

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD S. Gottwald

Winter term 2015/16 Jan 22, 2016

FUNCTIONAL ANALYSIS II Assignment 13

Problem 49. Prove that a densely defined operator T on a Hilbert space \mathcal{H} satisfying $\sigma(T) \subsetneq \mathbb{C}$ is necessarily closed.

Problem 50. Let P, Q be densely defined linear operators on a Hilbert space \mathcal{H} such that $\mathcal{D}(PQ) \cap \mathcal{D}(QP)$ is dense in \mathcal{H} , and

$$[P,Q] := PQ - QP = i\mathbb{I}.$$

Show that at least one of the operators P and Q has to be unbounded.

Problem 51 (Momentum operator on $[0, 2\pi]$). Consider the operators A_0 and A in $L^2([0, 2\pi])$ given by

$$A_0 f = -if', \quad \mathcal{D}(A_0) = \{ f \in C^1([0, 2\pi]) \mid f(0) = f(2\pi) = 0 \}, Af = -if', \quad \mathcal{D}(A) = \{ f \in C^1([0, 2\pi]) \mid f(0) = f(2\pi) \}.$$

- (i) Prove that A_0 and A are symmetric, and that $A_0 \subset A$.
- (*ii*) Find A_0^* .
- (*iii*) Find $\overline{A_0}$.
- (iv) Find A^* and prove that A is essentially self-adjoint.
- (v) Prove that A_0 has no eigenvalues.
- (vi) Prove that A admits an orthonormal basis of eigenvectors.
- (vii) Find all self-adjoint extensions of A_0 .

For more details please visit http://www.math.lmu.de/~gottwald/15FA2/