

Winter term 2015/16
Dec 23, 2015

Functional Analysis II

Holiday Extra

Problem A (Measurable functional calculus for commuting self-adjoint operators).
For $n \in \mathbb{N}$ let T_{1}, \ldots, T_{n} be pairwise commuting, bounded, self-adjoint operators on a separable Hilbert space \mathcal{H}, and let $\mathcal{S}:=\sigma\left(T_{1}\right) \times \cdots \times \sigma\left(T_{n}\right) \subset \mathbb{R}^{n}$. The goal of this exercise is to prove that there exists a unique map $\Phi: \mathcal{M}_{b}(\mathcal{S}) \rightarrow \mathcal{B}(\mathcal{H})$ such that
(a) $\Phi(1)=\mathbb{I}$, and $\Phi\left(\pi_{k}\right)=T_{k}$, where $\pi_{k}\left(t_{1}, \ldots, t_{n}\right):=t_{k}$ for all $k=1, \ldots, n$.
(b) Φ is a linear multiplicative involution.
(c) $\|\Phi(f)\| \leqslant\|f\|_{\infty}$ for all $f \in M_{b}(\mathcal{S})$, i.e. Φ is continuous.
(d) If $\left(f_{k}\right)_{k} \subset \mathcal{M}_{b}(\mathcal{S})$ converges pointwise to some $f \in \mathcal{M}_{b}(\mathcal{S})$ and $\sup _{n}\left\|f_{n}\right\|_{\infty}<\infty$, then $\Phi\left(f_{n}\right) x \rightarrow \Phi(f) x$ for each $x \in \mathcal{H}$.
(e) $\Phi(f) S=S \Phi(f)$ for any $S \in \mathcal{B}(\mathcal{H})$ that commutes with T_{1}, \ldots, T_{n}.
(i) Prove that for all Borel sets $A_{1}, \ldots, A_{n} \subset \mathbb{R}$, the operators $\chi_{A_{1}}\left(T_{1}\right), \ldots, \chi_{A_{n}}\left(T_{n}\right)$ commute, where $\chi_{A_{i}}$ denotes the characteristic function of A_{i} for $i=1, \ldots, n$.
(ii) Define Φ_{0} on step functions f over rectangles, i.e. for functions of the form

$$
f=\sum_{i=1}^{N} c_{i} \chi_{A_{1}^{(i)} \times \cdots \times A_{n}^{(i)}}, \quad \text { where } A_{k}^{(i)} \cap A_{k}^{(j)}=\emptyset \text { if } i \neq j \forall k=1, \ldots, n
$$

for some $N \in \mathbb{N}, c_{i} \in \mathbb{C}$ and Borel sets $A_{k}^{(i)} \subset \mathbb{R}$ for all $i=1, \ldots, N, k=1, \ldots, n$, by

$$
\Phi_{0}(f)=f\left(T_{1}, \ldots, T_{n}\right):=\sum_{i=1}^{N} c_{i} \chi_{A_{1}^{(i)}}\left(T_{1}\right) \cdots \chi_{A_{n}^{(i)}}\left(T_{n}\right) .
$$

Prove that Φ_{0} satisfies the properties $(a),(b)$, and (c) above.
(iii) Construct the continuous functional calculus on \mathcal{S}.
[Hint: Use uniform continuity and part (ii).]
(iv) Construct the measurable functional calculus described by (a)-(e) above.
(v) Prove that there exists a spectral measure E on \mathbb{R}^{n} (to be defined) such that

$$
\Phi(f)=\int_{\mathcal{S}} f\left(\lambda_{1}, \ldots, \lambda_{n}\right) d E_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}
$$

for all $f \in \mathcal{M}_{b}(\mathcal{S})$, in particular, $T_{k}=\int_{\mathcal{S}} \lambda_{k} d E_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}$ for all $k=1, \ldots, n$.
(vi) Prove that there exists a finite measure space (M, Σ, μ), an isometric isomorphism $U: \mathcal{H} \rightarrow L^{2}(M)$, and bounded measurable functions F_{1}, \ldots, F_{n} on M, such that

$$
\left(U T_{k} U^{-1} \varphi\right)(\xi)=F_{k}(\xi) \varphi(\xi)
$$

for μ-almost all $\xi \in M$ and all $k=1, \ldots, n$.

Problem B (Measurable functional calculus for normal operators).
Let T be a normal operator on a separable Hilbert space \mathcal{H}.
(i) Prove that there exists a unique map $\Phi: \mathcal{M}_{b}(\sigma(T)) \rightarrow \mathcal{B}(\mathcal{H})$ such that
(a) $\Phi(1)=\mathbb{I}$, and $\Phi(z)=T$, where $z: \sigma(T) \rightarrow \mathbb{C}, z \mapsto z$.
(b) Φ is a linear multiplicative involution.
(c) $\|\Phi(f)\| \leqslant\|f\|_{\infty}$ for all $f \in M_{b}(\sigma(T))$, i.e. Φ is continuous.
(d) If $\left(f_{k}\right)_{k} \subset \mathcal{M}_{b}(\sigma(T))$ converges pointwise to $f \in \mathcal{M}_{b}(\mathcal{S})$ and $\sup _{n}\left\|f_{n}\right\|_{\infty}<\infty$, then $\Phi\left(f_{n}\right) x \rightarrow \Phi(f) x$ for each $x \in \mathcal{H}$.
(e) $\Phi(f) S=S \Phi(f)$ for any $S \in \mathcal{B}(\mathcal{H})$ that commutes with T.
[Hint: Problem 25.]
(ii) There exists a spectral measure G on \mathbb{C} (to be defined) such that

$$
\Phi(f)=\int_{\sigma(T)} f(z) d G_{z}
$$

for all $f \in \mathcal{M}_{b}(\sigma(T))$, in particular, $T=\int_{\sigma(T)} z d G_{z}$.
(iii) There exists a finite measure space (M, Σ, μ), an isometric isomorphism $U: \mathcal{H} \rightarrow$ $L^{2}(M)$, and a bounded measurable function F on M, such that

$$
\left(U T U^{-1} \varphi\right)(\xi)=F(\xi) \varphi(\xi)
$$

for μ-almost all $\xi \in M$.

