

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD S. Gottwald Winter term 2015/16 November 13, 2015

FUNCTIONAL ANALYSIS II Assignment 5

Problem 17. Let X be a Banach space and $T \in \mathcal{B}(X)$. Prove for any polynomial p on \mathbb{C} of degree $n \ge 1$ that

$$\sigma(p(T)) = p(\sigma(T)).$$

Problem 18 (Square root of positive semidefinite operators). Let \mathcal{H} be a Hilbert space and let $T \in \mathcal{B}(\mathcal{H})$ be positive semidefinite. If T were compact then the Spectral Theorem for compact operators would allow to construct the square root of T in a straightforward way (see lecture). Even though we do not have the Spectral Theorem for self-adjoint operators at our disposal yet, we can still construct \sqrt{T} in this case from scratch, as will be done in this exercise. Prove:

(i) The power series $\sqrt{1-x} = \sum_{n=0}^{\infty} c_n x^n$ converges absolutely for $|x| \leq 1$, where

$$c_n = \left. \frac{1}{n!} \left. \frac{d^n}{dx^n} \right|_{x=0} \sqrt{1-x} \, .$$

(*ii*) The series $S := \sqrt{\|T\|} \sum_{n=0}^{\infty} c_n \left(I - \frac{1}{\|T\|}T\right)^n$ converges in $\mathcal{B}(\mathcal{H}), S \ge 0$, and $S^2 = T$.

(*iii*) The operator $S \in \mathcal{B}(\mathcal{H})$ such that $S \ge 0$ and $S^2 = T$ is unique.

Problem 19 (Perturbation of the spectrum by compact operators).

- (i) Let X be a Banach space and let $S, T \in \mathcal{B}(X)$ be such that T-S is compact. Prove that $\sigma(T) \setminus \sigma_p(T) \subset \sigma(S)$. [*Hint:* Fredholm Alternative.]
- (*ii*) Let \mathcal{H} be a Hilbert space and let $U \in \mathcal{B}(\mathcal{H})$ be a unitary operator. Prove that

$$\sigma(U) \subset \{\lambda \in \mathbb{C} : |\lambda| = 1\}.$$

(*iii*) The fact proved in (*i*) does not exclude that the two spectra may look considerably different. As an example, find a bounded operator A and a compact operator K on a Hilbert space \mathcal{H} such that

$$\sigma(A) \subset \{\lambda \in \mathbb{C} : |\lambda| = 1\}, \ \sigma(A + K) = \{\lambda \in \mathbb{C} : |\lambda| \leq 1\}.$$

Problem 20 (Volterra integral operator). Let $V: L^2([0,1]) \to L^2([0,1])$ be given by

$$(Vf)(x) := \int_0^x f(y) \, dy \, .$$

Prove the following:

- (i) V is a well-defined, bounded operator in $L^2([0,1])$.
- (ii) V is compact.
- (*iii*) $\sigma_p(V) = \emptyset$.
- $(iv) \ \sigma(V) = \{0\}.$
- (v) $\sigma_r(V) = \emptyset$.
- (vi) $V+V^*$ is an orthogonal projection with dim $R(V+V^*) = 1$.

For more details please visit http://www.math.lmu.de/~gottwald/15FA2/