

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD S. Gottwald Winter term 2015/16 October 12, 2015

FUNCTIONAL ANALYSIS II ASSIGNMENT 1

Problem 1 (Examples of compact and non-compact operators). Let X and Y be normed spaces. Decide which of the following operators are compact:

- (i) $T: C[0,1] \to C[0,1], Tf(x) = f(0) + xf(1).$
- (ii) $id: X \to X, x \mapsto x$.
- (iii) $F \in \mathcal{B}(X,Y)$ with dim Ran $(F) < \infty$ (finite-rank operator).

Problem 2 (Some properties of compact operators). Let X, Y and Z be Banach spaces. Prove the following statements:

- (i) $\mathcal{K}(X,Y)$ is a closed subspace of $\mathcal{B}(X,Y)$.
- (ii) For $A \in \mathcal{B}(X,Y)$ and $B \in \mathcal{B}(Y,Z)$, we have $BA \in \mathcal{K}(X,Z)$ if A or B is compact.
- (iii) If dim $X = \infty$ and $T \in \mathcal{K}(X)$, then $0 \in \sigma(T)$.
- (iv) If $T \in \mathcal{K}(X,Y)$, then Ran(T) is closed if and only if T is a finite-rank operator.

Problem 3. Let \mathcal{H} be a separable Hilbert space, let $\{\varphi_n\}_n$ be an orthonormal basis of \mathcal{H} , and let P_N be the orthogonal projection onto the span of $\{\varphi_1, \ldots, \varphi_N\}$. Prove for $T \in \mathcal{K}(\mathcal{H})$ that

$$T \circ P_N \xrightarrow{\|\cdot\|} T$$
, as $N \to \infty$.

[Remark: This shows that any compact operator on \mathcal{H} is the limit of a sequence of finite-rank operators. Although this statement can be extended to compact operators on non-separable Hilbert spaces, it cannot be generalized to arbitrary Banach spaces.]

Problem 4 (Multiplication operators). For $1 \leq p < \infty$ and $h \in L^{\infty}[0,1]$ let

$$M_{p,h}: L^p[0,1] \to L^p[0,1], \quad M_{p,h}f(x) := h(x)f(x)$$

denote the operator of multiplication by h.

- (i) Find the adjoint $M'_{p,h}$ of $M_{p,h}$ as an operator on $L^q[0,1]$, where 1/p + 1/q = 1.
- (ii) Prove that $M_{p,h}$ is compact if and only if h = 0.

[Hint: Find a closed subspace $V \subset L^p[0,1]$ such that $M_{p,h}|_V : V \to V$ is surjective.]