MATHEMATISCHES INSTITUT

Prof. T. Ø. SøRENSEN PhD
S. Gottwald

Winter term 2015/16
November 27, 2015

Functional Analysis II
 Assignment 7

Problem 25. Let \mathcal{H} be a complex Hilbert space and let $A \in \mathcal{B}(\mathcal{H})$. Prove:
(i) There exist unique self-adjoint operators $R_{A}, I_{A} \in \mathcal{B}(\mathcal{H})$ such that $A=R_{A}+i I_{A}$.
(ii) A is normal iff $\left[R_{A}, I_{A}\right]:=R_{A} I_{A}-I_{A} R_{A}=\mathbb{O}$.
(iii) A is unitary iff A is normal and $R_{A}^{2}+I_{A}^{2}=\mathbb{I}$.
(iv) If $T=T^{*}$ and $\|T\| \leqslant 1$, then $U:=T+i \sqrt{\mathbb{I}-T^{2}}$ is unitary and $T=\frac{1}{2}\left(U+U^{*}\right)$.
(v) There exist unitary operators U_{1}, \ldots, U_{4} and $a_{1}, \ldots, a_{4} \in \mathbb{C}$ such that

$$
A=a_{1} U_{1}+a_{2} U_{2}+a_{3} U_{3}+a_{4} U_{4}
$$

and $\left|a_{j}\right| \leqslant\|A\| / 2$ for all j.

Problem 26 (Weyl sequences - II). Let \mathcal{H} be a Hilbert space and let $T \in \mathcal{B}(\mathcal{H})$. Prove:
(i) If $\lambda \in \sigma(T)$ then there exists a Weyl sequence for T at λ or for T^{*} at $\bar{\lambda}$.
(ii) If T is normal $\left(T^{*} T=T T^{*}\right)$, then $\lambda \in \sigma(T)$ iff T has a Weyl sequence at λ.
(iii) If T is self-adjoint and λ is an isolated point in $\sigma(T)$ then λ is an eigenvalue of T.

Problem 27. Let A be a compact self-adjoint operator on a Hilbert space \mathcal{H}. For $n \in \mathbb{Z}$ let λ_{n} denote its eigenvalues labeled such that they may be repeated due to multiplicity and

$$
\lambda_{-1} \leqslant \lambda_{-2} \leqslant \cdots<0<\cdots \leqslant \lambda_{2} \leqslant \lambda_{1} .
$$

Prove that for each $n \in \mathbb{N}$

$$
\lambda_{n}=\inf _{\mathcal{H}_{n-1}} \sup _{\substack{x \perp \mathcal{H}_{n-1} \\\|x\|=1}}\langle x, A x\rangle, \quad \lambda_{-n}=\sup _{\mathcal{H}_{n-1}} \inf _{\substack{x \perp \mathcal{H}_{n-1} \\\|x\|=1}}\langle x, A x\rangle,
$$

where $\inf _{\mathcal{H}_{n-1}}$ and $\sup _{\mathcal{H}_{n-1}}$ are over all possible $(n-1)$-dimensional subspaces \mathcal{H}_{n-1} of \mathcal{H}.

Problem 28 (Volterra integral operator - II). Let $V: L^{2}[0,1] \rightarrow L^{2}[0,1]$ be the Volterra integral operator introduced in Problem 20, i.e. $V f(x)=\int_{0}^{x} f(y) d y$.
(i) Show that if $f \in L^{2}[0,1]$ is an eigenfunction of the operator $V^{*} V$ with eigenvalue λ, then $\lambda>0, f$ is twice differentiable a.e., and $\lambda f^{\prime \prime}+f=0$ a.e. in $[0,1]$.
[Hint: You may use without proof that if f is integrable then $x \mapsto \int_{0}^{x} f(y) d y$ is a.e. differentiable with derivative f (Lebesgue differentiation theorem).]
(ii) Find the collection $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of all eigenvalues of $V^{*} V$, and check that the corresponding family of eigenfunctions $\left\{f_{n}\right\}_{n=1}^{\infty}$ is (up to normalization) an ONB in $L^{2}[0,1]$.
[Note: This exercise is intended to be done without using the spectral theorem for normal compact operators.]
(iii) Deduce from (ii) that $\|V\|=\frac{2}{\pi}$.

