

Prof. T. Ø. SøRENSEN PhD
S. Gottwald

Winter term 2015/16
November 6, 2015

Functional Analysis II

Assignment 4

Problem 13 (Spectrum of the product). Let X be a Banach space and $S, T \in \mathcal{B}(X)$.
(i) Prove that $\sigma(T S) \cup\{0\}=\sigma(S T) \cup\{0\}$.
(ii) Show that $\sigma(T S)=\sigma(S T)$ is not true in general.

Problem 14 (Spectrum of self-adjoint operators). Let A be a bounded self-adjoint operator on a Hilbert space \mathcal{H}, i.e. $A^{*}=A$. Prove the following:
(i) $\sigma(A) \subset\left[\inf _{x \in \mathcal{H},\|x\|=1}\langle x, A x\rangle, \sup _{x \in \mathcal{H},\|x\|=1}\langle x, A x\rangle\right] \subset \mathbb{R}$.
(ii) $\sigma_{r}(A)=\emptyset$.
(iii) If $x, y \in \mathcal{H}$ and $\lambda \neq \mu$ are such that $A x=\lambda x$ and $A y=\mu y$ then $\langle x, y\rangle=0$.
(iv) If $\sigma(A)=\{0\}$ then $A=\mathbb{O}$.

Problem 15 (Weyl sequences). Let X be a Banach space and $T \in \mathcal{B}(X)$. A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X is called a Weyl sequence of T at $\lambda \in \mathbb{C}$, if $\left\|x_{n}\right\|=1$ for all $n \in \mathbb{N}$ and $\left\|T x_{n}-\lambda x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Prove:
(i) If T has a Weyl sequence at $\lambda \in \mathbb{C}$ then $\lambda \in \sigma(T)$.
(ii) If $\lambda \in \partial \sigma(T)$ then T has a Weyl sequence at $\lambda \in \mathbb{C}$.

Now, let \mathcal{H} be a Hilbert space and let $T \in \mathcal{B}(\mathcal{H})$ be self-adjoint.
(iii) Prove that T has a Weyl sequence at λ iff $\lambda \in \sigma(T)$.

Problem 16 (Multiplication operators II). Let (X, μ) be a σ-finite measure space, let $1 \leqslant p<\infty$, and for a measurable function $h: X \rightarrow \mathbb{C}$ let

$$
\Omega_{h}:=\left\{f \in L^{p}(X, \mu): h f \in L^{p}(X, \mu)\right\}
$$

Let $M_{h}: \Omega_{h} \rightarrow L^{p}(X, \mu), f \mapsto h f$.
(i) Prove that $M_{h} \in \mathcal{B}\left(L^{p}(X, \mu)\right)$ iff $h \in L^{\infty}(X, \mu)$.

Assuming $h \in L^{\infty}(X, \mu)$ prove the following:
(ii) $\sigma_{p}\left(M_{h}\right)=\{\lambda \in \mathbb{C}: \mu(\{x \in X: h(x)=\lambda\})>0\}$.
(iii) $\rho\left(M_{h}\right)=\{\lambda \in \mathbb{C}: \exists c>0$ such that $|\lambda-h(x)| \geqslant c$ a.e. $\}$.

For more details please visit http://www.math.lmu.de/~gottwald/15FA2/

