

Prof. T. Ø. SøRENSEN PhD
Winter term 2015/16
S. Gottwald

Jan 15, 2016

Functional Analysis II

Assignment 12

Problem 45 (Cyclic Vectors II). Consider the self-adjoint operators A, B in $L^{2}([-1,1])$ discussed in Problem 44, i.e. $A f(x)=x f(x)$ and $B f(x)=x^{2} f(x)$. Prove:
(i) $L^{2}([-1,1]) \cong \mathcal{H}_{1} \oplus \mathcal{H}_{2}$, where \mathcal{H}_{1} and \mathcal{H}_{2} are Hilbert spaces on which B has a cyclic vector.
(ii) $f \in L^{2}([-1,1])$ is a cyclic vector for A iff $f(x) \neq 0$ almost everywhere.

Problem 46 (Unbounded multiplication operators). Let X be a metric space and μ a positive measure on the Borel σ-algebra of X such that $\mu(\Lambda)<\infty$ for any bounded Borel set $\Lambda \subset X$. For a (possibly unbounded) measurable function $f: X \rightarrow \mathbb{C}$ consider the linear map M_{f} in $L^{2}(X, \mu)$ defined by

$$
\begin{aligned}
\mathcal{D}\left(M_{f}\right) & :=\left\{\varphi \in L^{2}(X, \mu) \mid f \varphi \in L^{2}(X, \mu)\right\} \\
M_{f} \varphi & :=f \varphi .
\end{aligned}
$$

Prove:
(i) $\mathcal{D}\left(M_{f}\right)$ is dense in $L^{2}(X, \mu)$.
(ii) $\left(M_{f}\right)^{*}=M_{\bar{f}}$.
(iii) $\sigma\left(M_{f}\right)=\operatorname{essran} f=\{\lambda \in \mathbb{C} \mid \forall \varepsilon>0: \mu(\{x \in X| | \lambda-f(x) \mid<\varepsilon\})>0\}$.
(iv) λ is an eigenvalue of M_{f} iff $\mu\left(f^{-1}(\{\lambda\})\right)>0$.
(v) Let $X=\mathbb{R}$, let μ be the Lebesgue measure on \mathbb{R}, and let $f(x):=x \forall x \in \mathbb{R}$. Then the position operator $q:=M_{f}$ is self-adjoint, has no eigenvalues, and $\sigma(q)=\mathbb{R}$.

Problem 47 (Properties of the adjoint). Let A and B be densely defined operators on a Hilbert space \mathcal{H}. Prove:
(i) $(\alpha A)^{*}=\bar{\alpha} A^{*} \quad \forall \alpha \in \mathbb{C}$.
(ii) If $\mathcal{D}(A+B)=\mathcal{D}(A) \cap \mathcal{D}(B)$ and $\mathcal{D}\left(A^{*}+B^{*}\right)=\mathcal{D}\left(A^{*}\right) \cap \mathcal{D}\left(B^{*}\right)$ are dense in \mathcal{H} then $(A+B)^{*} \supset A^{*}+B^{*}$.
(iii) If $\mathcal{D}(A B)$ is dense, then $(A B)^{*} \supset B^{*} A^{*}$.
(iv) If $A \subset B$ then $A^{*} \supset B^{*}$.
(v) If A is self-adjoint then A has no symmetric extensions.
(vi) $N\left(A^{*}\right)=R(A)^{\perp}$.

Problem 48 (von Neumann's Theorem).
(i) Let A be a symmetric operator on a Hilbert space \mathcal{H} and assume there exists a map $C: \mathcal{H} \rightarrow \mathcal{H}$ with the following properties:
(a) C is anti-linear (i.e. $C(\alpha x+y)=\bar{\alpha} C(x)+C(y))$.
(b) C is norm-preserving.
(c) $C^{2}=\mathbb{I}$.
(d) $\mathcal{D}(A)$ is invariant under C.
(e) $A C=C A$ on $\mathcal{D}(A)$.
[Remark: A map satisfying $(a)-(c)$ is called a conjugation.]
Prove that A has self-adjoint extensions.
(ii) Consider the operator H in $L^{2}\left(\mathbb{R}^{d}\right)$ given by

$$
\begin{aligned}
\mathcal{D}(H) & =C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \\
(H \psi)(x) & =-\Delta \psi(x)+V(x) \psi(x) \quad \text { for a.e. } x \in \mathbb{R}^{d}
\end{aligned}
$$

where $\Delta=\sum_{j=1}^{d} \partial_{j}^{2}$ and $V \in L_{l o c}^{2}\left(\mathbb{R}^{d}\right)$ is real-valued. Show that H is symmetric and has at least one self-adjoint extension.

