

Prof. T. Ø. SøRENSEN PhD
S. Gottwald

Winter term 2015/16
November 13, 2015

Functional Analysis II
 Assignment 5

Problem 17. Let X be a Banach space and $T \in \mathcal{B}(X)$. Prove for any polynomial p on \mathbb{C} of degree $n \geqslant 1$ that

$$
\sigma(p(T))=p(\sigma(T))
$$

Problem 18 (Square root of positive semidefinite operators). Let \mathcal{H} be a Hilbert space and let $T \in \mathcal{B}(\mathcal{H})$ be positive semidefinite. If T were compact then the Spectral Theorem for compact operators would allow to construct the square root of T in a straightforward way (see lecture). Even though we do not have the Spectral Theorem for self-adjoint operators at our disposal yet, we can still construct \sqrt{T} in this case from scratch, as will be done in this exercise. Prove:
(i) The power series $\sqrt{1-x}=\sum_{n=0}^{\infty} c_{n} x^{n}$ converges absolutely for $|x| \leqslant 1$, where

$$
c_{n}=\left.\frac{1}{n!} \frac{d^{n}}{d x^{n}}\right|_{x=0} \sqrt{1-x}
$$

(ii) The series $S:=\sqrt{\|T\|} \sum_{n=0}^{\infty} c_{n}\left(I-\frac{1}{\|T\|} T\right)^{n}$ converges in $\mathcal{B}(\mathcal{H}), S \geqslant 0$, and $S^{2}=T$.
(iii) The operator $S \in \mathcal{B}(\mathcal{H})$ such that $S \geqslant 0$ and $S^{2}=T$ is unique.

Problem 19 (Perturbation of the spectrum by compact operators).
(i) Let X be a Banach space and let $S, T \in \mathcal{B}(X)$ be such that $T-S$ is compact. Prove that $\sigma(T) \backslash \sigma_{p}(T) \subset \sigma(S)$. [Hint: Fredholm Alternative.]
(ii) Let \mathcal{H} be a Hilbert space and let $U \in \mathcal{B}(\mathcal{H})$ be a unitary operator. Prove that

$$
\sigma(U) \subset\{\lambda \in \mathbb{C}:|\lambda|=1\}
$$

(iii) The fact proved in (i) does not exclude that the two spectra may look considerably different. As an example, find a bounded operator A and a compact operator K on a Hilbert space \mathcal{H} such that

$$
\sigma(A) \subset\{\lambda \in \mathbb{C}:|\lambda|=1\}, \sigma(A+K)=\{\lambda \in \mathbb{C}:|\lambda| \leqslant 1\} .
$$

Problem 20 (Volterra integral operator). Let $V: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ be given by

$$
(V f)(x):=\int_{0}^{x} f(y) d y
$$

Prove the following:
(i) V is a well-defined, bounded operator in $L^{2}([0,1])$.
(ii) V is compact.
(iii) $\sigma_{p}(V)=\emptyset$.
(iv) $\sigma(V)=\{0\}$.
$(v) \sigma_{r}(V)=\emptyset$.
(vi) $V+V^{*}$ is an orthogonal projection with $\operatorname{dim} R\left(V+V^{*}\right)=1$.

