

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD S. Gottwald Winter term 2015/16 Dec 18, 2015

FUNCTIONAL ANALYSIS II ASSIGNMENT 10

Problem 37. Let \mathcal{H} be a Hilbert space and let $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint. Prove:

- (i) The operator $|A| = \sqrt{A^*A}$ constructed with Hilbert space techniques (see Problem 18) coincides with |A| defined via the functional calculus.
- (ii) $A \leq |A|$.
- (iii) There exists a unique pair $A_+, A_- \in \mathcal{B}(\mathcal{H})$ of self-adjoint operators such that

$$A_{+}, A_{-} \geqslant \mathbb{O}$$
, $A_{+}A_{-} = \mathbb{O}$, $A = A_{+} - A_{-}$.

Problem 38 (Operator monotone functions). A continuous real-valued function f on an interval I is said to be *operator monotone* (on the interval I), if $A \leq B$ implies that $f(A) \leq f(B)$ for all self-adjoint operators $A, B \in \mathcal{B}(\mathcal{H})$ such that $\sigma(A) \subset I$ and $\sigma(B) \subset I$.

- (i) Prove that f_{α} given by $f_{\alpha}(t) := \frac{t}{1+\alpha t}$ is operator monotone on \mathbb{R}_+ if $\alpha \geqslant 0$.
- (ii) Let $\alpha \in [0,1]$, and $A, B \in \mathcal{B}(\mathcal{H})$ be such that $0 \leqslant A \leqslant B$. Prove that $0 \leqslant A^{\alpha} \leqslant B^{\alpha}$, i.e. that $x \mapsto x^{\alpha}$ is operator monotone on \mathbb{R}_+ . [Hint: You may want to use that for all $x \geqslant 0$ we have $x^{\alpha} = \frac{\sin(\alpha \pi)}{\pi} \int_0^{\infty} \frac{x}{x+\lambda} \frac{d\lambda}{\lambda^{1-\alpha}}$ for all $\alpha \in (0,1)$.]
- (iii) Find a counterexample for (ii) when $\alpha > 1$.

Problem 39. Let $A: L^2([0,1]) \to L^2([0,1])$ be given by Af(x) := xf(x) for a.e. $x \in [0,1]$.

- (i) Prove that $A=A^*,\,\|A\|=1$ and $\sigma(A)=[0,1].$
- (ii) Give the explicit action of $f(A) \in \mathcal{B}(L^2([0,1]))$ for any bounded measurable function $f:[0,1] \to \mathbb{C}$.
- (iii) For any $\psi \in L^2([0,1])$ express $(\psi, f(A)\psi)$ as an integral with respect to the measure $\Omega \mapsto (\psi, E_{\Omega}\psi)$, where E denotes the projection-valued measure given by A.

Problem 40. Let \mathcal{H} be a Hilbert space, let $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint, and let E denote the projection-valued measure given by A. Prove:

- (i) For any Borel set $\Omega \subset \sigma(A)$, the subspace $R(E_{\Omega})$ is invariant under A.
- (ii) If $\Omega \subset \sigma(A)$ is closed, then $\sigma(A|_{R(E_{\Omega})}) \subset \Omega$.

For more details please visit http://www.math.lmu.de/~gottwald/15FA2/