

Prof. T. Ø. SøRENSEN PhD
S. Gottwald

Winter term 2015/16
October 23, 2014

Functional Analysis II

Assignment 2

Problem 5 (Projections I). Let V be a linear space and let P be a projection on V, that is, a linear map $P: V \rightarrow V$ such that $P^{2}=P$. Prove:
(i) $R(P)=N(I-P)$.
(ii) $V=R(P) \oplus N(P)$, where \oplus denotes the direct sum.

Let \mathcal{H} be a Hilbert space. A projection $P: \mathcal{H} \rightarrow \mathcal{H}$ is called orthogonal if $\mathrm{R}(P) \perp \mathrm{N}(P)$.
(iii) Prove that a projection $P: \mathcal{H} \rightarrow \mathcal{H}$ is orthogonal iff $P \in \mathcal{B}(\mathcal{H})$ and $P^{*}=P$.
(iv) Let A be a linear subspace of \mathcal{H}. Show that there exists a unique orthogonal projection $P_{A}: \mathcal{H} \rightarrow \mathcal{H}$ with $R\left(P_{A}\right)=\bar{A}$. [Hint: Projection Theorem.]

Let $P: \mathcal{H} \rightarrow \mathcal{H}$ be an orthogonal projection.
(v) Calculate $\sigma_{p}(P)$ and $\sigma(P)$.
(vi) Find an explicit expression for $R_{\lambda}(P)=(P-\lambda I)^{-1}$ whenever $\lambda \in \rho(P)$.

Problem 6. For $w \in \ell^{\infty}(\mathbb{N})$ let $T_{w}: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be the componentwise multiplication by $w=\left(w_{1}, w_{2}, \ldots\right)$, i.e.

$$
T_{w} x:=\left(w_{1} x_{1}, w_{2} x_{2}, \ldots\right)
$$

(i) Show that T_{w} is bounded and calculate its norm.
(ii) Find the explicit action of the adjoint T_{w}^{*}.
(iii) Find the subsets of w 's in $\ell^{\infty}(\mathbb{N})$ for which $T_{w}^{*} T_{w}=T_{w} T_{w}^{*}$, for which $T_{w}=T_{w}^{*}$, and for which T_{w} is compact.
(iv) Determine $\sigma_{p}\left(T_{w}\right)$ and prove that $\overline{\sigma_{p}\left(T_{w}\right)}=\sigma\left(T_{w}\right)$.

Problem 7. Let X be a Banach space and let $T \in \mathcal{B}(X)$ be bijective. Prove:
(i) $\sigma\left(T^{-1}\right)=\frac{1}{\sigma(T)}:=\left\{\lambda^{-1} \in \mathbb{C} \mid \lambda \in \sigma(T)\right\}$.
(ii) If $T x=\lambda x$ for some $\lambda \neq 0$ and $x \in X$, then $T^{-1} x=\lambda^{-1} x$.

Problem 8. Let X be a Banach space, let $T \in \mathcal{B}(X)$, let $\rho(T)$ be the resolvent set of T and for $\lambda \in \rho(T)$ let $R_{\lambda}(T)=(T-\lambda I)^{-1}$ be the resolvent of T at λ. Prove the following:
(i) $R_{\lambda}(T)-R_{\mu}(T)=(\lambda-\mu) R_{\lambda}(T) R_{\mu}(T)$ for all $\lambda, \mu \in \rho(T)$.
(ii) $R_{\lambda}(T)-R_{\lambda}(S)=R_{\lambda}(T)(S-T) R_{\lambda}(S)$ for all $S \in \mathcal{B}(X)$ and $\lambda \in \rho(T) \cap \rho(S)$.
(iii) If $\lambda \in \mathbb{C}$ is such that $\left|\lambda-\lambda_{0}\right|<\left\|R_{\lambda_{0}}(T)\right\|^{-1}$ for some $\lambda_{0} \in \rho(T)$, then $\lambda \in \rho(T)$ and

$$
R_{\lambda}(T)=\sum_{n=0}^{\infty}\left(\lambda-\lambda_{0}\right)^{n} R_{\lambda_{0}}(T)^{n+1}
$$

(iv) $R_{\lambda}(T)=-\sum_{n=0}^{\infty} \lambda^{-1-n} T^{n}$ for $|\lambda|>\|T\|$.
(v) $\left\|R_{\lambda}(T)\right\| \geqslant(\operatorname{dist}(\lambda, \sigma(T)))^{-1}$ for all $\lambda \in \rho(T)$.
(vi) The map $\rho(T) \rightarrow \mathcal{B}(X), \lambda \mapsto R_{\lambda}(T)$ is continuous.
(vii) The map in (vi) has a derivative, in the sense that

$$
\frac{d}{d \lambda} R_{\lambda}(T):=\lim _{h \rightarrow 0} \frac{1}{h}\left(R_{\lambda+h}(T)-R_{\lambda}(T)\right)
$$

exists in $\mathcal{B}(X)$. In fact, $\frac{d}{d \lambda} R_{\lambda}(T)=R_{\lambda}(T)^{2}$.

