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Figure 1. A path of uniquely ergodic 4-IETs

1. Introduction

An interval exchange transformation (from now on abbreviated to IET ) is a
piece-wise isometric map of an interval to itself that rearranges sub-intervals ac-
cording to a permutation π (see Section 2 for formal definitions). While simple
to define, interval exchange transformations have deep and interesting dynamical
properties as well as connections to foliations on Riemann surfaces, and therefore
have been the subject of intense study over the last years. See [Z06], [Y10] or [V06]
for good surveys.

In this article we are concerned not with the dynamics of a single IET, but the
set of all IETs with a given permutation π of n symbols. This set carries a natural
topology and is homeomorphic to an Euclidean simplex ∆π of dimension n− 1. It
is known that unless the permutation has obvious combinatorial obstructions most
IETs are uniquely ergodic:

Theorem. (Masur [M82], Veech [V82]) Given an irreducible permutation almost
every IET with that permutation is uniquely ergodic with respect to Lebesgue mea-
sure.

J. Chaika was supported in part by NSF grant DMS 1330550.
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On the other hand, it is known that the set of non-uniquely ergodic IETs is also
fairly large in a geometric sense:

Theorem. (Masur-Smillie [MS91]) The set of minimal and not uniquely ergodic
IETs with a non-degenerate permutation on n intervals has Hausdorff dimension
greater than n− 1.

The Hausdorff dimension of minimal and not uniquely ergodic 4-IETs has been
computed by the J. Athreya and the first named author.

Theorem (Athreya-Chaika [AC]). The set of minimal and not uniquely ergodic
IETs with a non-degenerate permutation on 4 intervals has Hausdorff dimension
greater than 5

2 .

In this article we investigate the set of uniquely ergodic IETs from a topological
point of view. More precisely, the main result of this paper is

Theorem 1.1. Let n ≥ 4 and let π be any non-degenerate permutation on n
symbols. Then the set of uniquely ergodic unit length IETs with permutation π is
path connected.

For the formal definition of non-degenerate permutations see Section 2. Intu-
itively, non-degenerate means that no induced map on a sub-interval has less than
n singularities. In the case of n = 2, the space of 2-IETs is equal to the space of
rotations; where such an IET is uniquely ergodic if and only if the rotation angle
is irrational, which is clearly a disconnected subset.

3-IETs can be thought of as the induced map (see Definition 2.3) of a rotation
by 1−L1

1+L2
on [0, 1

1+L2
) (compare [KS67], [K75]) and they are uniquely ergodic if and

only if 1−L1

1+L2
is irrational. So a set 1−L1

1+L2
= y ∈ Q gives a curve (or plane if one does

not normalize the lengths of an IET) of non-minimal (and so not uniquely ergodic)
IETs that disconnect the space of 3-IETs.

Thus the bound on n in Theorem 1.1 is optimal.

Outline of proof. The proof of Theorem 1.1 begins with a reduction to the case
of n = 4. Namely, the space of n-IETs contains many copies of the space of 4-IETs
by setting the length of enough intervals to be 0 – and in these subspaces we know
that the uniquely ergodic IETs are path-connected. Studying the combinatorics of
a non-degenerate permutation, we can show that the union U of all these subspaces
is path-connected. Using a limiting argument we can then show that each uniquely
ergodic IET can be connected by a path to a point in U .

In the case of n = 4 we are able to give an explicit inductive procedure that
constructs paths in the space of uniquely ergodic IETs. Unique ergodicity of an
IET T can be detected by the Rauzy induction of T . Thus ideally one would want
to construct paths c where Rauzy induction has desirable properties for each c(t).

A key problem however is that Rauzy induction is undefined on a countable set
of codimension 1 planes in the simplex. Continuous paths necessarily cross these
“fail planes”, and in general most points on such a plane do not correspond to
uniquely ergodic IETs.

This suggests the following naive strategy: start by joining two IETs S, T by a
straight line segment S → T . If this line intersects the plane where Rauzy induction
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fails, select a uniquely ergodic point R on that plane, and replace the line segment
by a concatenation S → R → T of two segments. Now both S → R and R → T
share the same first Rauzy induction step. We can continue this process iteratively,
always replacing straight segments by concatenations after some number of Rauzy
steps.

There are two main issues with this approach: why does the sequence of approx-
imate paths converge, and why are all points on it uniquely ergodic?

We deal with both of these issues simultaneously by taking care how to choose
the intermediate IETs on the fail planes. More precisely we want that limit points
which do not eventually follow the Rauzy expansion of one of the points on a fail
plane to have infinitely many matrices which define contracting maps on the simplex
in their Rauzy expansion. This will yield both unique ergodicity and continuity at
these limit points. For the points on the fail planes, unique ergodicity is clear from
the construction, but continuity needs to be proved by a different argument.

Section 2 of the article describes some necessary background on IETs and Rauzy
induction, while Section 3 contains some basic results and notation on matrices
that is used throughout.

Section 4 describes the basic mechanism used to construct the paths in the case
n = 4 (depending on an explicit construction done in Section 8) – the necessary
results to show continuity at points on “fail planes” is developed in Section 5, the
results for other points is developed in Section 6. Finally, Section 7 contains the
proof of Theorem 1.1 for n = 4. In Section 9 we extends the results to n-IETs.

Questions. The work in this article suggests several possible directions of further
research. One possibility is to ask further topological question about sets of specific
IETs. In particular, we have

Question 1 (Mladen Bestvina). In the case of n-IETs for n ≥ 5, does the set of
uniquely ergodic n-IETs satisfy higher connectivity properties?

Question 2. Is the set of minimal n-IETs path connected?

On the other hand, one could try to generalize the question of the topology of the
set of uniquely ergodic transformations from IETs to other settings. One example
is the following

Question 3. Is there 1-parameter diagonal flow on SL4(R)/SL4(Z) so that the
set of points whose orbit under this flow is bounded path connected?

Another example is a question that inspired this work. The space of measured
foliations on a Riemann surface of genus g is homeomorphic to a sphere of dimension
6g − 7. The set of uniquely ergodic laminations has full measure [M82], and one
can ask

Question 4. For a surface of genus g ≥ 2, is the set of uniquely ergodic laminations
path-connected?

There is a closely related space EL (the space of ending laminations) which has
been studied extensively. Ending lamination space is known to be connected and
locally path-connected [G09], [LS09], and even has been identified explicitly in some
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low-complexity cases [HP11], [G11]. However, the set of uniquely ergodic foliations
is only a subspace of ending lamination space, and so these results do not yield any
direct information about the topology of the set of uniquely ergodic laminations.
Somewhat in the line of our results is a result by Leininger-Schleimer which ensures
the existence of spheres in the set of uniquely ergodic laminations [LS11]. To the
authors’ knowledge Question 4 is still open.

Once could also try to adapt the methods of the current paper to the setting
of surface foliations by building flat surfaces from IETs. The direct analog of the
case n = 4 (which all our work is inductively based on) would concern foliations
in the stratum H(2) in genus 2. However, in this stratum every saddle connection
defines a simple closed curve, and thus arational foliations are not path connected.
Indeed in every Rauzy class there are permutations where the IETs corresponding to
arational foliations are not path connected. However, one can still ask the following
question:

Question 5. For a suitable permutation π, is the set of all IETs corresponding to
arational uniquely ergodic foliations path-connected?

Acknowledgments: We would like to thank Jayadev Athreya and Howard
Masur for inspiring discussions and interest in the project. Furthermore, we express
our gratitude for the numerous and detailed comments by the anonymous referee,
which helped to improve the paper greatly.

2. Interval Exchange Transformations and Rauzy Induction

In this section we fix the notation for interval exchange transformations (IETs)
that we will use, and also collect some well known results that we will use through-
out. We refer the reader to [V06] for a detailed treatment.

We denote a permutation π on the symbols 1, . . . , n by the list containing the
image of the symbols under the inverse permutation π−1. That is, the identity
permutation on four symbols is denoted by (1234), the transposition of the first
two symbols is (2134). The permutation which maps every symbol to the next one
(cyclically) would be (4123). The reason for this convention will be clear later.

Definition 2.1. Given L̂ = (l1, l2, ..., ld) where li ≥ 0, we obtain d sub-intervals of

the interval

[
0,

d∑
i=1

li

)
:

I1 = [0, l1), I2 = [l1, l1 + l2), ..., Id = [l1 + ...+ ld−1, l1 + ...+ ld−1 + ld).

Given a permutation π on the set {1, 2, ..., d}, we obtain a d-Interval Exchange
Transformation (IET)

T :

[
0,

d∑
i=1

li

)
→

[
0,

d∑
i=1

li

)
which exchanges the intervals Ii according to π. That is, if x ∈ Ij then

T (x) = x−
∑
k<j

lk +
∑

π(k′)<π(j)

lk′ .

If such a T is given, we denote its (unnormalized) length vector by L̂(T ) and its
permutation by π(T ).
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With our convention, π(T ) is then described by the order of intervals from left
to right after applying the IET. If T is an IET, we denote by

L(T ) = L̂(T )/|L̂(T )|1

the (normalized) length vector of T . We say that a IET is normalized if it is defined
on the unit interval. Every IET can be rescaled to a normalized one, and we will
usually identify IETs which just differ by such a rescaling without explicit mention.
When we speak about a length vector we mean the normalized one, unless specified
explicitly.

Intuitively, a permutation on n symbols is degenerate if any IET with that
permutation has either fewer than n− 1 discontinuities or an induced map of (see
below for the definition) it has fewer than n − 1 discontinuities. The technical
conditions are as follows ([V78, Section 3])

Definition 2.2. A permutation π on n symbols is degenerate if there is some j < n
so that one of the following holds.

(1) π(j + 1) = π(j) + 1
(2) π(j) = n, π(j + 1) = 1 and π(1) = π(n) + 1
(3) π(j + 1) = 1 and π(1) = π(j) + 1
(4) π(j + 1) = π(n) + 1 and π(j) = n

Definition 2.3. Let T : [0, 1) → [0, 1) be measurable and Lebesgue measure pre-
serving and A ⊂ [0, 1). The induced map of T on A is TA : A→ A given by

TA(x) = Tn(x)(x), n(x) = min{n > 0 : Tn(x) ∈ A}.

Recall that the Poincaré recurrence theorem guarantees that TA is defined almost
everywhere in A.

Next, we briefly describe the most important points of Rauzy induction, the
renormalization method we will use throughout to study IETs. Our treatment of
Rauzy induction will be the same as in [V82, Section 7].

Let T be a n-IET with permutation π. Let δ+ be the rightmost discontinuity
of T and δ− be the rightmost discontinuity of T−1. Let δmax = max{δ+, δ−}.
Consider the induced map of T on [0, δmax) denoted T |[0,δmax). The result is again
an IET, perhaps with a different permutation. We can renormalize it so that it is
once again a n-IET on [0, 1). That is, let R(T )(x) = 1

δmax
T |[0,δmax)(xδmax). This is

the Rauzy induction of T .

If δ+ 6= δ− then the permutation and length vector of the IET R(T ) can be
combinatorially determined.

Namely, if δmax = δ+ we say the first step in Rauzy induction is a. In this case
the permutation of R(T ) is given by

π′(j) =


π(j) j ≤ π−1(n)

π(n) j = π−1(n) + 1

π(j − 1) otherwise

.
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We keep track of what has happened to the interval lengths under Rauzy induction
by a matrix M(T, 1) where

M(T, 1)[ij] =


δi,j j ≤ π−1(n)

δi,j−1 j > π−1(n) and i 6= n

δπ−1(n)+1,j i = n

.

If δmax = δ− we say the first step in Rauzy induction is b. In this case the permu-
tation of R(T ) is given by

π′(j) =


π(j) π(j) ≤ π(n)

π(j) + 1 π(n) < π(j) < n

π(n) + 1 π(j) = n

.

Again, we keep track of what has happened to the interval lengths under Rauzy
induction by a matrix

M(T, 1)[ij] =

{
1 i = n and j = π−1(n)

δi,j otherwise
.

In the case where δ+ = δ− both the formulas in case a and case b allow to identify
R(T ) with an IET. We write Ra(T ) and Rb(T ) for these choices.

The change in permutation under Rauzy induction can be depicted in a Rauzy
diagram. Below is the diagram for n = 4.

(2431)

(3241)

(2413)

(4321) (4213)

(4132) (3142)

Figure 2. The Rauzy diagram for n = 4.

The matrices described above depend on whether the step is a or b and the per-
mutation π(T ). The following well known lemmas which are immediate calculations
help motivate the definition of M(T, 1).

Lemma 2.4. If R(T ) = S then the length vector L(T ) is a scalar multiple of
M(T, 1)L(S).

We will denote the positive orthant by

Rd+ =
{

(x1, . . . , xd) ∈ Rd|xi > 0 for all i
}

and the open Euclidean simplex by

∆̊d =

{
(x1, . . . , xd) ∈ Rd+,

d∑
i=1

xi = 1

}
.

We let M∆ = MR+
d ∩ ∆̊d.
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Lemma 2.5. Let T be some IET. An IET S with permutation π(S) = π(T ) and
whose length vector L(S) is contained in M(T, 1)∆ has the same first step of Rauzy
induction as T .

We define the nth matrix of Rauzy induction by

M(T, n) = M(T, n− 1)M(Rn−1(T ), 1).

It follows from Lemma 2.5 that for an IET with length vector in M(T, n)∆ and
permutation π the first n steps of Rauzy induction agree with T .

The set of all normalized n-IETs with a given permutation π can be naturally
identified with a simplex which we denote by ∆π. Iterated Rauzy induction defines
a partition of ∆π into smaller simplices in the following way. The subset of ∆π

corresponding to IETs on which Rauzy induction is undefined is a codimension-1
simplex embedded in ∆π. In each of the complementary full-measure simplices, the
set where Rauzy induction is defined once but not twice again is a union of two
codimension-1 simplices. We denote by Pk the full-measure partition of ∆π into
the (open) simplices on which Rauzy induction is defined for the first k steps. A
simplex in Pk consists of all the IETs which follow the same first k steps in the
Rauzy diagram under Rauzy induction.

The projective linear map defined by the matrix M(T, k) maps the standard
simplex ∆π′ (where π′ is the permutation corresponding to the IET Rk(T )) to the
simplex in Pk which contains T .

We will also need a criterion that ensures unique ergodicity of IETs. A Rauzy
path is a finite or infinite path in a Rauzy diagram R. Associated to a Rauzy path
is the product of matrices describing the change on lengths of the intervals which
we will call the Rauzy matrix of the path. The following is well-known.

Theorem 2.6. (Veech [V78, page 225]) Suppose that T is an IET where Rn(T ) is
defined for all n ≥ 1, and such that

⋂
n≥1M(T, n)∆ = {T}. Then T is uniquely

ergodic.

To check that the prerequisite of Theorem 2.6 is satisfied, it suffices to check that
the angle between the columns of M(T, n) converges to 0, since M(T, n)∆ consists
of convex combinations of the columns of M(T, n).

2.1. Shadows of Rauzy paths. We need to make the following consideration
for our proof to hold for all uniquely ergodic 4-IETs, as opposed to just uniquely
ergodic 4-IETs that have all powers of Rauzy induction defined.

Let T be a minimal d-IET with the length of an interval equal to 0. Let T̂ be
the minimal d − 1-IET given by “forgetting the interval of T with length 0.” For
example if L(T ) = (α, 0, 1 − α) and π(T ) = (321) then L(T̂ ) = (α, 1 − α) and

π(T̂ ) = (21). Assume that Rn(T̂ ) is defined for all n. Let Tε be the d-IET with
π(Tε) = π(T ) and

L(Tε) =

{
L(T ) if L(T ) 6= 0

ε else
.

For all ` > 0 there exists n (possibly 2 different n) and σn ∈ {1, ..., d} so that

• lim
ε→0

L(RnTε)i = L(R`T̂ )i−ci,σn for all i
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• For any i, j 6= σn we have π(Rn(Tε))(i) > π(Rn(Tε))(j) iff π(R`(T̂ ))(i −
ci,σn) > π(R`(T̂ ))(j − cj,σn) for all small enough ε

where ck,` =


0 if i < `

1 if i > `

undefined if i = `

.

Given n, for all ε small enough ε we have M(Tε, n) and M(T̂ , `) are related in the
following way: after deleting the σth

n column of M(Tε, n) one is left with a d×(d−1)
matrix with a row of all zeros, so that when it is deleted one has M(T, `).

We prove the result by induction on `. We assume that this is true for ` with
corresponding number n. We say j is in critical position if j ∈ {d, π−1d}. The
proof breaks into two parts, when σn is not in critical position in which case the
corresponding number for `+ 1 is n+ 1 and when σn is in critical position in which
case the corresponding number for `+ 1 is n+ 2.

Case 1: σn is not in critical position. In this case it is straightforward for `+ 1
and the corresponding number is n+ 1 with

σn+1 =

{
σn if R(RnTε) is ‘b’ or R(RnTε) is ‘a’ and σn < π−1(d)

σn + 1 else
.

Case 2: σn is in a critical position. Let j = d if σn = π−1(d) and π−1(d) if
σn = d. By Conclusion 1 (which we are inductively assuming), for all small enough
ε we have that L(Tε)j > L(Tε)σn = ε. Set

σn+1 =

{
π−1(d) + 1 if σn = d

σn else
.

Conclusion 1 follows inductively. Indeed, except for one entry L(Rn+1Tε) is a
permutation of L(RnTε) and the exceptional entry is L(RnTε)j − ε. Conclusion 2
is straightforward to check, as is the claim on the matrices (the deleted column
should be σn+1). Moreover σn+1 is not in the critical position so we may follow
case 1 for `+ 1 which will correspond to n+ 2. To see that σn+1 is not in critical

position, if σn = d then π−1(d) 6= d − 1 be the minimality of R`T̂ (which follows

from our assumptions on T̂ ). The case of σn = π−1(d) is similar.

This discussion has a bearing on minimal IETs with nonzero interval lengths
that will have a failure of Rauzy induction. Indeed, assume T is a minimal d-IET
that has Rk defined on it, but Rk+1 is not defined on it. This means that the
two intervals of RkT in critical position have the same length. One can formally
continue Rauzy induction (by either Ra or Rb) one step and have an IET, S with
the length of one entry 0. One also gets a matrix M = M(T, k)M ′ where M ′ is
the matrix given by the formal step or Rauzy induction. We may now forget the
entry of S that has zero length and obtain a (d − 1)-IET, Ŝ. We may relate its
path under Rauzy induction to Sε as in the previous discussion. To recover an
approximation to T we just multiply the matrices and lengths we obtain for S by
M . This procedure can be successively iterated if there is a subsequent failure of
Rauzy induction for Ŝ.
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3. Matrix Terminology and Combining Matrices

In this section we will collect some notation and terminology on (4×4)–matrices
with nonnegative integral entries.

If A is such a matrix, then we will denote by Ci(A) the i-th column of A. We
will often call i the index of the column in such a context. If P is some property a
column of a matrix (or a vector in general) may have, we will say that the index i
or column i has P if Ci(A) has P , when the matrix A is clear from the context.

We use the 1-norm for vectors throughout, so |Ci(A)| will denote the sum of
the entries in the i-th column. We will often need to consider the column of A
with the largest sum of entries. We denote this by Cmax(A). Should there be
several columns which all have the largest entry sum, we adopt the convention that
Cmax(A) is the column with smallest index realising this maximum.

Recall that in a matrix product AB, the column Ci(AB) is a sum of the columns
of A, with coefficients from Ci(B):

Ci(AB) =

4∑
j=1

(Ci(B))jCj(A)

Thus, we say that B adds column i to column j (or: column i is added to column
j) if the i-th entry of Cj(B) is positive (usually, it will be the case that the j-th
entry of Cj(B) is also positive, to make the terminology completely justified, but
we do not insist on this). Note that it is possible for a column to add to itself.
Equivalently, we may say that column j has column i added to it. If there is any j
so that column i is added to column j, then we simply say that column i is added
to another column. Similarly, we simply say that column i has a column added to
it if there is a corresponding j.

This terminology will be used in particular when considering powers of some
matrix B.

Next, we introduce the central new notion of this section. Combining matrices
will be generalisations of positive matrices, in the sense shown in Lemma 3.4 below.

Definition 3.1. A matrix M is called combining if there are two groups of columns,
active and passive ones. We require that that

(1) There are at least 2 active columns.
(2) At most one column of M is neither active nor passive. This column is

called idle if it exists.
(3) The only columns that are added to other columns are the active ones.
(4) Every active column is added to all other active columns and each passive

column has at least one active column added to it.

A finite Rauzy path P is said to be combining if the corresponding matrix is com-
bining.

Example 3.2. (1) Every positive matrix is combining so that every column is
active.
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(2) The matrix 
1 1 1 1
0 1 0 0
0 0 1 0
1 2 2 2


is combining. Namely, columns 1 and 4 are active, while 2 and 3 are passive.

(3) The matrix 
1 1 1 1
0 1 0 0
0 1 1 0
1 2 2 2


is not combining. Column 2 has Columns 1,3 and 4 added to it. Thus, all
three of those would need to be active. However, column 4 does not have
column 3 added to it, violating the definition of active.

(4) The matrix 
1 0 0 0
0 1 0 0
0 0 2 1
1 0 1 1


is combining, where columns 3 and 4 are active, 1 is passive and column 2
is idle.

Theorem. (Perron-Frobenius) If M is an n × n matrix with all entries positive
then there exists a unique largest (in absolute value) eigenvalue, called the Perron-
Frobenius eigenvector. The corresponding eigenvector can be chosen to be positive
(i.e. has all entries positive) and is called the Perron-Frobenius eigenvector. It is
the only eigenvector with that property.

One can observe that matrices as in the previous theorem act as a contraction
in the so called Hilbert projective metric and we obtain the following result (see
e.g. [V78, page 240]).

Proposition 3.3. If M is an n× n matrix with all entries positive then any non-
negative (non-zero) vector v has that Mnv converges exponentially quickly to the
direction of the Perron-Frobenius eigenvector.

We conclude with a lemma generalizing the Perron-Frobenius theorem to the
case of combining matrices. It will be used frequently in the sequel.

In its formulation, we will call the j–th entry (Ci(A))j of a column active (or
passive, or idle), if the corresponding index j has this property (i.e. the column
Cj(A) is active, passive, or idle).

Lemma 3.4. Let A be a combining matrix. Then there are numbers E, γ′ >
1 with the following properties: let n > 3 be any integer, and let i, j be indices
corresponding to active or passive columns.

i) |Ci(An)|/|Cj(An)| ≤ E.
ii) Any two of the active entries in columns i or j of An differ by a factor of at

most E.
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iii) We have

sin∠(Ci(A), Cj(A)) ≤ E

γ′n

The proof requires the following standard lemma.

Lemma 3.5 (Law of Sines). Let v, w ∈ Rn,

| sin∠(v + w,w)|| = ‖v‖
‖v + w‖

| sin∠(v, w)|.

Proof of Lemma 3.4. Suppose that τ ≤ 4 columns are active, and let Y ⊂ R4 be
the τ -dimensional subspace which is preserved by A and so that the matrix Â
describing the action of A on Y is positive. Thus by the Perron-Frobenius theorem
there is a unique positive eigenvector ŵ ∈ Y of Â, which has positive eigenvalue µ
that is the largest eigenvalue in absolute value. If τ < 4, consider the action of Â
on the invariant subspace of dimension τ − 1 which does not contain ŵ, Ã. There
exists γ < µ and C so that ‖Ãk‖op ≤ Cγk.

i) By the Proposition 3.3 it follows that the projection of the active columns to

the τ dimensional subspace in the previous paragraph does not lie in the Â
invariant τ − 1 dimensional subspace complemented to the Perron-Frobenius
eigenvector. So the size of these columns grow proportionally to the Perron-
Frobenius eigenvalue of Â. The passive columns get some multiples of active
columns added to them. These active columns are growing exponentially (ac-
cording to the Perron-Frobenius eigenvalue) and so the column is proportional
to the last summand once n is large enough. For small n proportionality also
holds simply by finiteness. If we consider a passive column v of An it has the
form

∑n−1
j=1 wj where the wj are active columns of Aj . Since the active columns

are growing exponentially, wn−1 is proportional to the largest active column
of An.

ii) This is true for powers of the τ -by-τ matrix Â. Indeed by Proposition 3.3 the
ratio of the entries converges to the ratio of the entries of the Perron-Frobenius
eigenvector. Arguing as in (i) the passive column(s) are sums of vectors with
this property, so they inherit it.

iii) Arguing as before, by Proposition 3.3 the active columns of A converge ex-
ponentially fast to ŵ under taking powers, and the angle between the active
columns decreases as required.

Consider next a passive column of An. This column has the form
∑n
i=0 vi,

where v0 is the initial passive column of A, and each vi is a linear combination
of active columns of Ai. In particular, each vi has norm between D1µ

i and
D2µ

i where µ is the Perron-Frobenius eigenvalue and D1, D2 depend on the
matrix A.

Next, note that

sin∠

(
n∑
i=0

vi, ŵ

)
≤ sin∠

 n∑
i=0

vi,

n∑
i=n/2

vi

+ sin∠

 n∑
i=n/2

vi, ŵ


since (absolute values of) angles satisfy the triangle inequality and sin(θ+φ) ≤
sin(θ) + sin(φ) for all 0 ≤ θ, φ with θ, φ < π

2 .
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Since
∑n

2
i=1D2µ

i∑n
i=n

2
D1µi

decays exponentially in n, Lemma 3.5 implies that the first

summand decays exponentially as well.
On the other hand, as

∑n
i=n/2 vi is a positive linear combination of the

active columns of An/2, the second summand decays exponentially as well, by
the previous comments.

�

4. Building blocks

This section sets up most of the novel terminology used to construct the paths
necessary to prove the following

Theorem 4.1. The set of uniquely ergodic 4-IETs with permutation in the Rauzy
class of (4321) is path-connected.

The proof will involve an explicit construction of paths by prescribing Rauzy
inductions. The main tool in this construction is given by the following definition.

Definition 4.2. A building block b is a triple of IETs b = (T1, F, T2) such that

(1) T1, F, T2 are uniquely ergodic with the same underlying permutation π.
(2) F lies on the plane given by the failure of the first step of Rauzy induction.

We call T1, T2 the endpoints of the building block, and F the midpoint.

The next definition lies at the core of our argument. Intuitively we would like
to say that a building block b′ = (S1, G, S2) is left compatible with b = (T1, F, T2)
if the IETs T1 and F share a number of common Rauzy steps, and the outcome
is the pair S1, S2 of IETs. We formally need to phrase this slightly differently to
avoid the problem that Rauzy induction is not well-defined for F .

Definition 4.3. A building block b′ = (S1, G, S2) is left compatible with a building
block b = (T1, F, T2) if the following holds:

(1) S1 = Rk1(T1).
(2) Every point on the straight line between T1 and F has Rauzy induction

defined for k1 steps, and it agrees with the one of S1.
(3) L(F ) = M(T1, k1)L(S2)

We then write b
L→ b′.

The Rauzy matrix associated to the compatability b
L→ b′ is then defined to be

the matrix M(T right
1 , k1) where T right

1 denotes the limit from the right..

We define right compatible and
R→ similarly. We take compatible and → to

mean left compatible or right compatible.

Definition 4.4. A building block sequence is a (finite or infinite) sequence bi =
(T i1, F

i, T i2) of building blocks so that bi+1 is compatible with bi for all i. We often
write such a sequence as b1 → b2 → . . . .

For a finite building block sequence b1 → · · · → bn we define the associated Rauzy
matrix M(b1 → · · · → bn) as the product M = M1 . . .Mn−1 where Mi is the Rauzy
matrix associated to the compatibility bi → bi+1.
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Figure 3. Building blocks. For clarity, the dimension is reduced
from 3 to 2. The dotted lines represent fail planes of Rauzy induc-
tion.

The following definition of depth of a building block sequence is crucial for our
construction.

Intuitively, we want to define the depth of a building block sequence as the
number of times it swaps between consecutively always choosing right and always
choosing left.

To state it formally, note that a building block sequence b1 → · · · → bn defines a
“direction sequence” d1, . . . , dn−1, where di ∈ {L,R} and di = L if and only if bi+1

is left compatible with bi. We say that di swaps direction at most s times if there
are indices 1 = t0 < t1 < · · · < ts+1 = n so that di is constant for tj ≤ i < tj+1.

Definition 4.5. Let b1 → · · · → bn be a building block sequence The depth of the
building block sequence is the smallest s so that the associated direction sequence di
swaps direction at most s times.

As an important example, a building block sequence b1 → · · · → bn has depth 0
if either for all i, bi is left compatible to bi−1 or for all i, bi is right compatible to
bi−1.

Intuitively, the sequence b1 → · · · → bn has depth k if the compatibilities bi →
bi+1 swap k times between choosing L or R.

Definition 4.6. i) A building block loop is a building block sequence b1 → · · · →
bn such that the last element bn is compatible with the first element b1.

ii) Such a loop is minimal, if bi 6= bj for all 1 ≤ i < j ≤ n.
iii) The depth of a building block loop b1 → · · · → bn is defined to be the depth of

the building block sequence b1 → · · · → bn → b1.
iv) If b1 → · · · → bn is a depth 0 building block loop, then one of the endpoints of

b1 is contained in M(b1 → · · · → bn → b1)∆. We call that IET the endpoint
of the building block loop.

We will frequently use product notation for building block sequences. That is,
let P is a building block sequence b1 → · · · → bn and Q is a building block sequence
bn+1 → · · · → bm. We say that P is compatible with Q if bn is compatible with
bn+1. In that case we denote by P → Q the sequence

b1 → · · · → bn → bn+1 → · · · → bm
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obtained by concatenating P and Q. Similarly, if P is a building block loop
b1, . . . , bn, the Pn is the sequence P → · · · → P obtained by concatenating P
with itself n times.

Definition 4.7. If P is a building block loop b1 → · · · → bn, then we say that
a building block sequence c1 → c2 → c3 compatible with P leaves the loop P if
the sequence c1 → c2 → c3 does not contain P as an initial segment, and is not
contained in P as an initial segment.

In Section 8 we will show the following Proposition by an explicit construction.

Proposition 4.8. There is a finite set B of building blocks with the following
properties

Transitivity: For every permutation π in the Rauzy class of (4321) there is
a building block in the set B whose endpoints lie on different sides of the
fail plane.

Completeness: Every building block in B has a left and right compatible
building block in the set B.

Combining Loops: If b1 → · · · → bk is a minimal depth 0 loop formed
from building blocks in the set B, then the matrix M(b1 → · · · → bk) is
combining.

Isolated Idle: Suppose P is a building block loop of depth 0 formed by build-
ing blocks in the set B, so that M(P ) has an idle column i. Then, for any
building block sequence b1 → b2 → b3 which leaves P formed by building
blocks in the set B, each column of M(P → b1 → b2 → b3) has at least two
nonzero entries.

Almost Positivity: There is a number c ≥ 0 so that every building block
sequence formed by building blocks in the set B of depth at least c has an
initial segment b1 → · · · → bk with k ≤ c so that M(b1 → · · · → bk)
is Almost Positive: i.e. it has τ > 1 rows with all entries positive and
the other rows are rows of the identity matrix. By this we mean that they
contain exactly one entry 1, and all other entries are 0.

In Sections 5 to 7 we will show how to use Proposition 4.8 to show Theorem 4.1.
Hence, we fix once and for all a finite set B as given by Proposition 4.8. Any
mention of building blocks will refer to elements of this set. We will also refer
to the properties guaranteed by Proposition 4.8 by their name, without explicit
mention of Proposition 4.8.

Following the sketch outlined in the introduction there is a general dichotomy of
points on the paths: finite depth points eventually follow the Rauzy induction of a
fixed uniquely ergodic IET (which is the left or right endpoint of a building block).
Continuity at these points will be shown using the tools in Section 5. Infinite depth
points on the other hand are those that do not eventually lie on a fail plane, and
whose Rauzy induction does not eventually follow one of the endpoints. For these
points, convergence, unique ergodicity and continuity all need to be checked, using
techniques developed in Section 6. Finally, in Section 7 we collect the pieces and
prove Theorem 4.1.
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5. Finite Depth

Lemma 5.1. Let P = b1 → · · · → bk be a minimal depth 0 loop. Denote by b
the index of the column which is idle if it exists. We consider the building block
sequence Pn. Then there exists a vector V such that

Ci(M(Pn))

|Ci(M(Pn))|
→ V

for all i 6= b.

Furthermore, the size of the columns i 6= b grow exponentially, and the size of
column b is constant.

Proof. This is immediate from Lemma 3.4 and Combining Loops. �

Lemma 5.2. Let P be a minimal depth 0 loop, and let P0 be a building block
sequence compatible with P . We consider building block sequences of the form
Pk = P0 → Pnk → Qk where Qk is a building block sequence of length 3 which
leaves the loop P and lim

k→∞
nk =∞.

Let T∞ be the IET corresponding to the endpoint of P defined by the loop. Let
{Ti}i∈N be IETs so that Tk ∈M(Pk)∆ (i.e. the Rauzy induction of Tk agrees with
the one defined by Pk)

Then the Tk converge (as a sequence of points in the simplex) to T∞.

Proof. To begin, note that we may assume that P0 is empty. Namely, the Rauzy
induction corresponding by P0 defines a continuous map M(P0) of the simplex
which does not change the result.

We fix mk > 0 so that the Rauzy expansion of the building block sequence Pnk−1

has mk Rauzy steps. Further, let m′k be the number of Rauzy steps in P → Qk.
Thus, the initial Nk = mk +m′k Rauzy steps of the interval exchange Tk agree with
the Rauzy expansion defined by Pk.

Next note that the (unnormalized) length vector of Tk satisfies

L̂(Tk) = M (PnkQk) L̂
(
RNk(Tk)

)
The length vector for Tk is L(Tk) = L̂(Tk)/|L̂(Tk)|1.

Write L (Rmk(Tk)) =
∑4
i=1 aiei. We have

∑4
i=1 ai = 1. We let vi denote the

i-th column of M(Pnk−1). Note that in both of these shortcuts we are suppressing
the dependence of the ai and the vi on k. We have

L(Tk) =

∑4
i=1 aivi∑4
i=1 ai|vi|1

Next, we claim that there is a number ε0 > 0 (depending only on the set of
building blocks and not k) such that at least two of the ai are at least ε0. Namely,
we have

(a1, . . . , a4) = M(P → Qk)v/|M(P → Qk)v|1
for some vector v with non-negative entries and |v|1 = 1. Hence, at least one entry
vi of v has size at least 1/4. By Isolated Idle, each column of M(P → Qk) has at
least two positive entries, and hence M(P → Qk)ei has at least two nonzero entries
for each i. Thus, at least two entries of the (unnormalized) vector M(P → Qk)v
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have size at least 1/4. On the other hand, note that M(P → Qk) is a matrix whose
entries can be bounded by some constant which does not depend on k (since the
set of building blocks is finite). Thus, |M(P → Qk)v|1 can likewise be bounded by
some constant independent of k. This implies the existence of ε0 as claimed.

Now suppose that we are given some ε > 0. We choose K so that for all n > K
the following hold (where V is the vector given by Lemma 5.1)

i) For all but at most one i, we have

|vi − |vi|1V |1 < ε|vi|1
We call the i where this fails the bad i and vi the bad column. We call other
indices j 6= i and the corresponding columns vj good. This property can be
ensured by Lemma 5.1.

ii) If there is a bad column vi, then
aivi∑

jgood aj |vj |
< ε.

This is possible since at least one coefficient aj of a good column vj is at least
ε0, and the sizes of the good columns grow exponentially, while the size of the
bad column is uniformly bounded by Lemma 5.1.

Now, let n > K be given.

We first consider the case in which there is no bad i for M(PN ). In that case,
we compute

|L(Tk)− V |1 =

∣∣∣∣∣
∑4
i=1 aivi −

∑4
i=1 ai|vi|1V∑4

i=1 ai|vi|1

∣∣∣∣∣
1

≤
∑4
i=1 ai |vi − |vi|1V |1∑4

i=1 ai|vi|1
.

Thus by i)

|L(Tk)− V |1 <
∑4
i=1 ai|vi|1ε∑4
i=1 ai|vi|1

= ε.

Now suppose that there is a bad i, which without loss of generality we may assume
to be 1.

In this case, we compute

L(Tk) =

∑4
i=1 aivi∑4
i=1 ai|vi|1

=
a1v1∑4

i=1 ai|vi|1
+

∑4
i=2 aivi∑4
i=1 ai|vi|1

.

By property ii), the first summand has size at most ε. Now note that for any
numbers K < D and c one has

K

D
− K

c+D
=

cK

D(c+D)
< c

K

D

1

D
< c

1

D
.

We apply this estimate for K being each of the four entries of the vector
∑4
i=2 aivi

with D =
∑
igood ai|vi|1 and c = a1|v1|1 to conclude that the second summand in

the expression for L(Tk) is within 4ε of∑4
i=2 aivi∑4
i=2 ai|vi|1

.

Arguing as in the first case, this is within ε of V . In conclusion, we thus have
|L(Tk)− V |1 < 6ε.
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Thus, the normalized length vectors L(Tk) converge to V . �

Corollary 5.3. Let P be an infinite Rauzy path so that at least 3 columns increase
in size an unbounded amount1 and all columns which do increase an unbounded
amount converge projectively to some fixed vector V . Let Q1, ..., Qk be Rauzy
paths with positive associated Rauzy matrices.

Then for every ε > 0 there is a N > 0 so that if n > N , and T is any IET whose
initial n-steps of Rauzy induction agree with P and then are followed by some Qi,
then L(T ) is within ε of V .

Proof. By assumption of the Corollary, for any ε there is an N so that for all n > N
conditions i) and ii) stated in the proof of Lemma 5.2 hold for the column vi of the
Rauzy matrix M(Pn) describing the first n steps of P (where V is now the vector
given by the assumption).

Furthermore, as Qi is assumed to be positive, L(RN (Pn)) has at least two entry
of size at least ε0 (arguing as in the previous proof, with positivity of Qi replacing
the part of the argument involving Isolated Idle).

From here, one can finish the proof exactly as in the proof of Lemma 5.2 above.
�

6. Infinite Depth

Next, we analyse infinite depth points. Here, the situation is much more in-
volved. Convergence, continuity and unique ergodicity will all follow from the
same mechanism, which we now describe.

Throughout, we consider an infinite building block sequence (bi) of infinite depth.
This in particular means that the sequence bi does not end in an infinite power of
a depth 0 loop.

We rewrite the sequence b1 → b2 → . . . as a sequence of paths B1 → B2 → . . . ,
where each Bi is either a power of a minimal depth 0 loop, or a single building
block, and the re-grouping is maximal with that property (that is: if Bi is a power
of a minimal depth 0 loop then the sequence following Bi leaves the loop). By our
assumption, each Bi is a finite building block sequence, and the sequence of B′i is
infinite.

Denote throughout this section by Ai = M(Bi) the matrix corresponding to Bi.

By Proposition 4.8 these matrices satisfy the following:

Corollary 6.1. There are numbers c,N > 0 such that for all i the following holds:

(P) The product Ai · ... ·Ai+c is positive or
(R) There exists c′ ≤ c so that Ai · .... · Ai+c′ has τ > 1 rows with all entries

positive and the other (4− τ) rows are rows of the identity matrix.

Furthermore, each matrix Ai satisfies one of the following.

(S) ||Ai|| < N or
(C) Ai is the power of a combining matrix B with ‖B‖ < N .

1Note that all matrices of Rauzy induction have only non-negative entries and thus such an
increase is automatically monotone.
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The following lemma follows from the finiteness of the set of building blocks and
property (C):

Lemma 6.2. For all k there exists n so that if ‖Ai‖ > n then Ai is at least the
kth power of a combining matrix.

6.1. Column size bound. We now begin to study the infinite matrix product∏
Ai. The first intermediate goal will be the following theorem.

Theorem 6.3. There is a number K > 0 so that for all n the ratio of the largest
to the second smallest column of (

∏n
i=1Ai) is at most K.

The proof requires several preliminary lemmas, beginning with the following
elementary estimate.

Lemma 6.4. Let a, b, c, d > 0 be four positive numbers, so that b ≤ Kd. Then

a+ b

c+ d
≤ a

c
or

a

c
≤ K

Proof. Suppose the second estimate is not satisfied, that is a > Kc. Then
c

a
b <

c

Kc
Kd = d

Furthermore,
a+ b

c+ d
=
a

c

c+ c
ab

c+ d
<
a

c
This shows the estimate. �

Lemma 6.5. Suppose B is a (4× 4)-matrix with non-negative entries. Let A be a
matrix whose entries are bounded by K ≥ 1.

i) Suppose that A has all positive entries. Then

|Ci(BA)|
|Cj(BA)|

≤ K

for all i, j.
ii) Suppose that A has only positive entries in at least two rows, and the other

rows are equal to rows of the identity matrix. Then

either max
i,j

|Ci(BA)|
|Cj(BA)|

≤ |Ci(B)|
|Cj(B)|

or max
i,j

|Ci(B)|
|Cj(B)|

≤ K

Proof. i) The i-th column of BA is obtained by summing the columns of B
according to the entries of the i-th column of A. In such a linear combination
each column of B appears at least once, and at most K times by the assumption
on A. Thus, the 1-norm of any column is at least equal to |C1(B)|+. . .+|C4(B)|
and at most K(|C1(B)|+ . . .+ |C4(B)|). This shows i).

ii) Suppose for ease of notation that rows 3 and 4 of A are the ones which are not
positive (if only one non-positive row exists then the argument works analo-
gously). By the assumption, every column of BA is the sum some multiples
of columns 1 and 2 of B and possibly one copy of column 3 of 4. There is a
permutation π so that the entry π(i) of row i is positive (as the matrix A is
nonsingular). We thus have for all i, j:

|Cj(BA)| ≥ |Cπ(j)(B)|+ (|C1(B)|+ |C2(B)|)
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and

|Ci(BA)| ≤ |Cπ(i)(B)|+K(|C1(B)|+ |C2(B)|)
Thus, we have

|Ci(BA)|
|Cj(BA)|

≤
|Cπ(i)(B)|+K(|C1(B)|+ |C2(B)|)
|Cπ(j)(B)|+ (|C1(B)|+ |C2(B)|)

By Lemma 6.4 (applied for b = d = |C1(B)|+ |C2(B)| and a = |Cπ(i)(B)|, c =

|Cπ(j)(B)|) the right hand side is between
|Cπ(i)(B)|
|Cπ(j)(B)| and K which implies the

lemma.

�

Recall that an entry in a combining matrix A is active, if it is in row i and
column i of A is active.

Definition 6.6. If M is a matrix we denote by Cu(M) denote the column of M
whose norm is second smallest.

Lemma 6.7. There is are constants γ < 1, K with the following property. Suppose
A is a matrix corresponding to a n-th power of a minimal depth 0 loop for n ≥ 3
and B is a non-negative matrix. Then

|Cmax(BA)|
|Cu(BA)|

≤ max

{
K,
|Cmax(B)|
|Cu(B)|

γn−2

}
Proof. By finiteness of the set B of building blocks, it suffices to show the statement
for each matrix A corresponding to a power of a minimal depth 0 loop, and then
let K, γ be the largest of the resulting constants. We argue similarly to the proof
of case (2) of Lemma 6.5. Again, for simplicity of notation, assume that 1 and 2
are the active columns, 3 is passive and 4 is passive or idle.

Let E be the constant from Lemma 3.4 applied to the matrix corresponding to
the depth–0 loop detemined by A. Fix columns i, j. Let m be the smallest, and M
be the size of largest of the active entries in columns i and j. By Lemma 3.4 we
have M ≤ Em. Thus for any i, j 6= 4 (if column 4 is idle) or any i, j (if column 4
is passive) we have

|Ci(BA)| ≥ |Cj(B)|+m(|C1(B)|+ |C2(B)|)

and

|Ci(BA)| ≤ |Cj(B)|+ Em(|C1(B)|+ |C2(B)|).
Arguing exactly as in case ii) of Lemma 6.5 one shows that quotients between
such i, j either the ratio improves, or is less than some fixed constant. Moreover,
because the action of combining matrices on active columns gives a positive matrix,
m increases exponentially with the number of loops taken and therefore we have
that

(1)
|Ci(BA)|
|Cj(BA)|

≤ max

{
K ′,
|Ca(B)|
|Cb(B)|

γ′n−2

}
where i, j, a, b 6= 4. This establishes the claim (with K = K ′, γ = γ′) unless
Cmax(BA) is the idle column. Indeed, if Ci(BA) = Cmax(BA) where i is active or
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passive then we have

|Ci(BA)|
|Cu(BA)|

≤ max
j active or passive

|Ci(BA)|
|Cj(BA)|

≤ max

{
K ′,max

|Ca(B)|
|Cb(B)|

γ′n−2

}
≤ max

{
K ′,max

|Cmax(B)|
|Cu(B)|

γ′n−2

}
.

Hence, we are done unless column 4 of A is idle and column 4 of BA is not
the smallest column. In that case, it is the same as the fourth column in B. By
splitting A into smaller powers A = A2

0A
k
0 , where A0 is combining and k ≥ 0 we see

that multiplying B by A2
0 already adds both active columns of B to all but the idle

column. If one of the active columns was larger than the idle column, this implies
that the idle column of A is the smallest of BA. In this case we may use the bound
of K ′ from above since both Cu and Cmax are active or passive.

Thus, we are left with the case that the idle column of B is larger than both
of the active columns of B. But then for all i, in BAi+2

0 the size of the active
columns grow exponentially in i and so the ratio of the idle column to Cu decays
exponentially. This implies the lemma if Cmax(BA) is the idle column. Otherwise

it follows from equation 1 and the fact that |Cmax(B)|
|Cu(B)| ≥

|Ci(B)|
|Cu(B)| for all i. �

Corollary 6.8. For any M there exists N so that if ‖D‖op ≤M then

|Cmax(BDAr)|
|Cu(BDAr)|

≤ max

{
K,
|Cmax(B)|
|Cu(B)|

}
for any A, a matrix given by a minimal depth zero loop and r ≥ N . Here, K does
not depend on M .

Proof. Observe that |Cmax(BD)|
|Cu(BD)| ≤ ‖D‖

|Cmax(B)|
|Cu(B)| . Let γ be as in Lemma 6.7. Choose

N so that γN−2M ≤ 1 and the corollary follows from Lemma 6.7. �

Proof of Theorem 6.3. To show the theorem, we will first define a re-grouping Dk =∏i(k+1)−1
i=i(k) Ai where i(k) are chosen so that i(k + 1) − i(k) ≤ c and so that the

products
∏n
i=1Di have the claimed property. We will then use this to show that

the theorem holds.

To define the Di, we argue inductively. To begin with, note that the set of all
paths B1 → · · · → Bk so that no Bi is at least a third power of a minimal depth
0 building block loop and so that k ≤ c is finite. Thus, the set of operator norms
‖M(B1 → · · · → Bk)‖ of the corresponding matrices is bounded – let M0 be such
a bound.

Next, let N1 be the number guaranteed by Corollary 6.8 applied to the bound
M = M0. In particular, this implies that if A is any matrix, and B1 → · · · → Bk →
Pn where B1 → · · · → Bk is as above, P is a minimal depth 0 loop and n ≥ N1,
then

|Cmax(AM(b1 → · · · → bk → Pn))|
|Cu(AM(b1 → · · · → bk → Pn))|

≤ max

{
K,
|Cmax(A)|
|Cu(A)|

}
Suppose now that Ni,Mi are defined. We define Mi+1 to be a bound for the

operator norm of matrices M(B1 → · · · → Bk) defined by sequences with k ≤ c
and so that no Bi is a minimal depth 0 loop with power at least Ni. Then, define
Ni+1 to be the output of Corollary 6.8 applied to M = Mi+1.
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Finally, let K2 be the output of Lemma 6.5 applied to the bound Mc. We will
now describe the grouping Di which will satisfy the column bound for max(K,K2).

Namely, suppose that Di is defined for i ≤ n with the desired properties, and
AN is the final matrix appearing in the product defining Dn. By Almost Positivity,
for some number k ≤ c the matrix AN+1 . . . AN+k is Almost Positive (i.e. satisfies
the property from Almost Positivity). There are now two cases:

(1) ‖AN+1 . . . AN+k‖ ≤ Mc. Then we put Dn+1 = AN+1 . . . AN+l and note
that by Lemma 6.5 we have

|Cmax(D1 . . . DnDn+1)|
|Cu(D1 . . . DnDn+1)|

≤ max

{
K2,
|Cmax(D1 . . . Dn)|
|Cu(D1 . . . Dn)|

}
(2) ‖AN+1 . . . AN+k‖ > Mc. Then at least one of the Aj , N + 1 ≤ j ≤ N + k

corresponds to at least a Nc–th power of a minimal depth 0 loop. Let
r be the minimal such j. We put Dn+1 = AN+1 . . . Ar−1Ar. Note that
‖AN+1 . . . Ar−1‖ ≤ Mc by minimality of r. Thus, by our choice of Nc we
have

|Cmax(D1 . . . DnDn+1)|
|Cu(D1 . . . DnDn+1)|

≤ max

{
K,
|Cmax(D1 . . . Dn)|
|Cu(D1 . . . Dn)|

}
Thus, in any case we have

|Cmax(D1 . . . DnDn+1)|
|Cu(D1 . . . DnDn+1)|

≤ max

{
max{K,K2},

|Cmax(D1 . . . Dn)|
|Cu(D1 . . . Dn)|

}
This shows inductively the existence of the desired column size bound for prod-
ucts

∏
Di. The desired bound on the products

∏
Ai follows simply because by

construction the difference between
∏
Ai and a suitably chosen

∏
Dj has operator

norm at most Mc by construction. �

Corollary 6.9. For any ζ there is an L with the following property. Let B =∏N
i=1Ai, and suppose that A is at least the L–th power of a minimal depth 0 loop.

Then the idle column of BAL has size at most ζ times the size of any active or
passive column of BAL.

Proof. By Theorem 6.3 the quotient in size between the largest and second smallest
column of B is at most K. If the idle column of B is not already the smallest, then
one of the active columns is has size at least 1

K times the size of the idle column.
After K of applications of A at this active column was added to all non-idle columns,
and the idle column has become the smallest. Since every further application of A
increases the size of every non-idle column, the desired L exists. �

6.2. Angle Contraction.

Lemma 6.10. There are constants K ′ > 0, ξ > 1 with the following property. Let

B be a matrix so that max
1≤i,j≤4

∠(Ci(B), Cj(B))) ≤ α, max
(
|Ci(B)|
|Cu(B)|

)
≤ D and let A

be the matrix defined by a minimal depth 0 loop. Then

max
i,jactive or passive

sin∠(Ci(BA
k), Cj(BA

k)) < K ′
sin(α)

ξk
.
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Proof. Because there are only finitely many minimal depth 0 loops in our building
blocks, it suffices to show the lemma for a single one.

The proof is similar to Lemma 3.4. For each combining matrix A we consider
its action on the active columns, described by a matrix Â. It has a Perron-
Frobenius eigenvector [a1, ..., aτ ] where 2 ≤ τ ≤ 4 and all the ai > 0. It has

corresponding eigenvalue µ. We consider the action of Â on the invariant (τ − 1)-
dimensional subspace not containing the Perron-Frobenius eigenvector [a1, ..., aτ ].

Call the matrix describing this action Ã. There exists C, ν where ν < µ and

‖Ãk‖op ≤ Cνk. Thus there exists nA, γ > 1 so that µk

Cνk
≥ γk for all k ≥ nA.

Write Ci(Ãr) = λ[a1, .., aτ ] + w where λ is chosen to be the largest possible so

that Ci(Ãr) − λ[a1, ..., aτ ] ∈ Rτd . There exists C, mA so that for all k > mA with
λ
|w| > Cγk. Indeed, decompose Ci(Ãr) = λ′[a1, ..., aτ ] + w′ where w′ is in the sub-

space Â acts on. By above λ′

|w′| > γk for all k > nA. Now letting ξ be the minimal

number so that ξ[a1, ..., aτ ] + w′ ∈ Rτ+ for all large enough k we have the claim.2

Consider Ar = Ak where A is a combining matrix and k ≥ nA. Consider the
active columns Ci1(B), ..., Ci`(B) and the vector ā ∈ R4

+ where āi is 0 if Ci is not

active and is ab where b is the corresponding column of Â if is active. Because
Â captures the action of A on the active columns, Cib(Ar) as λã + wb where λ is

chosen to be the largest possible with Cib − λã ∈ R4
+ with |wb|λ ≤ C

′ 1
γk

.

Now Bwb ∈ B∆ and so ∠(wb,
∑
ajCij (B)) < α. It follows from Lemma 3.5

that sin(∠(
∑
ajCij (B), Cib(BAr)) ≤ Dγ−k sin(α). Hence the lemma follows for

active columns. The case of passive column is analogous to the proof of Lemma 3.4
part(iii).

By choosing of K ′ large enough we absorb the various constants and are able to
remove the requirement that k ≥ mA, nA. �

We next introduce some notation. If v, w are line segments in R3 let |w| denote
the length of w and Φv denote orthogonal projection onto the direction of v. We
also need a fact from Euclidean geometry:

Lemma 6.11. There exist numbers 0 < c1, c2 < 1 with the following property. Let
∆′ ⊂ R3 be a (not necessarily regular) Euclidean simplex with diameter τ , and let
w be a line segment in ∆′ with length |w| ≥ c1τ .

Then there is a an edge e of ∆′ with length at least |w| so that |Φe(w)| ≥ c2|w|.

Proof. First observe that the diameter of a simplex is given by its longest side.
Second, observe that if w is is a line segment contained in ∆′ then there exists
a line segment w̃ contained in ∆′, parallel to w, with |w̃| ≥ |w| and so that one
endpoint of w̃ a vertex v of ∆′. We thus have |w̃| ≥ c1τ , and by choosing c1 < 1
large enough there is some edge e of ∆′ emanating from v with |e| ≥ |w̃| and whose
direction is within 1 degree of the direction of w̃. As a consequence, since w and w̃
are parallel we have that

|Φe(w)| ≥ cos
( π

180

)
|w|

Thus, c2 = cos( π
180 )c1 has the desired property. �

2In particular, ξ ≤ |w′|
min ai
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Lemma 6.12. For every N there exists F1 < 1 so that if B is a product of matrices
from Corollary 6.1, A = Ai · · ·Ai+k is a subproduct satisfying (P ) or (R) with k ≤ c
and ‖A‖op ≤ N . Then

diam(BA∆) ≤ F1diam(B∆).

Proof. Consider the (normalized) simplices B∆ and BA∆ with vertices p1, ..., p4

and q1, ..., q4 respectively. These correspond to the directions of the columns Cj(B)
and Cj(BA). Let τ be the length of the longest side of B∆ (which is also its
diameter) and E be the set of sides of B∆ with length at least c1τ .

By Lemma 6.11 it suffices to show that there is a constant 0 < c3 < 1 so that

|Φe(−−→qiqj)| < c3|e|
for all i, j and e ∈ E.

To prove this, let e ∈ E be arbitrary. For concreteness, assume that e = −−→p1p2.
Let j be such that every entry in row j of A is positive, and |Cj(B)| ≥ |Cu(B)|
(such a j exists as at least two rows of A are positive). Up to exchanging p1 and
p2 we may also assume that |Φe(−−→p1pj)| ≥ 1

2 |e|.
Note that

Ci(BA) =
∑

ak,iCk(B)

where ak,i ≤ n for all k, i and aj,i ≥ 1 for all i. Thus, we have

qi =
∑

ak,i
|Ci(B)|
|Ci(BA)|

pk

Since ‖A‖ < N and |Cj(B)| ≥ |Cu(B)|, there exists some ε > 0 (dependent only on

N and the constant K from Theorem 6.3) so that
|Cj(B)|
|Cj(BA)| > ε.

Thus, we have that

Φe(qi) =
∑

ak,i
|Ci(B)|
|Ci(BA)|

Φe(pk)

In this expression, the coefficient of Φe(pj) is at least ε, and all coefficients are
bounded from above by N2. Since |Φe(−−→p1pj)| ≥ 1

2 |e|, there is therefore some c3 so
that all Φe(qi) are within c3|e| of p2. This shows the claim. �

Lemma 6.13. There exists N > 0 and F2 < 1 so that it B is a product of matrices
from Corollary 6.1, A = Ai · · ·Ai+k is a subproduct satisfying (P ) or (R) with k ≤ c
and ‖A‖op > N . Then

sin(max∠(Ci(BAAi+k+1 · ... ·Ar+k+3), Cj(BAAi+k+1 · ... ·Ar+k+3)))

≤ F sin(max∠(Ci(B), Cj(B))).

Proof. The number N will be given by Lemma 6.2, so that any A with ‖A‖ > N
contains a matrix corresponding to at least ` powers of a minimal depth 0 loop –
where ` will be chosen below.

To begin, note that

sin(max∠(Ci(XY ), Cj(XY ))) ≤ sin(max∠(Ci(X), Cj(X))).

for any matrices X,Y with non-negative entries (as XY∆ ⊂ X∆). By the choice
of N , there is an s, i ≤ s ≤ i + k so that As is the matrix defined by a minimal
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depth 0 loop taken at least ` times. By the preceding remark it suffices to show
that

sin(max∠(Ci(BAA
′), Cj(BAA

′))) ≤ F sin(max∠(Ci(B), Cj(B))).

where A = As is a matrix corresponding to the `-th power of a combining matrix,
and A′ is a matrix corresponding to three building block steps. We emphasize that
this is necessarily the product of three Ai, but may be a smaller product (if some
of the Ai correspond to loops). In particular, we may assume that ‖A′‖op ≤ L for
some universal L.

For simplicity of notation, we abbreviate β = sin(max∠(Ci(B), Cj(B))). By
Lemma 6.10 and our choice of ` we then have that

max
i,jactive or passive

sin∠(Ci(BA), Cj(BA)) < K ′
β

ξk

where active and passive refers to the columns of A. Let b denote the index of the
bad column of A.

Next, consider any column Ck(BAA′) and write it as a sum of columns of BA:

Ck(BAA′) = a′kbCb(BA) +
∑
i 6=b

a′kiCi(BA)

By Isolated Idle every column of A′ has at least two nonzero entries, and thus∑
i6=b a

′
ki ≥ 1.

Furthermore, the sum
∑
i a
′
ki is at most ‖A′‖op ≤ L. Thus, we have

‖a′kbCb(BA)‖
‖
∑
i 6=b a

′
kiCi(BA)‖

≤ L‖Cb(BA)‖
‖Ci(BA)‖

for some index i corresponding to an active or passive column. Hence by Lemma 3.5

sin∠

Ck(BAA′),
∑
i 6=b

a′kiCi(BA)


≤ L‖Cb(BA)‖
‖Ci(BA)‖

sin∠

∑
i 6=b

a′kiCi(BA), a′biCb(BA)

 ≤ L‖Cb(BA)‖
‖Ci(BA)‖

β

On the other hand, we have

sin∠

∑
i 6=b

a′kiCi(BA),
∑
i 6=b

a′miCi(BA)


≤ sin max

r,sactive,passive
∠Cr(BA), Cs(BA) ≤ K ′ β

ξk

Since (absolute values of) angles satisfy the triangle inequality and sin(θ+ φ) ≤
sin(θ) + sin(φ) for all 0 ≤ θ, φ with θ, φ < π

2 we then have

sin(∠(Ck(BAA′), Cm(BAA′)))

< L
‖Cb(BA)‖
‖Ci(BA)‖

β +K ′
β

ξk
+ L
‖Cb(BA)‖
‖Cj(BA)‖

β
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≤
(
L
‖Cb(BA)‖
‖Ci(BA)‖

+
K ′

ξk
+ L
‖Cb(BA)‖
‖Cj(BA)‖

)
β

By Corollary 6.9, ` may be chosen large enough so that L ‖Cb(BA)‖
‖Cj(BA)‖ <

1
4 for any

active/passive index j, and by enlarging ` further, we may assume that K′

ξk
< 1

4 as

well. Then

sin(∠(Ck(BAA′), Cm(BAA′))) <
3

4
sin(max∠(Ci(B), Cj(B)))

which shows the desired outcome. �

The following proposition will be used to imply convergence, continuity and
unique ergodicity at an infinite depth point.

Proposition 6.14. Let Ai be as above. Then (
∏
Ai)R4

+ converges to a single line.

Proof. To prove the proposition we inductively group the product (
∏
Ai) into sub-

products of length at most c that satisfy (P ) or (R). Depending on the norm of
the next block we apply Lemma 6.12 or 6.13 to conclude that either the diameter
of the image of ∆, or max sin∠ decreases by a definite factor. Since one of these
happens an infinite number of times, the proposition follows. �

7. Connecting building block endpoints

Theorem 7.1. Let B be a complete finite set of building blocks. and suppose that
S1, S2 are respectively left and right endpoints for a building block. Then there exists
a path of uniquely ergodic IETs connecting S1 and S2.

Proof. Let π = π(S1) = π(S2) be the permutation of the two points we want to
connect. We will obtain the path c connecting S1 to S2 in ∆π as the limit of
approximating paths cn. Before we define the actual paths cn though, we first
construct a combinatorial object that will serve as a guideline on how to build the
paths.

We define a rooted oriented bivalent tree T in the following way. Each vertex will
correspond to a building block b ∈ B and has two outgoing edges. The two vertices
joined to b are the left and right compatible building blocks to b in B. The root
corresponds to the building block (S1, F, S2) ∈ B, which exist by our hypothesis.

Suppose v is a vertex of T . Then there is a unique path ρ which joins the root of
T to v. This path ρ corresponds to a building block sequence, which in turn defines
a Rauzy matrix M(ρ). If v corresponds to the building block (T1, F, T2), then we
say that the triple of IETs (M(ρ)T1,M(ρ)F,M(ρ)T2) ∈ ∆π is defined by v.

Consider the set v0, . . . , v2n of all vertices of distance n to the root of T , and

let (T
(i)
1 , F (i)T

(i)
2 ) be the triple of IETs defined by vi. Note that (by construction)

T
(i)
2 = T

(i+1)
1 . We define cn as the concatenation of straight line segments in ∆π

connecting T
(i)
1 to T

(i)
2 for all i, parametrized so that each straight segment is

traversed with constant speed on an interval of length 2−n.

Explicitly, the first path c0 is simply the straight line segment connecting S1 to
S2. The path c1 is the concatenation of the straight line connecting S1 to F and F
to S2, where (S1, F, S2) is a building block in B. Similarly, ci+i is constructed by
replacing each straight line segment in ci by a concatenation of two line segments
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according to the building block which (after the suitable number of Rauzy steps)
has the same endpoints.

Note that by definition ci and ci+1 agree at all t which correspond to IETs
defined by vertices of distance at most i to the root of T .

We call any point ci(t) which corresponds to an IET defined by some vertex v
of T a problematic point of ci. The depth of ci(t) is defined to be the depth of the
building block sequence corresponding to the unique path joining the root of T to
v.

Explicitly, this means that the boundary points c1(0), c1(1) are of depth 0. Sup-
pose we have assigned a depth to all the problematic points of ci. Then, each
problematic point p of ci+1 is adjacent to two problematic points pl, pr of ci. If
dl, dr are the depths of these points, then the depth of p is min(dl, dr) + 1.

By the definition of building blocks every problematic point corresponds to a
uniquely ergodic IET.

For any t ∈ [0, 1] which is not a multiple of 2−m for some m we now claim that
the sequence cn(t) converges in ∆n. Namely, suppose that t ∈ [k2−M , (k+ 1)2−M ].
Then for each i > M the initial part of the Rauzy expansion of ci(t) agrees with
the Rauzy expansion of the building block sequence corresponding to a suitable
vertex vM of distance M to the root of the tree T . Increasing M to a N > M it
follows from the construction that vM is contained in the (unique) oriented path
joining the root of the tree T to vN . Let ρ be the infinite oriented path in T
which contains all vi. Since t is not a dyadic fraction the path ρ cannot eventually
only make left or only right turns (as that would, e.g. for left turns, mean that
k2−N ≤ t ≤ k2−N + 2−M for all M).

Thus, the path ρ defines a building block sequence as in Section 6. Therefore,
Proposition 6.14 implies that for any ε there is a N > 0 such that for all i > N
the values ci(t) differ by at most a distance of ε (since they share the same initial
segment of building blocks). This shows that ci(t) converges.

In fact, the same argument shows that limn→∞ cn(t) is a uniquely ergodic IET
by Theorem 2.6 and that the limiting function is continuous at such t.

It remains to show continuity at the problematic points. We show continuity
using the limit formulation. By construction, points on cn close to a depth L point
follow the expansion P of the endpoint for longer and longer times. But in this
situation, Lemma 5.2 shows that the normalized length vectors converge, and thus
implies the desired continuity. �

Corollary 7.2. Let T1, T2 be two 4-IETs which each become the left or right
endpoint of a building block after a finite number of Rauzy steps. Then T1 and T2

can be joined by a path of uniquely ergodic IETs.

Proof. Let K be large enough so that T1, T2 become endpoints after K Rauzy
steps. Now consider the triangulation PK of ∆π defined by the fail planes of Rauzy
induction within the first K steps, and choose endpoints of building blocks on all
of the fail planes in PK separating T1 from T2. Two such points which are not
separated by a fail plane can be joined by a path as in the previous theorem,
by applying Rauzy induction first. The Corollary follows by concatenating these
finitely many paths. �
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To finish the proof of Theorem 4.1, we need to be able to join IETs which are
not themselves endpoints of building blocks. This will be done with a limiting
argument via the following lemmas.

Lemma 7.3. Let (X, d) be a metric space, let (pi) be a sequence in X and p∞ ∈ X
be so that

(1) (pi) converges to p∞
(2) pi, pi+1 are path connected by a path Pi ⊂ X and
(3) lim

i→∞
diam(Pi) = 0.

Then p1 is path connected to p∞.

Proof. Let ψ(t) = Pj(2
jt) where t ∈ [1−2−j+1, 1−2−j ] and ψ(1) = p∞ Because the

Pi are continuous and Pi(1) = Pi+1(0) ψ is continuous everywhere except possibly
(1). Notice by conditions (1) and (3) lim

t→1−
ψ(t) = p∞. So ψ extends to a path

connecting p1 to p∞. �

Lemma 7.4. Let B be a finite complete set of building blocks. Let T be an IET so
that Rk(T ) is defined for all k. Then there exists a sequence of IETs (Si) so that
π(Rk(Sj)) = π(Rk(T )) for all k < j and either Ri−1(Si) = Ri−1(Si+1) or they are
left and right endpoints from a building block triple.

Proof. Because B is complete, for each vertex of the Rauzy diagram there is a
corresponding building block where the right hand side takes one (forward pointing)
edge and the left hand side takes the other. Thus, we can follow the expansion of
T and choose the desired building blocks. �

Theorem 7.5. The set of uniquely ergodic unit length 4-IETs with permutation in
the Rauzy class of (4321) is path connected.

Proof. Let E by a uniquely ergodic 4-IET with permutation (4321) so that Rk(E)
is defined for all k. As paths may be concatenated, it suffices to show that for each
uniquely ergodic S with permutation (4321) there is a path joining it to E.

The first case we consider is that S is a uniquely ergodic IETs that has Rk(S)
defined for all k. Let Si be a sequence converging to S given by Lemma 7.4. By
Corollary 7.2 for each i there is a path, li of uniquely ergodic IETs that connect
Si to Si+1, and that stays in M(S, i)∆. These satisfy condition (2) of Lemma
7.3. Because S is uniquely ergodic and so M(S, k)∆ converges to a point, the li
satisfy condition (3) of Lemma 7.3. For the same reason the endpoint of the li are
converging to S satisfying condition (1) of Lemma 7.3. Repeat the same for E in
place of S. Thus, Lemma 7.3 yields the desired path.

We next consider the case of a uniquely ergodic IET S that does not have Rk(S)
defined for all k. There exists an interval J so that S|J has the minimal number of
intervals of any induced map of S. As an IET on fewer intervals, S|J has infinite
Rauzy induction. By Section 2.1 there exists a path in the Rauzy diagram R(4)
whose actions on the relevant columns reflect the action on S|J on the appropriate
Rauzy class. Choose once and for all finite Rauzy paths Pi with positive associated
matrix for each permutation in the Rauzy diagram.

Now we choose a sequence T̂i of building block endpoints converging to T that
share longer and longer segments of this path and then are followed by one of the
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A1
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D1

1
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3

4

A4

A5

51

Figure 4. Diagram A

Pi. We can connect the T̂i and satisfy condition (2) of Lemma 7.3. Following T in
Rauzy induction leads to at least 3 columns pointing increasingly in the direction of
the length vector of T and having increasing column norm by unique ergodicity. By
Corollary 5.3 after the application of one of the P all four columns point in roughly
this direction. Also by Corollary 5.3 the paths connecting T̂i to T̂i+1 have diameter
going to 0 as i goes to infinity.3 By Corollary 5.3 the condition (1) of Lemma 7.3
is satisfied. Because any IET in M(Tn+k, n+ k)∆ also satisfies the assumptions of
Corollary 5.3 condition (3) of Lemma 7.3 is satisfied. �

8. Explicitly producing building blocks

In this section we prove Proposition 4.8 by explicit construction. The building
blocks and their relations are depicted in Figures 4, 5 and 6. Unlabeled edges
correspond to single Rauzy steps (left and right corresponds to type a and b Rauzy
induction. Labeled edges of the graphs correspond to several common Rauzy steps
(the Rauzy steps corresponding to each path can be found in Appendix A). Edges
ending in capital letters lead to the corresponding blocks in a different diagram.

3This is because at some point they have (at least) 3 large columns that almost point in T ’s
direction and all after that they follow building block matrices.



THE SET OF UNIQUELY ERGODIC IETS IS PATH-CONNECTED 29

B1

A1

C1

1

B2

B3

B4

B5

2

34

5 1

Figure 5. Diagram B

B1 A1

B1 A1

C1

D1

C2 C3

D2 D3

1

2 3 4

5 6 7

8

Figure 6. Diagram CD

By simply observing the Rauzy diagram and Figures 4 to 7 it is immediate that
the set of building blocks satisfies Transitivity and Completeness claimed in
Proposition 4.8.

To check Combining Loops and Isolated Idle, one checks in the diagrams
that the following paths are the only periodic paths of depth 0, and that their
matrices have the desired properties.
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Figure 7. Diagram EFGH

(1) A1→ A1 corresponds to Mα1.

Mα1 =


1 0 0 0
0 1 1 1
0 1 2 0
0 0 0 1


Columns 2 and 3 are active, 4 is passive. Column 1 is idle. The matrices

which can follow without repeating this loop are α2M
(4321)
a α3, α2M

(4321)
a α4,

α2M
(4321)
b α1 or α2M

(4321)
b α2, all of which have at least two nonzero entries

in each column. Thus, Isolated Idle holds for this loop.

(2) A2→ A1→ A2 corresponds to M
(4321)
b Mα2

1 1 1 1
0 1 0 0
0 0 1 0
1 2 2 2


Columns 1 and 4 are active, 2 and 3 are passive.

(3) A3→ A4→ A3 corresponds to Mα3M
(4321)
a

1 1 1 1
0 1 0 0
1 1 2 0
0 0 0 1


Columns 1 and 3 are active, 2 and 4 are passive.
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(4) B1→ B1 corresponds to Mβ1
1 0 0 0
0 1 0 0
0 0 2 1
1 0 1 1


Columns 3 and 4 are active, 1 is passive. Column 2 is idle. The matrices

which can follow are Mβ2M
(4321)
a β1, Mβ2M

(4321)
a β2, Mβ2M

(4321)
b Mβ3 or

Mβ2M
(4321)
b Mβ4, all of which have at least two nonzero entries in each

column. Thus, Isolated Idle holds.

(5) B1→ B2→ B1 corresponds to Mβ2M
(4321)
a

1 1 1 1
1 2 1 1
0 0 1 0
0 0 0 1


Columns 1 and 3 are active, columns 3 and 4 are passive.

(6) B3→ B4→ B3 corresponds to Mβ3M
(4321)
b

1 0 0 0
0 1 0 0
1 0 2 1
1 1 1 1


Columns 3 and 4 are active, columns 1 and 2 are passive.

(7) C1→ C2→ C1 corresponds to M
(4321)
a Mγ1

1 1 1 1
1 2 0 0
0 0 1 0
0 0 0 1


Columns 1 and 2 are active, columns 3 and 4 are passive.

(8) D1→ D3→ D1 corresponds to M
(4321)
b Mγ8

1 0 0 0
0 1 0 0
0 0 2 1
1 1 1 1


Columns 3 and 4 are active, columns 1 and 2 are passive.

It remains to check Almost Positivity. We need to show that paths that
increase depth enough yield almost positive matrices.

We begin by noting two reductions that describe why this is a finite task:

• It suffices to consider paths starting at A1, A3, B1, B3, D1, C1, as all paths
we will construct will end at a such a point. Initial segments leading to one
of these points have uniformly small length and do not affect the argument.

• All minimal depth 0 loops have matrices with positive entries on the diag-
onal. Since multiplying by such a matrix preserves the property of being
positive, any path that yields a positive matrix will still have this property
if any number of loops is inserted.
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• If a path without loops yields an almost positive, yet not positive matrix,
there is a finite number of modifications (add loops of length 1) that need
to be considered. If all such modificiations yield positive matrices, we are
done.

The desired property now follows by a lengthy case-by-case check. We only list the
cases for paths starting at A1 in details. All other cases are checked in a completely
analogous manner4

The following observation helps to reduce the number of cases:

Observation 8.1. Say that a (4× 4)–matrix A is weakly positive if every entry is
non-negative and there is at most one zero entry.

If A is a weakly positive matrix and B is Almost Positive or weakly positive,
then AB has positive entries.

Thus, it suffices to show a slightly weaker version of Almost Positivity: any path
that increases depth enough yields a matrix that is Almost Positive, or is weakly
positive.

Paths that begin with the loop α1 at A1: There are four possibilities
that can follow the α1-loop:
(1) The path A1→ A2→ A3→ B1, corresponding to the matrix

α1α2M
(4321)
a α4 =


2 2 1 2
2 1 2 4
2 0 1 3
1 1 1 2


which is weakly positive.

(2) The path A1 → A2 → A3 → A4 → A5 → D1, corresponding to the
matrix

α1α2M
(4321)
a α3M

(4321)
b α5 =


4 5 4 2
3 5 3 1
1 2 2 0
2 3 2 1


which is weakly positive.

(3) The loop A1 → A2 → A3 → A4 → A5 → A1, which immediately
leads to a positive matrix.

(4) The loop A1→ A2→ A1, leading to

α1α2M
(4321)
b =


2 1 1 1
1 2 2 1
0 1 2 0
1 1 1 1


If this is followed by a path beginning with A1 → A3, then one of
the previous cases implies that we will reach a positive matrix. The
only other possibility is to alternate with the A1→ A1 loop. But, the
square of the above matrix is positive, and thus this case also yields a
positive matrix.

4which can also be automated and done with computer algebra systems – see the second
author’s webpage for a SAGE script doing this task.
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As a consequence we record: Any path that begins with the α1–loop and
increases depth will yield a positive matrix. In particular, in the consequent
analysis we never have to consider the case that the α1–loop is inserted in
the middle of some path – as then the resulting matrix will be positive upon
increasing depth enough.

Paths that begin with the loop A1→ A2→ A1: (1) If the loop is fol-
lowed by the α1–loop, then the above show that the result will turn
positive.

(2) If we follow by A1→ A3 the resulting matrix is

α2M
(4321)
b α2M

(4321)
a =


2 5 4 4
0 0 1 0
0 0 0 1
1 3 3 3


which is Almost Positive.

In consequence, Any path that begins with the (A1 → A2 → A1)–loop
and increases depth will yield an Almost Positive matrix.

Paths that begin with A1→ A2→ A3→ B1: Here, we start with the ma-
trix

α2M
(4321)
a α4 =


2 2 1 2
0 0 1 1
1 0 0 1
1 1 1 2


which is followed by B1→ B3, leading to

α2M
(4321)
a α4β2M

(4321)
b =


6 5 6 2
0 1 1 0
1 1 2 0
3 3 4 1


From here, there are several possibilities:
(1) Returning to A1, leading to

α2M
(4321)
a α4β2M

(4321)
b β4 =


6 5 11 7
0 1 2 1
1 1 3 1
3 3 7 4


which is weakly positive.

(2) Following B3→ B5→ B1, leading to a positive matrix.
(3) Following B3→ B5→ C1, leading to a weakly positive matrix.

Paths that begin with A1→ A2→ A3→ A5→ D1: This corresponds to
the matrix

α2M
(4321)
a α3M

(4321)
b α5 =


4 5 4 2
1 2 0 0
0 0 1 0
2 3 2 1


There are several possibilities:
(1) following with D1→ D2→ B1 yields a weakly positive matrix.
(2) following with D1→ D2→ C1 yields a Almost Positive matrix.
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(3) following with D1 → D3 → D1 → D2 → C1 (inserting the D1 loop
into the previous case) leads to

α2M
(4321)
a α3M

(4321)
b α5(M

(4321)
b γ8)M (4321)

a γ5 =


6 13 16 12
1 3 1 1
0 0 2 0
3 7 8 6


Following with C1→ C3 leads to a weakly positive matrix. Following
with C1 → C2 → B1 leads to a positive matrix. Since both of these
lead to positive matrices, we are done.

Paths that begin with A1→ A2→ A3→ A5→ A1: Note that the matrix
describing A5→ A1 in fact is the same as A1→ A1, and thus this follows
from the first case.

9. Extending to n-IETs

The goal of this section is to prove

Theorem 9.1. Let π be a non-degenerate permutation for n-IETs where n ≥ 4.
The set of uniquely ergodic n-IETs with permutation π is path connected.

The main tool in the proof of this is the following object.

Definition 9.2. An IET S is called a secret 4-IET at level k if there exists M(T, r)
a matrix of Rauzy induction with r ≤ k, v a non-negative vector with at most 4
non-zero entries so that L(S) = M(T, r)v.

In other words, a secret 4-IET at level 0 is an n-IET which has at most 4 intervals
of nonzero length. A general secret 4-IET is one that is of this form after applying
some number of Rauzy steps.

Next we describe how π acts on subsets of {1, .., d}. Let (p1, . . . , p4) be a 4-tuple
of numbers, labeled so that p1 < p2 < p3 < p4. Applying π to the pi maps them to
numbers π(pi) which may not be in order. Let π|(p1, p2, p3, p4) be the permutation
on the numbers {1, 2, 3, 4} which describes how the order of pi is rearranged by π.
We call π|(p1, p2, p3, p4) the permutation π restricted to (p1, . . . , p4).

To give a simple example, consider π = (3142): then π|(3, 4) = (12) and
π|(1, 3) = (21).

We say that a permutation π acts as a rotation on a pair (p1, p2) of symbols if
π|(p1, p2) = (21). A permutation π is irreducible if it does not preserve a set of the
form {1, . . . , k} for k < n.

Definition 9.3. Let π be a permutation on n symbols and (p1, . . . , p4), (q1, . . . , q4)
be two 4-tuples of entries so that π restricts on both as a permutation in the Rauzy
class of (4321). We call the tuples accessible if there exists index pairs (r1, r2),
(s1, s2) so that π acts on (pr1 , pr2 , qs1 , qs2) irreducibly, π acts as a rotation on
(pr1 , pr2) and (qs1 , qs2) and we do not have π|(pr1 , pr2 , qs1 , qs2) = (4231).

We require that π|(pr1 , pr2 , qs1 , qs2) 6= (4231) for technical reasons relating to the
proof of the next lemma which does not work for this permutation. In particular,
most of the analysis is for the case where π|(pr1 , pr2 , qs1 , qs2) acts as a 3-IET with
a pair of pi, qj behaving as one interval. Our argument does not work when this
interval is the second one, which is the case of (4231).
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Lemma 9.4. Fix a non-degenerate permutation π on d symbols and suppose that
T, S are uniquely ergodic IETs with permutation π. Further assume that the lengths
vectors of T and S are 0 off of (p1, . . . , p4) and (q1, . . . , q4) respectively (i.e. that
they are secret 4-IETs).

If (p1, . . . , p4) and (q1, . . . , q4) are accessible then there exists a path of uniquely
ergodic IETs connecting T to S.

Proof. If π|(pr1 , pr2 , qs1 , qs2) ∈ R(4321) or is a rotation (for example if
π|(pr1 , pr2 , qs1 , qs2) = (3412)) then we can choose T1 and S1 secret 2-IETs at level
zero on (pr1 , pr2) and (qs1 , qs2) which are irrational rotations by the same number.
The set of all n-IETs whose length vectors are 0 off of the entries (p1, . . . , p4) is
a copy of 4-IET space. By Theorem 4.1, T can therefore be connected to T1 by
a continuous path. The analogous statement is follows for S, S1. Applying Theo-
rem 4.1 once more to connect T1 to S1 we obtain the desired path from T to S by
concatenation.

If π|(pr1 , pr2 , qs1 , qs2) acts as a rotation then (ri, sj) and (rk, sl) can be treated
as one interval and we can change weight between them, without changing the self-
map of the interval that the IET defines. This defines a path of uniquely ergodic
IETs connecting T1, S1.

If π|(pr1 , pr2 , qs1 , qs2) acts as an element in R(321) then one of the three intervals
is split in two. Choose T1, S1 to be secret 2-IETs which are rotations by the same
irrational number. These are path connected to T and S respectively by Theo-
rem 4.1. Recall from the comments in the Introduction following Theorem 1.1 that
3-IETs can be thought of as the induced map of rotation by 1−L1

1+L2
on [0, 1

1+L2
) and

they are uniquely ergodic if and only if 1−L1

1+L2
is irrational. Now we connect T1 and

S1 in the set of IETs with length zero except on pr1 , pr2 , qs1 , qs2 keeping 1−L1

1+L2
/∈ Q

constant, which keeps the 3-IETs all uniquely ergodic. We can do this because T1

and S1 are rotations by the same irrational number.

To see that this is doable, consider α ∈ [0, 1] \Q and the line segment

Hα = ∆3 ∩ {(x1, x2, x3) :
x2 + x3

x1 + 2x2 + x3
= α}.

Observe that (1−α, 0, α) ∈ Hα. If α < 1
2 then ( 1−2α

1−α ,
α

1−α , 0) is in this set. If α > 1
2

then (0, 1−α
α , 2α−1

α ) ∈ Hα.5 If we have (p1, q1, p2, q2) → (p2, q2, q1, p1) (where this
notation means that p1 < q1 < p2 < q2 and π restricted to these intervals puts p2

first, then q2 then q1 then p1) choose α > 1
2 . Start at (1− α, 0, α, 0) and move in a

straight line to (1 − α, 0, 0, α). From here move along the path (at, bt, 0, ct) where
(at, bt, ct) parametrizes the line between (1 − α, 0, α) and (0, 1−α

α , 2α−1
α ) in Hα.

The case of (p1, q1, q2, p2)→ (q2, p2, q1, p1) is similar. The cases of (p1, q1, p2, q2)→
(q2, p2, p1, q1) and (p1, q1, q2, p2) are also similar (if L(T ) = (a, b, c) then L(T−1) =
(c, b, a)). �

The proof of Theorem 9.1 relies mainly on the following combinatorial statement:

Proposition 9.5. Let π be irreducible. Any two 4-tuples of entries so that π acts
on both as a permutation in the Rauzy class of (4321) can be linked by an accessible

5The fact that if α /∈ Q we only get one of (1 − α, α, 0) or (0, 1 − α, α) in Hα is why we rule
out the case of (4231).
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chain. That means there is a sequence of 4-tuples, so that consecutive ones are
accessible, which begins and ends with the given 4-tuples.

Lemma 9.6. If (p1, . . . , p4), (q1, . . . , q4) are not an accessible pair then up to swap-
ping (p1, . . . , p4) with (q1, . . . , q4) we have pi < qj, π(pi) < π(qj) for all i, j.

Proof. We assume p1 < p2 < p3 < p4 and q1 < ... < q4 and p1 < q1. We show the
lemma by contradiction by considering numerous cases.

We first handle the case that p1 < q1 < p4.

Subcase a: If π(pi) < π(qj) for all i, j then either

p1 < q1 < pi < qj or p1 < q1 < qj < pi

where π(pi) < π(p1) and π(qj) < π(q1) (pi and qj both exist by the irreducibility
of π). So we obtain the permutations (3142) or (4132) which are both in R(4321),
and hence the tuples are accessible.

Subcase b: If π(pi) > π(qj) for all i, j then we can either pick p` < q1 < qj < pi
where π(qj) < π(q1) < π(p`) < π(pj) or p1 < pi < qj < q` and π(q`) < π(qj) <
π(pi) < π(p1). These correspond to permutations in R(4321).

Subcase c: So we may now treat the case p1 < q1 < pi and π(p`) < π(qj) <
π(pk). If j can be chosen to be 1 there exists qa so that π(qa) < π(q1). Also
by the irreducibility of π on p1, p2, p3, p4 we may choose pb so that pb < q1 and
π(pb) > π(q1) or pb > q1 and π(pb) < π(q1). (Otherwise if pi < qq < pj then
π(pi) < π(q1) < π(pj).) If both occur our permutation can by chosen to be (4321)
or (3421). If there is only pb > q1 so that π(pb) < π(q1) then by the irreducibility
of π on p1, ..., p4 there exists q1 < pc < pb so that π(pb) < q1 < π(pc). So we obtain
a permutation corresponding to (3214), (3241) by choosing q1, qa, pc, pb to be our
symbols and treating the position of qa relative to pb, pc we obtain the permutation
(4213), (4312) or (3421). If j can not be chosen to be 1 then we may choose our
permutation to be (4312).

The next case is that π(pk) < π(qj) < π(pL) and is proved similarly.

The last case is that p4 < q1 and π(pi) > π(qj) for all i, j. We pick pk < pL and
qi < qj so that π(pL) < π(pk) and π(qj) < π(qi). π|(pL, pk, qi, qj) = (4321) and we
are done. �

We now begin the proof of Proposition 9.5. If the given 4-tuples are not acces-
sible, then we may assume (by Lemma 9.6) that qj > pi and π(qj) > π(pi) for all
i, j, and we do so from now on.

The proof proceeds by induction. To do that, we define the distance of two
4-tuples (q1, . . . , q4), (p1, . . . , p4) to be

(min
i
{qi} −max

i
{pi},min

i
{π(qi)} −max

i
{π(pi)})

ordered by lexicographic order. The distance is at least (1, 1) by our assumption
and Lemma 9.6.

If the distance is larger than that, then the following lemma allows to decrease
the distance.
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Lemma 9.7. If P = (p1, . . . , p4) and Q = (q1, . . . , q4) are not an accessible pair
then there exists A = (a1, . . . , a4) so that A and Q are accessible and the distance
from P to A is strictly less than the distance from P to Q.

Proof. The proof is done in 2 cases.

Case 1: In this case we assume there exists r < min{qi} so that π(r) > π(qi) for
some i. Now if π(r) < π(qj) if and only if π(q1) < π(qj) for j 6= 1, replace q1 with
r and π|(r, q2, q3, q4) = π|(q1, q2, q3, q4). Call this Case 1’. Otherwise, there are two
sub-cases. If π(r) < π(q1) then by the assumption of Case 1 there exists qi so that
π(qi) < π(r). Since we are not in Case 1’ there exists qj so that π(r) < π(qj) <
π(q1). π|(r, q1, qi, qj) ∈ {(3142), (4132)}, both of which are in theR(4321). If π(r) >
π(q1) because we are not in Case 1’, there exists qi so that π(q1) < π(qi) < π(r) and
there exists qj so that q1 < qj < qi so that π|(r, q1, qi, qj) ∈ {(2413), (3241), (2431)}.
(This is because the string 12 never appears as a consecutive pair in a permutation
in the Rauzy class of (4321), since in this case the pair of intervals I1 ∪ I2 could be
treated as one interval.)

Case 2: If we are not in Case 1, then Lemma 9.8 implies we can have
an accessible four-tuple which has min{qi} and the absence of Case 1 implies
min{π(qi)} > min{qi}. So some symbol greater than min{qi} is sent before
min{π(qi)} (by counting). The proof is now finished similar to Case 1. �

Finally, the case of distance of (1, 1) is handled by the next lemma.

Lemma 9.8. For any i either there exists r < i so that π(r) > π(i) or there exists
r > i so that π(r) < π(i).

Proof. If i = π(i) this simply follows by the irreducibility of π.

If i 6= π(i) then this by a counting argument. Indeed if i < π(i) then there exists
r > i so that π(r) < π(i) because π is a bijection on a finite set and there is no
injection from a set of large cardinality to a set of smaller cardinality. �

Let us see that this lemma implies Proposition 9.5 with distance (1, r) for any r.
Let i = q1. So let us assume that there is j < i so that π(j) > π(i). Now similarly
to Case 1 of Lemma 9.7 we can replace one of the qk with j and obtain a new
permutation on 4 symbols in the Rauzy class of 4-IETs. Now since p4 = q1 − 1 we
have that that the new pair violates Lemma 9.6. The other possibility is similar.

This finishes the proof of Proposition 9.5.

Corollary 9.9. The set of secret 4-IETs of level k is path connected for any k.

Proof. For secret 4-IETs at level 0 this follows by Lemma 9.4 and Proposition 9.5.
Otherwise, argue as in the proof of Corollary 7.2 with the triangulation PN . �

The final ingredient to the proof of Theorem 9.1 is the following lemma.

Lemma 9.10. Let T be an IET so that Rk(T ) is defined for all k. Let S1, S2 be
secret 4-IETs at depth r which are not secret at depth k. Let S1, S2 ∈ M(T, r)∆.
Further assume that M(Rk(T ), r − k) is a positive matrix. Then S1, S2 are path
connected by uniquely ergodic IETs in M(T, k)∆.



38 J. CHAIKA AND S. HENSEL

The idea of this proof is that we build paths connecting RkS1 to RkS2 and the
path we are interested in is the (projective) image of this path under M(T, k) =
M(Si, k).

Proof. Because M(RkT, r−k) is positive, it follows that if S ∈M(T, r)∆ is uniquely
ergodic and Rr(S) has two nonzero entries then it is not a secret 4-IET at level k.
So it suffices to show that in the simplex the secret 4-IETs at level at most L are
path connected for all L. This follows from Corollary 9.9. Indeed, let S′i = Rk(Si)
and P be the path given by Corollary 9.9 connecting S′1 and S′2. M(T, k)P is the
path connecting S1 and S2 contained in M(T, k)∆. �

Proof of Theorem 9.1. If S,E have Rk defined for all k then the theorem follows
analogously to the proof of Theorem 7.5 before via Lemma 7.3. In this case the
pi are secret 4-IETs at level i contained in M(S, i)∆ or M(E, i)∆. The paths Pi
connecting pi and pi+1 are contained in M(S,mi) or M(E, qi), where the mi or qi
is given by Lemma 9.10. The mi and qi go to infinity with i. Since S and E are
uniquely ergodic and have Rauzy induction defined for all k we have that M(S, i)∆
and M(E, i)∆ contract to S and E respectively. This verifies Lemma 7.3.

Otherwise, assume that S does not have all powers of Rauzy induction defined.
We may without loss of generality assume that E does. We prove the theorem by
assuming that we have inductively proved Theorem 9.1 for all 4 ≤ m < n. There
exists an interval J so that the induced map S|J is a uniquely ergodic IETs on
k < d symbols. There is a d × k matrix M so that L(S) = ML(S|J) where in
an abuse of notation L(S|J) is a vector with k entries. Because every irreducible
permutation has a pair where it acts irreducibly, we have a secret 4-IET S′ of the
form Mv̄ for some v whose non-zero entries are a subset of L(S|J). By induction,
the k-IET S|J can be joined by a path of uniquely ergodic IETs to S′. Applying
M to this path connecting S|J to S′ we obtain a path connecting a S to a secret
4-IET (with length vector given by ML(S′)). By the first case, E is path connected
by uniquely ergodic IETs to a secret 4-IET of some depth and this secret 4-IET is
path connected by uniquely ergodic IETs to every uniquely ergodic secret 4-IET.
We have just shown that one of these is path connected S by a path of uniquely
ergodic IETs. �

Appendix A. Composite paths

In Figure 4

α1: (4132)→ (3142)→ (3142)→ (4132)
α2: (4132)→ (4213)→ (4321)→ (2431)→ (3241)→ (4321)
α3: (2431)→ (3241)→ (3241)→ (4321)
α4: (2431)→ (2413)→ (2431)
α5: (4132)→ (4213)→ (4321)

In Figure 5

β1: (2431)→ (2413)→ (2413)→ (2431)
β2: (2431)→ (3241)→ (4321)→ (4132)→ (4213)→ (4321)
β3: (4132)→ (4213)→ (4213)→ (4321)
β4: (4132)→ (3142)→ (4132)
β5: (2431)→ (3241)→ (4321)
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In Figure 6

γ1: (2431)→ (3241)→ (3241)→ (4321)
γ2: (2431)→ (2413)→ (2431)
γ3: (4132)→ (3142)→ (3142)→ (4132)
γ4: (4132)→ (4213)→ (4321)
γ5: (2431)→ (3241)→ (4321)
γ6: (2431)→ (2413)→ (2413)→ (2431)
γ7: (4132)→ (3142)→ (4132)
γ8: (4132)→ (4213)→ (4213)→ (4321)

In Figure 7

ξ1: (4213)→ (4213)→ (4321)
ξ2: (2413)→ (2413)→ (2431)→ (2413)→ (2413)→ (2431)
ξ3: (2431)→ (3241)→ (3241)→ (4321)→ (4132)→ (4213)→ (4321)
ξ4: (2431)→ (2413)→ (2413)→ (2431)
ξ5: (3241)→ (3241)→ (4321)
ξ6: (3142)→ (3142)→ (4132)→ (3142)→ (3142)→ (4132)
ξ7: (4132)→ (4213)→ (4213)→ (4321)→ (2431)→ (3241)→ (4321)
ξ8: (4132)→ (3142)→ (3142)→ (4132)
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