈ Λ.

Lemma 8.3. Let Λ be a generating arc system, and let k > 0. Then there are only
finitely many isotopy classes Σ of simple sphere systems in W0 with intersection
number i(Λ, Σ) ≤ k.

Proof. The mapping class group ofW0 acts with finite quotient on the set of isotopy
classes of simple sphere systems. Thus there is a finite collection {Σ∗

j}j of isotopy
classes of simple sphere systems representing all the orbits. Let S be a simple sphere
system with i(Λ, Σ) < k. There is is a mapping class ϕ of W0 with ϕ(Σ) = Σ∗

j for
some j. For every Σ∗

j there are only finitely many homotopy classes α of arcs with
intersection number i(α, Σ∗

j ) ≤ k. Therefore, there are only finitely many possible

ϕ(Λ). The lemma now follows from the following bound on the number of possible
mapping classes ϕ.

Claim. Suppose that Λ is a generating arc system. The subgroup of the mapping
class group of W0 preserving each oriented arc α ∈ Λ is finite.

To show the claim, let f be a homeomorphism of W0 such that the arc f(a) is

homotopic to a for each oriented arc a ∈ A, where A represents Λ. Let Ŵ be a
connected component of W0 with l boundary components. If l > 1, let s1, s2 be

two boundary components of Ŵ which are connected by an arc a ∈ A. These exist
by property (i) of a generating arc system. Let s be the boundary of a regular
neighbourhood of s1 ∪ a ∪ s2. Since f preserves the homotopy class of a, it also
preserves the homotopy classes of s1 and s2. Thus the sphere s is homotopic, hence

isotopic, to f(s). The complement of s in Ŵ is the disjoint union of W l−1
n (for a

suitable n ≥ 1) and a 3–sphere minus three open balls. The intersection A ∩W l−1
n

becomes a generating arc system in W l−1
n after a homotopy. Arguing inductively

using property (i) of a generating arc system, we find a sphere ŝ such that the
following holds. The complement of ŝ is the disjoint union of W 1

n and a 3–sphere
minus l + 1 open balls. Up to isotopy, the homeomorphism f preserves ŝ. The
restriction of f to W 1

n preserves the homotopy class of a generating arc system.
Now property (ii) of a generating arc system implies that f acts as the identity on
the fundamental group of W 1

n . By [Lau74, Thm 4.3] f represents an element of a

finite subgroup of the mapping class group of Ŵ . �

8.2. Fibers. Let W ′ be the manifold obtained by gluing closed balls to each of the
boundary spheres of W0. There is a natural embedding W0 → W ′. Let ∆′ be a
clique in S0(W ′), and let {s′1, . . . , s

′

k} be a sphere system in W ′ representing ∆′.
We define F(∆′) to be the following graph. The vertex set of F(∆′) is the set of
isotopy classes ∆ of sphere systems {s1, . . . , sk} inW0, such that si is isotopic to s′i,
viewed as spheres inW ′. Two vertices are connected by an edge if the corresponding
sphere systems can be realised in W0 disjointly.
Let Λ be a generating arc system in W0 and put

I = I(Λ, ∆′) = min{i(Λ, ∆)| ∆ ∈ F(∆′)}.

Let FΛ(∆′) be the subgraph of F(∆′) induced on the set of the vertices ∆ of F(∆′)
satisfying i(Λ, ∆) = I. By Lemma 8.3, the graph FΛ(∆′) is finite.

Lemma 8.4. The graph FΛ(∆′) is dismantlable.

Proof. We will show that FΛ(∆′) is dismantlable by defining a dismantling projec-
tion.
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Let S1 and S2 be two sphere systems representing vertices of F(∆′) which in-
tersect and which are in normal position. Since S1 and S2 are homotopic in W ′,
there are discs Di ⊂ Si with common boundary circle, such that D1 ∪D2 bounds a
ball in W ′ disjoint from S1 ∪ S2. We say that such discs Di are admissible surgery
discs.
By Lemma 8.2 we may choose a generating arc system A representing Λ in

minimal position with respect to both S1 and S2. The isotopy classes of the sphere
systems (S1−D1)∪D2 and (S2−D2)∪D1 define vertices of F(∆′). By minimality
of I, the arc system A intersects D1 in the same number of points as D2. In
particular, the sphere system (S1 − D1) ∪ D2 represents a vertex of FΛ(∆′).
We call (S1 − D1) ∪ D2 an admissible surgery of S1 in direction of S2. Since

normal position is unique, the isotopy classes of admissible surgeries only depend
on the isotopy classes Σ1, Σ2 of the sphere systems S1 and S2. Let ΠΣ2

(Σ1) be the
set of all such admissible surgeries (each of which is interpreted as a pair whose two
elements coincide).
Lemma 7.4 holds for W0 with the same proof as for W . Hence, arguing exactly

as in the proof of Lemma 7.5, one shows that ΠΣ2
is a dismantling projection for

each Σ2 ∈ FΛ(∆′). �

Proof of Theorem 8.1. We prove the theorem by induction on the sum of the ranks
of the components of W minus the number of components of W . By Theorem 7.1,
the subgroup H fixes a clique ∆ in S(W ). Let S = {s1, . . . , sn} be a sphere system
representing ∆. If every complementary component of S is a bordered 3–sphere,
then ∆ is already simple. Otherwise, let W0 be the union of all the complementary
components of S which are not bordered 3–spheres. The finite group H acts as a
group of mapping classes on W0.
Let W ′ be the manifold obtained by gluing closed balls to each boundary com-

ponent of W0. There is an H–invariant simple clique ∆′ ⊂ S0(W ′): in each rank 1
component of W ′ we consider the unique homotopy class of spheres; in the union
of the remaining components of W ′ there is a simple sphere system which is H–
invariant up to isotopy by the induction hypothesis.
Let Λ be a generating arc system in W0 which is fixed by H . Such a system can

be obtained as the orbit of an arbitrary generating arc system. Since H preserves
both Λ and ∆′, it acts by automorphisms on FΛ(∆′). By Lemma 8.4 the graph
FΛ(∆′) is dismantlable. Therefore, by Proposition 2.11(i) the group H fixes a
clique ∆∗ in FΛ(∆′). Since ∆′ is a simple clique, the vertices of ∆∗ can be realised
as a simple sphere system in W0. We can interpret ∆∗ as a clique in S0(W ) which
together with ∆ forms the desired simple clique fixed by H . �

Remark 8.5. In fact, one can show that if W ′ does not have rank 1 components,
then the flag complex spanned on the graph F(∆′) is isomorphic to a triangulation
of a product of trees with orthoschemes. The number of factors is the number of
boundary components of W0. In the case where W0 has one boundary component,
this means means that F(∆′) is a tree. That case can be proved for example by
extending the dismantling projection from FΛ(∆′) (see Lemma 8.4) to the whole
F(∆′). This fact is analogous to a result of Kent–Leininger–Schleimer [KLS09,
Thm 7.1] for the curve graph of a surface with one puncture. In the case where W0

has more boundary components, recognising the product of trees structure requires
local analysis of F(∆′).
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9. Contractibility of the set of fixed points

This section is a continuation of Section 2. The main result is the combinatorial
Theorem 1.4 stating that in a finite flag simplicial complex with dismantlable 1–
skeleton the set of points fixed by a finite automorphism group is contractible. It
is a significant extension of Theorem 2.4, and according to our knowledge it is a
new result. Theorem 1.4 is of independent interest in graph theory, and as we
will see it has numerous applications in geometric group theory. We will use it
to obtain Theorem 1.5 in Section 12. At the end of the current section we will
deduce from Theorem 1.4 a criterion for contractibility of fixed point sets in the
presence of dismantling projections (Proposition 9.2). This will allow us to prove
Metatheorems B and C.
We adopt a convention that in a flag simplicial complex a neighbourhood of a

vertex is its neighbourhood in the 1–skeleton. Similarly a vertex is dominated (resp.
dominating) if is dominated (resp. dominating) in the 1–skeleton etc.

Proof of Theorem 1.4. First observe that Y H is nonempty, by Theorem 2.4. The
proof of the theorem is by induction on the number |V | of vertices of Y . If |V | = 1
then the assertion is clear. Now, for a given Y assume that the theorem has been
proved for all complexes with less than |V | vertices. We treat separately two cases
(as in the proof of Theorem 2.4).

Case 1. There exist no two vertices with common neighbourhood. In this case let
V ′ ⊂ V be the nonempty set of dominated vertices which are not dominating. Note
that the subcomplex Y ′ spanned on V \V ′ is H–invariant, dismantlable (by Lemma
2.5), with less than |V | vertices. By induction hypothesis Y ′H is contractible.
For every vertex σ ∈ V ′ let σdom denote the simplex of Y spanned on the set

of all vertices dominating σ. Observe that σdom is contained in Y ′. For σ ∈
V \ V ′, put σdom = σ. By bσdom we denote the barycentre of σdom. On the
(geometric realisation of the) simplicial complex Y define a deformation retraction
R : Y × [0, 1] → Y as follows. First we define R on vertices of Y by setting R(σ, t) =
(1−t)σ+tbσdom , where the linear combination is taken with respect to the standard
affine structure on Y . If the set S = {σ1, . . . , σk} ⊂ V of vertices spans a simplex
of Y , then there exists a simplex ∆ of Y containing S and all the simplices σdom

i .
Thus, for every t the set {R(σ1, t), . . . ,R(σk, t)} is contained in ∆. It follows that
we may extend R affinely to a map on Y × [0, 1]. Observe that R(Y × {1}) = Y ′.
Since for every vertex σ ∈ V we have H(σdom) = (Hσ)dom, the map R is H–

equivariant (with the trivial H–action on [0, 1]). Thus, if the set {σ1, . . . , σk} of
vertices of Y spans an H–invariant simplex, then the set {R(σ1, t), . . . ,R(σk, t)}
is H–invariant for every t. It follows that the image R(b, t) of the barycentre b of
an H–invariant simplex of Y is a point fixed by H . Moreover, every point x ∈ Y
fixed by H is an affine combination of such barycentres, thus R(x, t) is fixed by H .
Thus the image R(Y H , t) of the set of the points fixed by H consists itself of fixed
points. We obtain a deformation retraction R|Y H×[0,1] of Y H to R(Y H × {1}).

Since R(Y H × {1}) is isomorphic to Y ′H which is contractible, we conclude that
Y H is contractible.

Case 2. There exist different vertices of Y having common neighbourhood. In
that case consider the graph Γ′ obtained by identifying all vertices with common
neighbourhood (as in the proof of Theorem 2.4). Let Y ′ denote the corresponding
flag simplicial complex, i.e. Y ′ = Γ′N. The H–action on Y induces an H–action on
Y ′, and Γ′ is dismantlable by Lemma 2.5 (see the proof of Theorem 2.4). Thus, by
induction hypothesis Y ′H is contractible.
Observe that for every vertex σ of Γ the set of vertices with the same neighbour-

hood as σ spans a simplex ∆σ of Y . Moreover, two such simplices ∆σ 6= ∆ρ are
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disjoint. Define a deformation retraction R : Y × [0, 1] → Y as follows. First we
define R on vertices of Y by setting R(σ, t) = (1− t)σ + tb∆σ . Note that if vertices
σ1, . . . , σk of Y are pairwise connected by edges (i.e. when they span a simplex),
then for every t all the images R(σ1, t), . . . ,R(σk, t) are contained in a common
simplex of Y . Hence R can be affinely extended to a map R : Y × [0, 1] → Y . Let
T be the flag triangulation of R(Y × {1}) defined as follows. Vertices of T are the
points b∆σ , for all vertices σ of Y . Edges are straight segments connecting b∆σ and
b∆ρ , whenever σ and ρ are connected by an edge of Y . Simplices are convex hulls
of cliques. Observe that T is isomorphic to Y ′.
Similarly as in the previous case we see that the map R is H–invariant. Thus,

again, if the set {σ1, . . . , σk} of vertices of Y spans an H–invariant simplex, then for
every t the set {R(σ1, t), . . . ,R(σk, t)} is H–invariant. Analogously to the previous
case we conclude that we obtain a deformation retraction R|Y H×[0,1] of Y H to

R(Y H ×{1}). Observe that the latter space is isomorphic (as a subcomplex of the
barycentric subdivision of the triangulation T ) to Y ′H , which is contractible. �

Definition 9.1. Assume that for every vertex σ of a graph Γ with vertex set V we
have a σ–projection Πσ. The family {Πσ}σ is synchronised if for any clique ∆ ⊂ V
and any sequence ρ1, ρ2, . . . with ρi+1 ∈ Π∗

σi
(ρi) with any σi ∈ ∆, the sequence

(ρi)i enters (and then stays in) ∆.

Proposition 9.2. Let H be a group of automorphisms of a graph Γ with vertex set
V without infinite cliques. Assume that we have a σ–projection Πσ for each σ ∈ V
and the family {Πσ}σ is H–equivariant. Suppose that

(i) H fixes a vertex of Γ, or
(ii) H fixes a clique in Γ and the family {Πσ}σ is synchronised.

Then the fixed point set ΓNH
is contractible.

Proof. We first prove the proposition under hypothesis (ii). Recall that for S ⊂ V ,
the subcomplex of ΓN spanned on S is denoted by SN. In particular, ΓN = V N.
Let S ⊂ V be the union of the vertices of all H–invariant cliques. We can

exhaust S by an increasing sequence S1, S2, . . . of finite H–invariant sets. Choose
an H–invariant clique ∆ ⊂ S.
Let Rn ⊂ V be the minimal set containing Sn and with the property that for

any ρ ∈ Rn and σ ∈ ∆, all the elements of Π∗

σ(ρ) lie in Rn as well. Since Sn is
finite, the set Rn is finite by the fact that {Πσ}σ is synchronised and by König’s
lemma. Since both ∆ and Sn are H–invariant and {Πσ}σ is H–equivariant, the set
Rn is H–invariant as well.
Hence Rn are finite H–invariant sets that contain Sn and are Πσ–convex for each

σ ∈ ∆. The subcomplexes RN

n exhaust SN which contains V NH
. By Corollary 2.9

the subgraph induced on each Rn is dismantlable. By Theorem 1.4 each RN

n
H
is

contractible and hence V NH
is contractible, as desired.

Under hypothesis (i) we can take ∆ to be a vertex and we can use axiom (ii)
of a dismantling projection to obtain that Rn is finite. The remaining part of the
argument is the same. �

10. Contractibility of fixed point sets in the arc complex

In this section we prove Metatheorems B and C for the mapping class group
(Theorems 10.1 and 10.3). The arc complex AN(X) is the flag simplicial complex
obtained from the arc graph A(X) by spanning simplices on all of its cliques. Then
simplices of AN(X) correspond to sets of disjoint arcs.

Theorem 10.1. Let X be a closed connected oriented surface with nonempty set of
marked points and negative Euler characteristic. Let H be any subgroup of Map(X).
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Then the set AN(X)H of points of the arc complex AN(X) fixed by H is empty or
contractible.

Hence in view of Theorem 3.1 in the particular case where H is finite the fixed
point set AN(X)H is contractible. Also, if we take for H the trivial group, it follows
that AN(X) is contractible, which was proved in [Har85,Hat91].

Lemma 10.2. The family {Πσ}σ of dismantling projections on A(X) from Sec-
tion 3 is synchronised.

Proof. Choose a clique ∆ ⊂ A0(X) and any sequence ρ1, ρ2, . . . with ρi+1 ∈ Π∗

σi
(ρi)

with some σi ∈ ∆. Then, as in the proof of Lemma 3.2(ii), the geometric intersec-
tion number between ρi and the set ∆ of disjoint arcs decreases until ρi ∈ ∆, as
desired. �

Proof of Theorem 10.1. Assume that AN(X)H is nonempty, i.e. H fixes a clique
in A(X). Cliques in A(X) are finite. The family {Πσ}σ of dismantling projec-
tions on A(X) from Lemma 3.2 is H–equivariant (Lemma 3.3) and synchronised
(Lemma 10.2). Hence by Proposition 9.2(ii), the fixed point set AN(X)H is con-
tractible. �

Denote by A0
fill(X) the barycentres of simplices of AN(X) spanned on filling

cliques. Let AN

fill(X) be the subcomplex of the barycentric subdivision of AN(X)
spanned on A0

fill(X). We call AN

fill(X) the filling arc system complex. The stabiliser
in Map(X) of a vertex (or a simplex) of AN

fill(X) is finite. Conversely, we have
proved in Theorem 4.1 that for each finite subgroup H ⊂ Map(X) the fixed point
set AN

fill(X)H contains a vertex. We extend this to the following.

Theorem 10.3. Let X be a closed connected oriented surface with nonempty set
of marked points and negative Euler characteristic. Let H be a finite subgroup of
Map(X). Then the set AN

fill(X)H of points in the filling arc system complex AN

fill(X)
fixed by H is contractible.

Before we give the proof of Theorem 10.3, we note that consequently we obtain
the following.

Corollary 10.4. Let X be a closed connected oriented surface with nonempty set
of marked points and negative Euler characteristic. The filling arc system complex
AN

fill(X) is a finite model for EMap(X) — the classifying space for proper actions
for Map(X).

Harer’s spine of the Teichmüller space of X (see [Har86]) is the subcomplex of
AN

fill(X) spanned on the vertices involving arcs starting and terminating on a dis-
tinguished marked point. Hence in the case of one marked point AN

fill(X) coincides
with Harer’s spine. The proof of Theorem 10.3 carries over to the action of the
pure mapping class group of X on Harer’s spine.

Corollary 10.5. Let X be a closed connected oriented surface with nonempty set of
marked points and negative Euler characteristic. Then Harer’s spine of Teichmüller
space of X is a finite model for the classifying space for proper actions for the pure
mapping class group of X.

The dimension of Harer’s spine coincides with the virtual cohomological dimen-
sion of Map(X), so it is efficient in this sense.

The proof of Theorem 10.3 relies on defining a surgery procedure for filling arc
sets. In order to preserve the property of being filling we will now need to include
in the surgered set both arcs obtained by outermost surgery. This will give rise to
a dismantling projection on the 1–skeleton of the filling arc system complex.
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Proof of Theorem 10.3. Let ∆ ∈ A0
fill(X)

H
which is nonempty by Theorem 4.1.

We construct a ∆–projection Π∆ on the 1–skeleton Afill(X) of AN

fill(X). Let Σ ∈
A0

fill(X) be any vertex distinct from ∆. Every pair {Π1, Π2} ∈ Π∆(Σ) will satisfy
Π1 = Π2, so Π∆(Σ) will be determined by Π∗

∆(Σ).
Note that ∆, Σ can be interpreted as filling sets of (homotopy classes of) disjoint

arcs. If all the arcs in ∆, Σ are disjoint, we put Π∗

∆(Σ) = {∆}. Otherwise, realise
the homotopy classes of arcs ∆, Σ as families of genuine arcs A, S ⊂ X in minimal
position. Choose an arc a ∈ A intersecting S. Let b ⊂ a be a component of a − S
sharing an endpoint with a. Let s ∈ S be the arc containing the endpoint of b in
the interior of a. Consider s+, s− obtained by outermost surgery of s in direction
of a determined by b. Let P = S ∪ {s+, s−} \ {s}. Note that P is filling, since
any simple closed curve that is disjoint from both s+, s− up to homotopy is also
disjoint from s up to homotopy. Define Π∗

∆(Σ) to be the set of homotopy classes of
all possible P , under all choices of a and b. This does not depend on the realisations
A, S of ∆, Σ.
The assignmentΠ∆(Σ) determined byΠ∗

∆(Σ) satisfies the axioms of a∆–projection
by the same argument as in the proof of Lemma 3.2:
For axiom (i) we consider the surface X̌ obtained from X by replacing each

marked point with a boundary component and we put a hyperbolic metric with
geodesic boundary on X̌. We realise all the arcs of ∆ and the arbitrary set R =
{Σ1, . . . , Σk} ⊂ A0

fill(X) as families A, S1, . . . , Sk of shortest geodesic arcs on X̌ .

Choose any arc a ∈ A intersecting
⋃k

i=0 Si. Let b be a component of a −
⋃k

i=0 Si

sharing an endpoint with a. Choose Si so that it contains the endpoint of b in
the interior of a. Let Π ∈ Π∗

∆(Σi) be obtained by surgery determined by b. Then
N(Π) ⊃ N(Σi) ∩ R, as desired.
For axiom (ii) we observe that the sum of the geometric intersection numbers

between all of the arcs of ∆ and all of the arcs of any element of Π∗

∆(Σ) is less than
the corresponding sum for ∆ and Σ.
The map Π∆ is H–equivariant and cliques in Afill(X) are finite. Hence by

Proposition 9.2(i) the fixed point set AN

fill(X)H is contractible, as desired.
�

11. Contractibility of fixed point sets in the disc and sphere
complexes

In this section we prove Metatheorems B and C for the handlebody group and
Out(Fn).

11.1. Disc complex. The disc complex DN(U) is the flag simplicial complex ob-
tained from the disc graph D(U) by spanning simplices on all of its cliques. Then
simplices of DN(U) correspond to sets of disjoint discbounding curves.

Theorem 11.1. Let U be a connected handlebody of genus ≥ 2. Let H be any
subgroup of Map(U). Then the set DN(U)H of points of the disc complex DN(U)
fixed by H is empty or contractible.

Proof. Cliques in D(U) are finite. The family of dismantling projections for D(U)
from Lemma 5.3 is H–equivariant by Lemma 5.4. It is also synchronised which
is proved exactly as Lemma 10.2. By Proposition 9.2(ii), if the set DN(U)H is
nonempty, then it is contractible. �

Let D0
simp(U) be the set of barycentres of simplices in DN(U) spanned on sim-

ple cliques. The simple disc system complex DN

simp(U) is the subcomplex of the

barycentric subdivision of DN(U) spanned on D0
simp(U).
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Theorem 11.2. Let U be a connected handlebody of genus ≥ 2. Let H be a finite
subgroup of Map(U). Then the set DN

simp(U)H of points of the simple disc system

complex DN

simp(U) fixed by H is contractible.

Note that the simple disc system complex DN

simp(U) is not a finite model for

EMap(U), since stabilisers of simple disc systems are not all finite (they extend to
braid groups).

Proof. By Theorem 6.1, the fixed point set DN

simp(U)H contains a vertex ∆ ∈

D0
simp(U).

We define a ∆–projection Π∆ on the 1–skeleton of DN

simp(U). Let Σ ∈ D0
simp(U)\

{∆}. If all the discbounding curves of ∆ and Σ are disjoint up to homotopy, we
put Π∗

∆(Σ) = {∆}. Otherwise, we realise ∆, Σ as families of disjoint discbounding
curves D, S ⊂ ∂U pairwise in minimal position. Consider a subarc a ⊂ d for some
d ∈ D which is outermost in a disc bounded by d for a disc bounded by some
s ∈ S. Assume that a does not contain any other such outermost subarc. For any
such subarc a we consider P = S ∪ {s+, s−} \ {s}, where s+, s− are obtained by
outermost surgery of s in direction of d determined by a. The set P is a simple
disc system, and we define Π∗

∆(Σ) to be the set of all homotopy classes of all P
constructed using all such subarcs a. This does not depend on the realisations D, S
of ∆, Σ. Let Π∆(Σ) be the family of pairs {Π1, Π2}, where Π1 = Π2 ∈ Π∗

∆(Σ).
We leave it to the reader to verify that Π∆ satisfies the axioms of a dismantling

projection and that it is H–equivariant. This can be carried out exactly as in the
proof of Theorem 10.3, building upon the proof of Lemma 5.3. Since cliques in
DN

simp(U) are finite, by Proposition 9.2(i) the fixed point set DN

simp(U)H is con-
tractible. �

11.2. Sphere complex. The sphere complex SN(W ) is the flag simplicial complex
obtained from the sphere graph S(W ) by spanning simplices on all of its cliques.
Then simplices of SN(W ) correspond to sets of disjoint spheres.

Theorem 11.3. Let W be a doubled connected handlebody of rank n ≥ 2. Let H
be any subgroup of Map(W ) or Out(Fn). Then the set SN(W )H of points of the
sphere complex SN(W ) fixed by H is empty or contractible.

We omit the proof since it is carried out exactly as the proofs of Theorems 10.1
and 11.1.

Let S0
simp(W ) be the set of barycentres of simplices in SN(W ) spanned on simple

cliques. The simple sphere system complex SN

simp(W ) is the subcomplex of the

barycentric subdivision of SN(W ) spanned on S0
simp(W ). The simple sphere system

complex is the spine of the Culler–Vogtmann Outer space [Hat95]. Our method
gives a new proof of the following.

Theorem 11.4 ([Whi93], [KV93]). Let W be a doubled connected handlebody of
genus n ≥ 2. Let H be a finite subgroup of Map(W ) or Out(Fn). Then the set
SN

simp(W )H of points of the simple sphere system complex SN

simp(W ) fixed by H is
contractible.

Corollary 11.5 ([Whi93], [KV93]). Let W be a doubled connected handlebody of
genus n ≥ 2. The simple sphere system complex SN

simp(W ) is a finite model for

EMap(W ) and EOut(Fn).

We leave the proof of Theorem 11.4 to the reader. It requires defining a dis-
mantling projection on the 1–skeleton of SN

simp(W ) in the same way as it was done
in Theorems 10.3 and 11.2 for the filling arc system complex and the simple disc
system complex. To verify that it satisfies the axioms of a dismantling projection
one needs to invoke the proof of Lemma 7.5.
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12. Rips complex

In this section we prove Theorem 1.5, that if a group G is δ–hyperbolic and
D ≥ 8δ + 1, then the Rips complex PD(G) is a finite model for EG.
We say that a graph is δ–hyperbolic, with δ ∈ N, if for any vertices u, v, w, for

any geodesics uv, vw, wu, and for any vertex t on uv there is a vertex on vw ∪ wu
at distance ≤ δ from t. A finitely generated group G is δ–hyperbolic if its Cayley
graph with respect to some finite generating set is δ–hyperbolic. For D ∈ N, the
Rips complex PD(G) is the flag simplicial complex with vertex set G, and edges
connecting two vertices at distance at most D in the Cayley graph.
Theorem 1.5 is an immediate consequence of Theorem 1.4 and Lemma 12.1

below.

Lemma 12.1. Let G be a δ–hyperbolic group and let D ≥ 8δ +1. Let H be a finite
subgroup of G. For every finite subset S of G there exists an H–invariant finite
dismantlable subgraph of the 1–skeleton of PD(G) containing S.

Proof. If δ = 0, then the Cayley graph of G is a tree (G is a free group) and
the lemma follows from the fact that for any finite tree the graph obtained after
connecting by edges vertices at distance ≤ D is dismantlable. We can now assume
δ ≥ 1.
The ball BR(C) of radius R ∈ N around a subset C of the vertex set G of the

Cayley graph is the set all of vertices at distance at most R from some vertex in
C. For a subset O ⊂ G let R be minimal such that O is contained in BR(v) for
some v ∈ G. The quasi-centre of O is the set of all v ∈ G with O ⊂ BR(v). By
[BH99, Lem III.Γ.3.3] the diameter of the quasi-centre of any finite subset of G is
at most 4δ + 1.
Let C ⊂ G be the quasi-centre of the orbit HS. For any r ∈ N the ball Br(C) is

H–invariant and for r large enough we have S ⊂ Br(C). Thus to prove the lemma
it suffices to show that for any r ∈ N the graph induced on Br(C) in the 1–skeleton
of PD(G) is dismantlable. If r < 2δ, then Br(C) spans a simplex in PD(G) and
the assertion is clear. Thus it remains to prove the following claim. By d(·, ·) we
denote the distance in the Cayley graph.

Claim. Consider a vertex v ∈ G at distance a ≥ 2δ from C. Let w ∈ C be at
distance a from v. Let u ∈ G be a vertex lying on a geodesic vw with d(u, v) = 2δ.
Then u dominates v in the subgraph of the 1–skeleton of PD(G) induced on Ba(C).

Proof of Claim. The proof is similar to the proof of [BH99, Prop III.Γ.3.23]. Let
t ∈ Ba(C) be such that d(t, v) ≤ D, i.e. t is a neighbour of v in PD(G). We have to
show that d(t, u) ≤ D. Consider geodesics wt and tv. By δ–hyperbolicity we have
d(u, u′) ≤ δ for some vertex u′ ∈ wt ∪ tv. There are two cases:

Case 1. u′ ∈ wt. In this case we have:

d(t, u′) + d(u′, w) = d(t, w) ≤ diam(C) + a = diam(C) + d(v, u) + d(u, w) ≤

≤ diam(C) + d(v, u) + d(u, u′) + d(u′, w) ≤

≤ diam(C) + d(v, u) + δ + d(u′, w).

Hence
d(t, u′) ≤ d(u, v) + diam(C) + δ,

and it follows that

d(t, u) ≤ d(t, u′) + d(u′, u) ≤ d(u, v) + diam(C) + 2δ ≤ 8δ + 1 ≤ D.

Case 2. u′ ∈ tv. Since

d(v, u′) ≥ d(v, u) − d(u, u′) ≥ 2δ − δ = δ,
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we have

d(t, u′) ≤ d(t, v) − d(v, u′) ≤ D − δ.

It follows that

d(t, u) ≤ d(t, u′) + d(u′, u) ≤ (D − δ) + δ = D.

In both cases we obtain the desired inequality. �
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[BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences], vol. 319, Springer-Verlag, Berlin, 1999.

[Bus10] Peter Buser, Geometry and spectra of compact Riemann surfaces, Modern Birkhäuser
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