
Bohmian Me
hani
sDetlef D�urrMathematis
hes InstitutUniversit�at M�un
henTheresienstr. 3980333 M�un
hen, Germany1 The Theory1.1 EquationsBohmian me
hani
s is a quantum theory without observers [1,2℄. This meansthat neither the a
t of observation nor the notion of observer play any role inde�ning the theory { the theory is not about observers and observation { and itexplains all non relativisti
 quantum phenomena. The theory is about somethingprimitive1, the basi
 ontology, and the laws for that are given.Bohmian me
hani
s is a deterministi
 theory of point parti
les. Like Newto-nian me
hani
s it is invariant under Galilei transformations, but unlike Newto-nian me
hani
s it is a �rst-order theory { a

eleration is not a 
on
ept enteringthe law of motion. Rather this law dire
tly determines the velo
ities of the par-ti
les as follows.For an N -parti
le system the positions of the N parti
les form the 
on�gu-ration spa
e variable Q = (Q1; : : : ;QN ) 2 R3N , Qk 2 R3 being the position ofk-th parti
le. The motion of the 
on�guration is determined by a time-dependentwave fun
tion on 
on�guration spa
e  (q; t) 2 C , q = (q1; : : : ; qN ) 2 R3N , thatobeys S
hr�odingers equation (mk is the mass of the k-th parti
le and V is thepotential) i~� (q; t)�t = � NXk=1 ~22mk�k (q; t) + V (q) (q; t): (1)The wave fun
tion's role is to indu
e a velo
ity-ve
tor�eld on 
on�guration spa
ev (q), the integral 
urves of whi
h are the traje
tories of the parti
lesdQkdt = v k (Q) = ~mk Im( �rk ) � (Q1; : : : ;QN ): (2)To solve (1), (2) one needs an initial 
on�guration (i.e. the initial positions ofall the parti
les) and an initial wave fun
tion.In [3℄ we show how the law of motion may be seen as emerging in a naturalmanner from the requirement that it be invariant under Galileian transforma-tions.1 In 
ontrast, observers are 
ompli
ated obje
ts, made of many parts: for example onemay get a hair
ut and still be fun
tioning as observer.



2 Detlef D�urrNon Newtonian Chara
ter Bohmian me
hani
s is a �rst-order theory: Giventhe velo
ity �eld, spe
ifying the positions of the parti
les at one time �xes thetraje
tories. Newtonian me
hani
s needs both position and velo
ity spe
i�ed forthe motion to be determined. Di�erentiating (2) with respe
t to time t does notrender the theory se
ond order, no more than does a Newtonian theory be
omea third order theory by di�erentiating m�x = F with respe
t to time. Never-theless David Bohm, who worked this theory out in 1952 [4,5℄, presented this�rst-order theory also in the Newtonian looking se
ond-order form. It is 
learlyuseful to take the �rst-order 
hara
ter seriously. For example 
on�guration spa
etraje
tories 
an never 
ross ea
h other. Bell [1℄ also emphasized the �rst-order
hara
ter. He writes the right hand side of (2) as the quotient of the quantum
ux j and the density � = j j2, the signi�
an
e of whi
h I shall address later.Nonlo
al Chara
ter The wave fun
tion is a fun
tion on 
on�guration spa
e.That spa
e is not `ans
hauli
h' like physi
al spa
e, it is abstra
t. But sin
e thewave fun
tion is part of the law of the motion it is important for the under-standing of Bohmian me
hani
s that the abstra
t 
on�guration spa
e be takenseriously. The role played by the 
on�guration spa
e wave fun
tion in de�ningthe motion makes Bohmian me
hani
s nonlo
al: Looking at (2), the velo
ity ofea
h parti
le depends on the position of all the other parti
les no matter how farthe other parti
les are away. The amount of a
tion at a distan
e depends onlyon the degree of entanglement of the wave fun
tion on 
on�guration spa
e, thatis, the extent to whi
h the wave fun
tion di�ers from a produ
t of single parti
lewave fun
tions.Be
ause of the observed violations of Bell's inequalities [1℄ (see [6℄ for variousexamples), nature is nonlo
al. A fundamentally 
orre
t physi
al theory musttherefore be nonlo
al. Bohmian me
hani
s shows that this 
an naturally bea
hieved { by in
orporating the wave fun
tion on 
on�guration spa
e as physi
al�eld, whi
h is naturally a nonlo
al obje
t.Names The theory goes under various names, but it's always Bohmian me-
hani
s: Causal Interpretation [4℄, de Broglie-Bohm pilot wave theory (Bell [1℄),or de Broglie-Bohm theory, or pilot wave theory (Valentini in this volume) orsimply Bohm's theory. De Broglie's name appears be
ause de Broglie presentedrelu
tantly the equations of Bohmian me
hani
s (whi
h even earlier had beenwritten down by Madelung, for a 
uid pi
ture of the wave evolution) at theSolvay 
onferen
e 1927, but in the dis
ussion with Pauli at this 
onferen
e, hefound himself unable to defend his ideas. A sto
hasti
 version of Bohmian me-
hani
s, where the traje
tories are perturbed by white noise, exists, namely,sto
hasti
 me
hani
s (sometimes 
alled Nelson's sto
hasti
 me
hani
s [7℄).Point Parti
le Theories Other deterministi
 point parti
le theories are forexample Newtonian me
hani
s and the relativisti
 Wheeler{Feynman Ele
tro-magnetism [8℄ of point 
harges { a theory without �elds. (For a relativisti
 theory



Bohmian Me
hani
s 3of extended 
harges and �elds see the 
ontribution by Mi
hael Kiessling in thisvolume.)While in these theories physi
ists agree that the parti
les are ontologi
al, theparti
les in Bohmian me
hani
s are often seen with distrust and given funnyattributes (Adler in this volume 
alls them hidden `parti
les'). On the one hand,this is understandable be
ause orthodox quantum me
hani
s forbids us to talkabout the traje
tories of parti
les. On the other hand, the point parti
les areontologi
al in Bohmian me
hani
s { they are, in fa
t, what the theory is about.Ignoring them, the theory be
omes a theory about nothing, pretty mu
h likeorthodox quantum me
hani
s, where one resorts to the dubious notion of ob-server as fundamental. To understand Bohmian me
hani
s and how quantumphenomena emerge from it, it is ne
essary that the parti
les be ontologi
al { i.e.,be taken seriously.Other Quantum Theories Without Observers A pure wave fun
tion ontol-ogy, with no parti
les as part of the ontology, lies behind the idea of the 
ollapsemodels of quantum me
hani
s, and they are dis
ussed in this volume by AlbertoRimini and Gian Carlo Ghirardi. So I say nothing more.The program of De
oherent Histories or Consistent Histories arises in myunderstanding also from the wish to have fa
ts in the quantum world withoutthe a
tion of some observer's mind. Roland Omn�es reports about that in thisvolume.1.2 Frequently Asked QuestionsI answer brie
y some questions that may arise immediately when the theory ispresented as above. Typi
ally the questions are of the nature: But isn't there aproblem with this and that? and the answer is: No, there is no problem.What About Spin? Can Bohmian me
hani
s deal with spin?Instead of the wave fun
tion  (q; t) 2 C let  (q; t) 2 (spinspa
e =) C k ; k =1; 2; 3; :::, i.e. the wave fun
tion is a spinor, whi
h de�nes then the velo
ity �eldin an obvious way, namely by using the inner produ
t in spinspa
e in (2) [9℄.The S
hr�odinger equation (1) is then repla
ed by the Pauli equation, involvingele
tromagneti
 �elds and Pauli matri
es. Spin is thus a property of the wavefun
tion.What About Fermions or Bosons? Can Bohmian me
hani
s des
ribe indis-tinguishable parti
les?In (1) and (2) the parti
les are labeled, as if they were distinguishable (forexample by di�erent masses). To formulate Bohmian me
hani
s for indistinguish-able parti
les one may demand that the law be invariant under permutation ofthe (arti�
ially introdu
ed) labels, or one may formulate Bohmian me
hani
s



4 Detlef D�urrfrom the beginning on the right 
on�guration spa
e of indistinguishable par-ti
les. As one might expe
t both approa
hes establish that only symmetri
 orantisymmetri
 wave fun
tions 
an be used in the formulation of the law [12℄.What About the Newtonian Limit? Does Newtonian me
hani
s emergefrom Bohmian me
hani
s?The Newtonian limit or 
lassi
al limit of Bohmian me
hani
s is a limit inwhi
h the Bohmian traje
tories be
ome Newtonian. There are various physi
alsituations in whi
h this is the 
ase. The question itself presents no 
on
eptualdiÆ
ulties. Con
erning the transition of a �rst-order theory to a se
ond ordertheory, one may note that the Bohmian traje
tories do have at a given time (saythe initial time) a position and a velo
ity, and that the velo
ity is determined bythe wave fun
tion. The extra degree of freedom needed for a se
ond order theory(the free 
hoi
e of an initial velo
ity) resides in the wave fun
tion. (Note also thata one dimensional Bohmian world is spe
ial sin
e Bohmian traje
tories 
an never
ross, whi
h in one dimension presents a `topologi
al' barrier for the parti
lemotion, while 
lassi
al traje
tories do not have that. Here 
lassi
al motion stillemerges from the motion of narrow wave pa
kets.) For a re
ent dis
ussion of the
lassi
al limit of quantum me
hani
s from a Bohmian perspe
tive see [14℄.Con
erning the appearan
e of masses (and the potential V ) in (1) and (2)we note that a
tually only naturalized quantities �k = mk~ (or V~ ) appear in thelaw, whi
h only a posteriori, in the Newtonian limit of Bohmian me
hani
s, arere
ognized as 
onne
ted with the inertial mass (or 
lassi
al potential) [9℄.What About Relativity? Can Bohmian me
hani
s be turned into a relativis-ti
 theory?There are various ideas behind this question. One idea is that relativisti
quantum theory is a quantum theory of �elds, so, super�
ially, quantum �eldtheory shows that parti
les 
annot be ontologi
al. The phenomena of pair 
re-ation and annihilation support that argument. On the other hand, pair 
reationand annihilation is a parti
le phenomenon, and the aim of quantum �eld theoryis to des
ribe parti
les (for example in s
attering situations). Therefore underfurther s
rutiny it may well be the 
ase that parti
les are still part of the ontol-ogy. To 
ome to grips with these aspe
ts of relativisti
 quantum phenomena mayin fa
t be easy 
ompared to the following: Nature is nonlo
al and any relativisti
theory of nature must respe
t that, i.e. it must a

ount in a Lorentz invariantway for faster than light e�e
ts to a
hieve a
tion at a distan
e. For toy modelsin whi
h this is a
hieved see [13℄, and see also the dis
ussion in [10℄.There is also the more metaphysi
al idea that eventually physi
s will lookquite di�erent from the way it looks now: I am thinking here of future quantumgravity and physi
s beyond the Plan
k length. From a Bohmian perspe
tive, themetaphysi
al answer to this is the following: The moral of Bohmian me
hani
sis not that the ontology must be a parti
le ontology, but rather that physi
s,and I mean now in parti
ular quantum physi
s, 
an still be (I would ratherlike to say must be) about something very 
lear, about some 
lear ontology.



Bohmian Me
hani
s 5Otherwise one ends in endless debates about interpretations of mathemati
alsymbols. Furthermore Bohmian me
hani
s shows that one should not be afraidof thinking of the simplest ontology, one dire
tly suggested by the phenomena,as the right ontology, despite of the droppings of authorities. All the same, itmay also happen that the primitive ontology for quantum theory at deeper levelsis more elusive.2 The Explanation Of Phenomena2.1 Traje
toriesNewtonian me
hani
s applies with a high degree of a

ura
y over a very widerange of s
ales: From planetary motion, to apples falling to earth, to bullets shotfrom a gun, and further on to the motion of gas mole
ules in a dilute gas. Thedi�eren
e of des
ription of the gas and of the motion of the bullet (or of otherma
ros
opi
 bodies) is rather striking. In the 
ase of the bullet one is used totaking aim, that is, one thinks of a very pre
ise initial position and velo
ity ofthe bullet for 
omputing its traje
tory, or, better, for predi
ting its traje
tory,and one 
ould even 
onsider testing su
h a predi
tion in experiment, observingfor example where and at whi
h time the bullet arrived. Thus the bullet motionis des
ribed in detail. However, for the gas a statisti
al des
ription is used anda

epted. I shall 
ome to that in the next se
tion, be
ause what springs to mind�rst when a me
hani
al law is written down, is the study of detailed motions likethe bullet motion. I will go along with that here but I warn that the 
omputationof parti
le traje
tories in Bohmian me
hani
s analogous to what one is used toin Newtonian me
hani
s is not as illuminating. The reason is that in Bohmianme
hani
s the positions of the parti
les are, as I shall explain later, typi
allyrandomly distributed, given the wave fun
tion, just as one would expe
t fromBorn's statisti
al law: At every moment of time, the 
on�guration of the systemis j j2 distributed, and that is that, for most of the 
ases at least2.Motion in Ground States Ground state wave fun
tions 
an be taken tobe real; thus by (2) the velo
ity �eld is zero, so Q(t) = Q(0) { the parti
lesdo not move. Many �nd this at �rst disturbing, in parti
ular when it 
omesto the ground state of the hydrogen atom: First one learns the Bohr-model,where ele
trons move on orbits around the nu
leus, then one learns that that isfalse be
ause the existen
e of traje
tories 
ontradi
t the Heisenberg un
ertaintyprin
iple, and now Bohmian me
hani
s says that the ele
tron is at rest. Thisseems even worse, be
ause the Coulomb for
e is supposed to a
t on the 
hargeand standing still is not mu
h of a rea
tion. So this is a good example to getfamiliar with the radi
ally non Newtonian 
hara
ter of Bohmian me
hani
s, inwhi
h the a
tion of for
es does not play a fundamental role.2 Exit time, tunneling times and s
attering, as well as the 
lassi
al regime are situationswhere traje
tories are helpful [11,14℄.



6 Detlef D�urrDouble Slit Experiment This is one of the experiments that strongly suggeststhe parti
le ontology. Parti
les are sent one at a time through a double slit.There is always only one parti
le on the way. One 
an see it 
oming at thes
reen, let's say a photo plate! When it arrives it makes a bla
k spot where itlands. At the end, after many parti
les have passed, the bla
k spots add upto a pattern, whi
h looks like an interferen
e pattern of waves, and Bohmianme
hani
s explains that. Just look at the traje
tory pi
ture of the 
omputersolutions (due to Dewdney et al. see [5℄) of the equations (1) and (2), where theinitial positions of the traje
tories are 
hosen in a random manner. Now note thefollowing: The traje
tories 
urve wildly. Why? Look how the traje
tories spreadimmediately after passing through the slit, the parti
les moving on straight linesguided by the spheri
al wave parts originating at the slits, until the two parts ofthe wave begin to interfere (the typi
al interferen
e pattern of spheri
al wavesbuilds up before the photo plate) and the parti
les, guided by this wave, move soas to reprodu
e the j j2-distribution. Furthermore if one 
onsiders the symmetry

Fig. 1. Possible traje
tories in the two slit experimentline in this experiment and re
alls that traje
tories 
an't 
ross, one sees thattraje
tories starting in the upper half must go through the upper slit and musthit the upper half of the photoplate. (This is one way of observing through whi
hslit the parti
le has gone without destroying the interferen
e pattern. Just lookwhere it arrives on the photo plate.)Tunneling In textbooks tunneling through a barrier is often dis
ussed by sta-tionary wave methods. In one dimension traje
tories 
annot 
ross, and one �ndsimmediately that in this stationary pi
ture parti
le traje
tories 
an only traveltowards the barrier. This, one sometimes hears, is bad for Bohmian me
hani
s,be
ause it does not des
ribe ba
k s
attering of parti
les. But this is wrong. When
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s 7a parti
le is sent towards a barrier, it is guided by a wave pa
ket whi
h is notstationary, and that's all. Be
ause traje
tories 
an't 
ross, if the parti
le is `infront' of the pa
ket it goes through the barrier, if it is in the ba
k it turns ba
k.It 
ouldn't be ni
er than that.
Fig. 2. Tunneling through a barrier: A potential VCats and Cloud Chamber Tra
ks A ma
ros
opi
 Bohmian traje
tory, whi
hlooks Newtonian, is that of the 
at, when it jumps out of the box in whi
h theatom did not de
ay. Other Bohmian traje
tories are made visible to the eye in
loud 
hamber tra
ks.2.2 Statisti
al Me
hani
sEquilibrium Statisti
al me
hani
s and the kineti
 theory of gases is by nowwell established. A famous su

ess is Boltzmann's explanation of the se
ond lawof thermodynami
s { the meaning of entropy and why it should in
rease. SeeSheldon Goldstein's as well as Herbert Spohn's 
ontributions to this volume.To des
ribe a gas, a statisti
al des
ription is used, and the regularities derivedare not 
ertain but merely overwhelmingly `probable.' Nevertheless it is 
lear tomost that a statisti
al des
ription is a matter of 
onvenien
e, not ne
essity: it isimpra
ti
al to spe
ify the initial velo
ities and positions of all the gas mole
ules,
ompute their motion and observe where they are later. We are simply ignorantabout these details, about whi
h we don't mu
h 
are, and that's where thestatisti
al analysis 
omes to the res
ue.Boltzmann 
hara
terized the initial 
onditions for whi
h the thermodynami
regularities hold as overwhelmingly probable. Nowadays, it is widely re
ognizedthat it would be more appropriate to speak in terms of typi
ality. The goodinitial 
onditions are typi
al with respe
t to a measure of typi
ality, in the sensethat, with respe
t to this measure, ex
eptions are rare { they are assigned verysmall weight by the measure. This measure is determined by the physi
al law:It must be \equivariant" with the motion of the parti
les, so that the notionof typi
ality is independent of time. Typi
ality is dis
ussed and applied in the
ontributions by Goldstein, Kiessling and Spohn. I shall return to this in laterse
tions, where I dis
uss the meaning of typi
ality statements in more detail.



8 Detlef D�urrIn the Newtonian 
ase the measure is determined by a strong form of equivari-an
e, namely stationarity, i.e. its density is a stationary solution of the 
ontinu-ity equation for the Hamiltonian 
ow on phase spa
e, whi
h is 
alled Liouville'sequation for Hamiltonian or Newtonian dynami
s. Liouville's equation allows formany stationary solutions, and some feel uneasy that the measure of typi
alityis sometimes not uniquely determined.Nonequilibrium But we think that in prin
iple we 
ould do without statisti
sin a 
lassi
al world, in prin
iple we 
ould know all the velo
ities and positionsof all the gas mole
ules and we 
ould even displa
e some or all of the mole
ulesa

ording to our taste, i.e., we 
ould 
hange what looks typi
al into somethingthat looks atypi
al. More to the point: We have the impression that we 
ould getrid of randomness altogether if we wished to do so. Why? Be
ause our universeis in a state of global nonequilibrium (see [3℄)! Typi
ality with respe
t to anequivariant measure is in 
ontrast an equilibrium notion.If one applies this idea of 
omplete 
ontrol of initial 
onditions at least forsmall subsystems to Bohmian me
hani
s, it is often felt disturbing that one
annot 
ontrol wave fun
tion and position of a Bohmian parti
le the way onewould like. Born's statisti
al law is a law! If the wave fun
tion is  , the positionis j j2-distributed. A 
ommon rea
tion is then this: If the position of the parti
le
annot be experimentally 
ontrolled and given a sharp value, no matter what thewave fun
tion is, then what are the parti
les good for? Then they play no physi
alrole! As super�
ial as this argument is, we may as well apply it to the universe.We humans 
annot experimentally 
ontrol the initial 
onditions of the stars inthe milky way, hen
e the stars play no physi
al role. Should we deny then thatthey are?I think what is felt as disturbing is that now it seems that there is a fa
t tobe explained: Why is it that Born's statisti
al law holds without fail, while theequidistribution of gas mole
ules in a 
ontainer may fail to hold (by prior propermanipulation from outside)3?Boltzmann's answer to this 
ould turn out to be surprisingly simple: Maybethe statisti
al law of Born arises be
ause it is `overwhelmingly probable,' or,better, typi
al. Be
ause if that were the 
ase then it would explain why it doesnot fail (see also Goldstein's arti
le) { no more than the se
ond law of thermo-dynami
s, no more than it is possible to build perpetual motion ma
hines. Andit would explain why the name Born's law is properly 
hosen.2.3 Statisti
al Bohmian Me
hani
sIn [3℄ we showed that the empiri
al import of Bohmian me
hani
s emerges fromtypi
ality. What is typi
al is the distribution of parti
le positions. But before3 So as long as one does not talk about parti
les, i.e. as long as Born's statisti
al lawis not about a distribution of parti
les but about results of `observations,' it hasseemed a

eptable. On what grounds? On no grounds.



Bohmian Me
hani
s 9I explain more, I re
all that in orthodox quantum theory it is often said thatrandomness is intrinsi
. What is meant by that?Observe that in orthodox quantum theory only the S
hr�odinger equation (1)appears and that equation has no intrinsi
 randomness. (The 
ollapse models, asdis
ussed by Rimini in this volume 
ould serve as examples for an intrinsi
allyrandom theory). The S
hr�odinger evolution thus 
annot a

ount for the randomspots on the photo plate in the two slit experiment. (Moreover, it 
annot a

ountfor any fa
t, random or nonrandom.) This is related to the measurement problemof orthodox quantum theory, whi
h I des
ribe next.The Collapse The evolution of a system 
oupled to a measurement devi
e inwhi
h the wave fun
tion of the devi
e (�) be
omes 
orrelated with parti
ularwave fun
tions ( k; k = 1; 2; :::) of the system, k(x)�0(y) �!  k(x)�k(y); (3)is 
alled a measurement pro
ess, where the arrow indi
ates the evolution of thewave fun
tion of the 
ombined system: the measured system and the apparatus.The �k are wave fun
tions 
orresponding to distin
t pointer positions, and �0is the ready state. Then by the linearity of the S
hr�odinger equationXk ak k(x)�0(y) �!Xk ak k(x)�k(y): (4)That is what 
omes out of the theory { a ma
ros
opi
 superposition of pointerwave fun
tions. That is not familiar in nature and that is the measurementproblem. It is `solved' by talk: The observer 
ollapses the sum in (4) to onlyone of the wave fun
tions, let's say to  k0(x)�k0 (y). And he does so with theprobability jak0 j2. But no one knows why he should do that. That is the intrinsi
part. That is why there is nothing to show. It's intrinsi
.The observer is supposed to do two things. He 
reates fa
ts and he doesso in a random fashion, but at the same time obeying Born's statisti
al law.So he must be very smart! That is why Bell asked whether the observer musthave a degree in physi
s { who else would know about Born's statisti
al law?But it is 
lear that the measurement problem 
annot be talked away, it is not aphilosophi
al issue. It is a hardware problem!It is worthwhile to understand the measurement situation in Bohmian me-
hani
s. The Bohmian traje
tories of the system and apparatus parti
les arein 
on�guration spa
e made of the system-
oordinates X and the apparatus-
oordinates Y . Then look at the following pi
ture:When the apparatus wave fun
tions have suÆ
iently disjoint supports, thenit is very diÆ
ult to have them interfere again. This is be
ause of purely ther-modynami
al 
onsiderations 
on
erning the number of degrees of freedom whi
hhave to be 
ontrolled to a
hieve interferen
e in the future. Some have diÆ
ultieswith su
h arguments, espe
ially if they go further, to in
lude the re
ordings ofthe pointer positions on paper. That is, when the wave fun
tion is now one whi
h
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Fig. 3. The apparatus axis represents the 
on�guration spa
e of Y 
oordinates, thesystem axis that of the X 
oordinates. Sin
e the supports of the apparatus wave fun
-tions �k are suÆ
iently disjoint, 
orresponding, as they do, to ma
ros
opi
ally di�erentpointer positions, only the term in (4) in whose support Y is situated is relevant to thebehavior of the system, so that as a pra
ti
al matter all but one of the terms in (4)may be ignored.is even more ma
ros
opi
ally entangled, in
luding patterns of ink on paper. Ev-eryone would agree that it would be ex
eedingly diÆ
ult to produ
e interferen
ewhi
h 
ould turn su
h fa
ts into fakes, but that it is all quantum me
hani
s, andthat it is only be
ause of thermodynami
s that these funny things do not hap-pen, that not everyone agrees about. In fa
t, in the 
ollapse models, dis
ussed byRimini, these funny things 
annot happen. The wave fun
tion does 
ollapse bylaw. But in Bohmian me
hani
s it is simply a matter of 
onvenien
e to pro
eedwith the 
omponents of the wave fun
tion that will guide the parti
les from nowon and forget about the other parts of the wave fun
tion. After all, what wereally 
are about is what the parti
les are doing; this, a

ording to Bohmianme
hani
s, is what quantum theory is fundamentally about, and it is out of thebehavior of the parti
les that physi
al phenomena emerge. The 
ollapse is not aphysi
al pro
ess, but a matter of pragmatism.4This explains the 
ollapse, but the randomness, where does that 
ome from?That is what I address in the last se
tion.De
oheren
e A note on the side: The S
hr�odinger equation determines theevolution of the wave fun
tion of the N -parti
le system. When this system `in-tera
ts' with another system, of, say, M parti
les, the wave fun
tion for the
ombined system lives on the 
on�guration spa
e of the M +N parti
les (as in4 At the same time, it is true that the 
ollapse of the wave fun
tion 
an be regardedas a physi
al pro
ess for Bohmian me
hani
s, but the wave fun
tion that 
ollapses isthe e�e
tive wave fun
tion of a subsystem of a larger system, see De�nition 1 below.
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hani
s 11(3),(4).) This should not be seen as extra requirement supplementing the theo-reti
al des
ription but rather as a 
onsequen
e of the basi
 equations (1),(2). Ishall return to this point in the next se
tion. In any 
ase, as we just said, theintera
tion of one system with another brings about the entanglement of theirwave fun
tions, and the more 
omplex the entanglement be
omes, in parti
ularwhen the entanglement be
omes ma
ros
opi
, interferen
e between terms of theresulting superposition be
omes pra
ti
ally impossible. In (4) it is 
ertainly the
ase that interferen
e of the di�erent pointer positions is pra
ti
ally impossi-ble, and this pra
ti
al impossibility gets stronger with further intera
tions, sin
epointers are usually in some room full of radiation, air, 
ies and all kinds ofintera
ting environments. This aspe
t of entanglement is now being 
alled `de-
oheren
e'. It is a prerequisite for the 
ollapse to do no harm: For all pra
ti
alpurposes one may forget about ma
ros
opi
 superpositions. And it is a prereq-uisite for the formulation of the measurement problem, and in and of itself in noway its solution.Subsystems Bohmian me
hani
s is, like all fundamental physi
al theories, atheory of the Universe { of a Bohmian parti
le universe, nonrelativisti
 and soon. So what we are dealing with in everyday life are subsystems of this universeand subsystems of subsystems, and what we want to have is a good des
riptionof subsystems, in fa
t we would like to have Bohmian subsystems, meaning thatthere is a S
hr�odinger wave fun
tion whi
h guides the parti
les of the subsystem,at least for some time. What I imply here is indeed that the wave fun
tion whi
henters (1),(2) as de�ning equations of Bohmian me
hani
s is the wave fun
tionof the largest system 
on
eivable { the universe. What we need to have is a wavefun
tion of a hydrogen atom, of a mole
ule, of many mole
ules, of pointers, of
ats. How 
an we get su
h a thing, a wave fun
tion for a system of interest,whi
h is a subsystem, almost always, of a larger system?Let us denote the mother of all wave fun
tions { the wave fun
tion of theuniverse { by 	(q) and let us write x for the system-
oordinates and y for theenvironment-
oordinates, des
ribing the rest of the universe, everything whi
his not the system. So we have a splitting q = (x; y); Q = (X;Y ). Re
all thatthe small letters stand for generi
 variables and the 
apital letters for the a
tual
on�guration of the parti
les. By inspe
tion of (1), (2) and re
alling the lastse
tions, one is qui
kly lead to the following 
on
ept:De�nition 1. Let 	(q) = '(x)�(y) + �?(q)with � and �? having (ma
ros
opi
ally) disjoint y-supports and suppose Y 2supp �. Then ' is the e�e
tive wave fun
tion of the system.Easy to 
he
k: The e�e
tive wave fun
tion of a system governs the motion ofits 
on�gurationX(t). Moreover, by virtue of the de
oheren
e e�e
ts dis
ussed inthe de
oheren
e and 
ollapse se
tions, as long as a system is de
oupled fromits environment, the evolution of its e�e
tive wave fun
tion will be governed by
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hr�odinger equation (1) for that system. The e�e
tive wave fun
tion is thepre
ise substitute for the 
ollapsed wave fun
tion in orthodox quantum theory,so one should feel 
omfortable with this notion.Quantum Equilibrium Hypothesis What 
omes now is te
hni
ally very easybut at the same time misunderstood by many. This se
tion is about the founda-tions of statisti
al Bohmian me
hani
s (in fa
t of the statisti
al analysis of anyphysi
al theory). Where does the randomness 
ome from?Re
all the double slit { or the Stern{Gerla
h { experiment. What is strikingis that we have regular random out
omes: For the double slit we get relativefrequen
ies of bla
k points on the photo plate whi
h are given by Born's law, andfor the Stern Gerla
h experiment we 
an get out
omes as in a 
oin tossing, i.e., ina long run of sending many parti
les through the inhomogeneous magneti
 �eld,half go up and half down. How 
an this lawful random behavior be a

ountedfor? Easy: By the law of large numbers for independent random positions ofthe parti
les. Just as one would argue in 
lassi
al physi
s: Given some initialrandomness { that is, the statisti
al ansatz { the instability of the motion shouldprodu
e enough independen
e for a law of large numbers statement to hold (thiswas made very 
lear in [15℄).Having said this, a hard question seems to remain: What is responsible forthe randomness of the initial 
onditions? Sin
e in a deterministi
 physi
al theorythere is apparently no room for genuine randomness, it would seem that it must
ome from `outside'. Thus the usual answer is: Systems are never 
losed and fromthe `outside' 
ome random disturban
es. But after in
luding the `outside' we aredealing only with a bigger physi
al system, itself physi
al and deterministi
;thus we have merely shifted the question of the origin of randomness to a biggersystem, and so it 
ontinues and one hopes that eventually the question willevaporate into empty spa
e. But it does not and only if one 
ontinues to ask 
anone know for sure that the shift to in
lude the `outside' is a dead end. The biggestsystem 
on
eivable, the universe, has no outside. It is for the universe that thequestion of the origin of the randomness must be answered! The answer wasgiven by Boltzmann. It is that there is no need for (and, more to the point, nosense to) randomness in the initial 
onditions of the universe. Rather, a randompattern of events emerges from the deterministi
 evolution from a �xed initial
ondition for the universe { provided that initial 
ondition is typi
al. I shallexplain this a bit more here, but for a deeper understanding the reader should
onsult [3℄.We begin by re
alling the well-known fa
t that the `quantum equilibrium'distribution j j2 for the 
on�guration of a system has, mathemati
ally, a spe-
ial status within Bohmian me
hani
s: It is a quasi-invariant or, more pre
isely,equivariant distribution, analogous to the mi
ro
anoni
al distribution of statisti-
al me
hani
s. Consider the 
ontinuity equation of the Bohmian 
ow, analogousto Liouville's equation for a Hamiltonian 
ow,�t�(q; t) +r � v't�(q; t) = 0: (5)
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hani
s 13Now v't = j'tj'tj2 , with j't the quantum 
ux, whi
h satis�es an identity holdingfor solutions of S
hr�odinger's equation�tj'tj2 +r � j't = 0: (6)This is roughly analogous to the fa
t that a Hamiltonian velo
ity �eld is diver-gen
e free whi
h { used on the 
ontinuity equation for the Hamiltonian 
ow {yields Liouville's equation, for whi
h the usual stationary solution is obvious.Here, (6) may be rewritten�tj'tj2 +r � v't j'tj2 = 0 (7)so that �(q; t) = j'(q; t)j2 satis�es (5) and thus de�nes an equivariant distribu-tion: It does not 
hange its form as a fun
tional of 't during the evolution (�equivarian
e).Just as in statisti
al me
hani
s, this simple mathemati
al fa
t leads naturallyto the Quantum Equilibrium Hypothesis (QEH):`If a system has e�e
tive wave fun
tion ' then its 
on�guration has j'j2.' Mu
hin the spirit of Gibbs, this may be regarded merely as a reasonable statisti
alansatz for dealing with subsystems: It is supported by the physi
al theory, itis simple and it works. As is the 
ommon praxis in statisti
al me
hani
s, we
an think of this distribution as des
ribing an ensemble of identi
al subsystems,obtained by sampling a
ross spa
e and time.Typi
ality We are now at a stage analogous to the present status of statisti
alme
hani
s. It is known that the rigorous justi�
ation of the statisti
al hypothesisthat systems tend to be mi
ro
anoni
ally (or Gibbs) distributed is a very hardand unsolved problem. What we would like to have is a rigorous proof thatnormal thermodynami
 behavior emerges for a suÆ
iently large 
lass of initial
onditions for the universe, or, failing that, for the systems of dire
t interest tous, at least for some initial 
onditions for these systems. But even the latter isway beyond our rea
h (see also Goldstein's 
ontribution to this volume).For Bohmian me
hani
s, however, one 
an provide just su
h a rigorous jus-ti�
ation of the QEH; one 
an show, in fa
t, that it emerges for `most' initial
onditions for the universe. I will not go through the proof here but rather 
om-ment on mis
on
eptions about this statement and its proof.The statement that the QEH 
an be justi�ed is a law of large number state-ment: What we must look at are the empiri
al distributions of the 
on�gurationfor ensembles of small subsystems. Small here means 
ompared with the size ofthe universe. A laboratory is extremely small.Consider equations (1) and (2) for the evolution of the universe! So Q 
om-prises the 
oordinates of all the parti
les of a Bohmian universe and 	 is themother of all wave fun
tions: the wave fun
tion of the universe. Now let�N;'emp(Q; x; t) = 1N NXi=1 Æ(Xi(Q; t)� x) (8)
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al distribution of the 
on�guration for an ensemble of N similarsubsystems (subsystem i having 
on�guration Xi), ea
h subsystem having ef-fe
tive wave fun
tion ' at a given time t (for simpli
ity I dis
uss here spatialensembles at a given time. In general one has time and spa
e ensembles [3℄).Here Xi(Q; t) is determined by (2) and the initial 
onditions Q. We emphasizethat �emp is a fun
tion of Q. Moreover, the set of Q's relevant to (8) is verymu
h 
onstrained by the requirement that the subsystems have e�e
tive wavefun
tion ' (see the de�nition of e�e
tive wave fun
tion).Suppose now that we 
ould show the following: There exists one initial 
on-dition Q, i.e. one evolution of a Bohmian universe, for whi
h5�N;'emp(Q; x; t) � j'j2(x): (9)for all appropriate subsystems, wave fun
tions ', and times t. In other words,that Born's statisti
al law holds within that spe
ial universe. This would be afantasti
 result, 
learly demonstrating the 
ompatibility of quantum randomnesswith absolute determinism. Moreover, the empiri
al data would en
ourage us tobelieve that we are in that universe. Nonetheless, su
h a result would not explainwhy Born's statisti
al law holds: we would need to know why we should be inthat very spe
ial universe. Now take the other extreme: Suppose it turned outthat for all initial Q' (9) is true. That would mean that Born's statisti
al lawis a theorem following from (1) and (2). Then { provided we believe in the
orre
tness of our theory { we must be in one of these universes and purestsatisfa
tion would result.But Boltzmann's analysis of the origin of the se
ond law of thermodynami
s(see the 
ontribution of Goldstein to this volume) should have taught us thatthe latter is too mu
h to expe
t. Moreover, it follows from our analysis in [3℄that in fa
t it is impossible { i.e., that there must be bad initial 
onditions Qfor whi
h the QEH fails (see [9℄). What is proven in [3℄, a law of large numberstheorem for (8), thus 
annot be mu
h improved upon.6The usual way of formulating a law of large number result is in terms oftypi
ality: Typi
ally the numbers in the interval [0; 1℄ have a de
imal expansionin whi
h every digit 
omes with relative frequen
y � 110 . That is: Most of thenumbers in the interval [0; 1℄ have a de
imal expansion in whi
h every digit
omes with relative frequen
y � 110 . Now, `most' is here with respe
t to theLebesgue measure. That measure is a measure of typi
ality, and one may askwhat its relevan
e is. In physi
s, a

ording to Boltzmann, we are in the fortunatesituation that the measure of typi
ality is di
tated by physi
s:Typi
ality must bestationary, whi
h requires the measure to be equivariant. (The stationarity of5 for pre
ise formulations see [3℄6 In statisti
al physi
s the exploration of mixing, the relaxation of a nonequilibriumdistribution on the full phase spa
e towards an equilibrium distribution, has be
omewidespread and has led some to the belief that mixing is 
entral to the justi�
ation ofthe equilibrium hypothesis. This belief is parti
ularly attra
tive, sin
e it is 
onne
tedwith notions like 
haoti
ity and independen
e. It is nonetheless quite wrong. For moreon this see the 
ontribution of Goldstein to this volume.



Bohmian Me
hani
s 15the notion of typi
ality makes it equilibrium-like, hen
e `Quantum Equilibrium'.)Thus for Bohmian me
hani
s typi
ality is de�ned using the j	 j2 distribution. Itgives us a notion of `most' and `few' in this situation, where 
ounting is notpossible.Warning: We used j'j2 to formulate the statisti
al hypothesis, in whi
h itrepresents an empiri
al distribution. Now we refer to it (or, rather, to j	 j2)to de�ne the measure of typi
ality, an entirely di�erent 
on
ept. Moreover, thewave fun
tion 	 of the universe and the wave fun
tion ' of a subsystem arealso rather di�erent obje
ts, and it is in a sense an a

ident that they seem sosimilar and obey the same equations { and (for good reasons) go by the samename. But while for ensembles of subsystems of one universe empiri
al statisti
sare relevant, a statisti
al ensemble of universes is quite another matter.We show that for typi
al solutions of (2) (the universal wave fun
tion isassumed to be given) Born's law (9) is valid: the set of ex
eptions is assignedvery small measure by the j	 j2 distribution. The failure to distinguish betweenj'j2 as an empiri
al distribution and j	 j2 as a measure of typi
ality leads to thefollowing reformulation of our analysis: Consider a probability distribution ofuniverses with density j	 j2. Then the 
on�guration of a subsystem with e�e
tivewave fun
tion ' is j'j2 distributed.7 But this is not a very useful result, sin
esampling a
ross universes is neither possible for nor relevant to humans.More sensible, but still besides the point, is the following. Consider 
ointossing. I make the following model. The out
omes of every toss are independentidenti
ally distributed random variables. I take the produ
t measure on theprobability spa
e of sequen
es of out
omes. Then the law of large numbers holds:Typi
ally, the relative frequen
y of heads is approximately 12 . That is `trivially'true, by 
onstru
tion. It is important to appre
iate how this appeal to typi
alitydi�ers from Boltzmann's and from ours in [3℄. Note in parti
ular that there isno simple relationship between the initial 
on�guration Q of the universe andthe empiri
al statisti
s that emerge from Q via the dynami
s (2). Note also thatin general we make no 
laim about empiri
al statisti
s at the initial universaltime, sin
e it need not be the 
ase that a de
omposition into subsystems withthe same e�e
tive wave fun
tion (or any e�e
tive wave fun
tion at all) is possibleat this time.This result justi�es for me the QEH; it explains why Born's law holds {or, what amounts to more or less the same thing, it explains why it should beexpe
ted to hold. To go further we would need to analyze just what is meantby explanation; see the 
ontribution of Goldstein to this volume, where this istou
hed upon.I remark that the operator formalism of quantum theory emerges (with sur-prising ease) from statisti
al Bohmian me
hani
s [4,17,18℄.7 In [16℄ this is referred to as the nesting property.
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ius Simpli
issimusWhat is typi
ality? It is a notion for de�ning the smallness of sets of (mathe-mati
ally inevitable) ex
eptions and thus permitting the formulation of law oflarge numbers type statements. Smallness is usually de�ned in terms of a mea-sure. What determines the measure? In physi
s, the physi
al theory. Typi
alityis de�ned by a measure on the set of `initial 
onditions' (eventually by the ini-tial 
onditions of the universe), determined, or at least strongly suggested, bythe physi
al law. Are typi
al events most likely to happen? No, they happenbe
ause they are typi
al. But are there also atypi
al events? Yes. They do nothappen, be
ause they are unlikely? No, be
ause the are atypi
al. But in prin
iplethey 
ould happen? Yes. So why don't they happen then? Be
ause they are nottypi
al.Using typi
ality one may de�ne probability in terms of law of large numberstype statements, i.e., in terms of relative frequen
ies and empiri
al statisti
s.What is meant by: In a Stern{Gerla
h experiment the probability for spin upis 12? The same as for heads turning up in a 
oin tossing. So what is meant?The law of large numbers: That in a long run of repetitions of the experimentthe relative frequen
y of the out
ome in whi
h the spin is up or the 
oin showsheads will typi
ally be 
lose to the value 12 .Is there another sense of probability? Probably there is! Does explanation viaappeal to typi
ality require deeper 
on
eptual analysis? Certainly. Can appealto typi
ality be entirely eliminated from s
ienti�
 explanation? Very unlikely!4 A
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