
Bohmian MehanisDetlef D�urrMathematishes InstitutUniversit�at M�unhenTheresienstr. 3980333 M�unhen, Germany1 The Theory1.1 EquationsBohmian mehanis is a quantum theory without observers [1,2℄. This meansthat neither the at of observation nor the notion of observer play any role inde�ning the theory { the theory is not about observers and observation { and itexplains all non relativisti quantum phenomena. The theory is about somethingprimitive1, the basi ontology, and the laws for that are given.Bohmian mehanis is a deterministi theory of point partiles. Like Newto-nian mehanis it is invariant under Galilei transformations, but unlike Newto-nian mehanis it is a �rst-order theory { aeleration is not a onept enteringthe law of motion. Rather this law diretly determines the veloities of the par-tiles as follows.For an N -partile system the positions of the N partiles form the on�gu-ration spae variable Q = (Q1; : : : ;QN ) 2 R3N , Qk 2 R3 being the position ofk-th partile. The motion of the on�guration is determined by a time-dependentwave funtion on on�guration spae  (q; t) 2 C , q = (q1; : : : ; qN ) 2 R3N , thatobeys Shr�odingers equation (mk is the mass of the k-th partile and V is thepotential) i~� (q; t)�t = � NXk=1 ~22mk�k (q; t) + V (q) (q; t): (1)The wave funtion's role is to indue a veloity-vetor�eld on on�guration spaev (q), the integral urves of whih are the trajetories of the partilesdQkdt = v k (Q) = ~mk Im( �rk ) � (Q1; : : : ;QN ): (2)To solve (1), (2) one needs an initial on�guration (i.e. the initial positions ofall the partiles) and an initial wave funtion.In [3℄ we show how the law of motion may be seen as emerging in a naturalmanner from the requirement that it be invariant under Galileian transforma-tions.1 In ontrast, observers are ompliated objets, made of many parts: for example onemay get a hairut and still be funtioning as observer.



2 Detlef D�urrNon Newtonian Charater Bohmian mehanis is a �rst-order theory: Giventhe veloity �eld, speifying the positions of the partiles at one time �xes thetrajetories. Newtonian mehanis needs both position and veloity spei�ed forthe motion to be determined. Di�erentiating (2) with respet to time t does notrender the theory seond order, no more than does a Newtonian theory beomea third order theory by di�erentiating m�x = F with respet to time. Never-theless David Bohm, who worked this theory out in 1952 [4,5℄, presented this�rst-order theory also in the Newtonian looking seond-order form. It is learlyuseful to take the �rst-order harater seriously. For example on�guration spaetrajetories an never ross eah other. Bell [1℄ also emphasized the �rst-orderharater. He writes the right hand side of (2) as the quotient of the quantumux j and the density � = j j2, the signi�ane of whih I shall address later.Nonloal Charater The wave funtion is a funtion on on�guration spae.That spae is not `anshaulih' like physial spae, it is abstrat. But sine thewave funtion is part of the law of the motion it is important for the under-standing of Bohmian mehanis that the abstrat on�guration spae be takenseriously. The role played by the on�guration spae wave funtion in de�ningthe motion makes Bohmian mehanis nonloal: Looking at (2), the veloity ofeah partile depends on the position of all the other partiles no matter how farthe other partiles are away. The amount of ation at a distane depends onlyon the degree of entanglement of the wave funtion on on�guration spae, thatis, the extent to whih the wave funtion di�ers from a produt of single partilewave funtions.Beause of the observed violations of Bell's inequalities [1℄ (see [6℄ for variousexamples), nature is nonloal. A fundamentally orret physial theory musttherefore be nonloal. Bohmian mehanis shows that this an naturally beahieved { by inorporating the wave funtion on on�guration spae as physial�eld, whih is naturally a nonloal objet.Names The theory goes under various names, but it's always Bohmian me-hanis: Causal Interpretation [4℄, de Broglie-Bohm pilot wave theory (Bell [1℄),or de Broglie-Bohm theory, or pilot wave theory (Valentini in this volume) orsimply Bohm's theory. De Broglie's name appears beause de Broglie presentedrelutantly the equations of Bohmian mehanis (whih even earlier had beenwritten down by Madelung, for a uid piture of the wave evolution) at theSolvay onferene 1927, but in the disussion with Pauli at this onferene, hefound himself unable to defend his ideas. A stohasti version of Bohmian me-hanis, where the trajetories are perturbed by white noise, exists, namely,stohasti mehanis (sometimes alled Nelson's stohasti mehanis [7℄).Point Partile Theories Other deterministi point partile theories are forexample Newtonian mehanis and the relativisti Wheeler{Feynman Eletro-magnetism [8℄ of point harges { a theory without �elds. (For a relativisti theory



Bohmian Mehanis 3of extended harges and �elds see the ontribution by Mihael Kiessling in thisvolume.)While in these theories physiists agree that the partiles are ontologial, thepartiles in Bohmian mehanis are often seen with distrust and given funnyattributes (Adler in this volume alls them hidden `partiles'). On the one hand,this is understandable beause orthodox quantum mehanis forbids us to talkabout the trajetories of partiles. On the other hand, the point partiles areontologial in Bohmian mehanis { they are, in fat, what the theory is about.Ignoring them, the theory beomes a theory about nothing, pretty muh likeorthodox quantum mehanis, where one resorts to the dubious notion of ob-server as fundamental. To understand Bohmian mehanis and how quantumphenomena emerge from it, it is neessary that the partiles be ontologial { i.e.,be taken seriously.Other Quantum Theories Without Observers A pure wave funtion ontol-ogy, with no partiles as part of the ontology, lies behind the idea of the ollapsemodels of quantum mehanis, and they are disussed in this volume by AlbertoRimini and Gian Carlo Ghirardi. So I say nothing more.The program of Deoherent Histories or Consistent Histories arises in myunderstanding also from the wish to have fats in the quantum world withoutthe ation of some observer's mind. Roland Omn�es reports about that in thisvolume.1.2 Frequently Asked QuestionsI answer briey some questions that may arise immediately when the theory ispresented as above. Typially the questions are of the nature: But isn't there aproblem with this and that? and the answer is: No, there is no problem.What About Spin? Can Bohmian mehanis deal with spin?Instead of the wave funtion  (q; t) 2 C let  (q; t) 2 (spinspae =) C k ; k =1; 2; 3; :::, i.e. the wave funtion is a spinor, whih de�nes then the veloity �eldin an obvious way, namely by using the inner produt in spinspae in (2) [9℄.The Shr�odinger equation (1) is then replaed by the Pauli equation, involvingeletromagneti �elds and Pauli matries. Spin is thus a property of the wavefuntion.What About Fermions or Bosons? Can Bohmian mehanis desribe indis-tinguishable partiles?In (1) and (2) the partiles are labeled, as if they were distinguishable (forexample by di�erent masses). To formulate Bohmian mehanis for indistinguish-able partiles one may demand that the law be invariant under permutation ofthe (arti�ially introdued) labels, or one may formulate Bohmian mehanis



4 Detlef D�urrfrom the beginning on the right on�guration spae of indistinguishable par-tiles. As one might expet both approahes establish that only symmetri orantisymmetri wave funtions an be used in the formulation of the law [12℄.What About the Newtonian Limit? Does Newtonian mehanis emergefrom Bohmian mehanis?The Newtonian limit or lassial limit of Bohmian mehanis is a limit inwhih the Bohmian trajetories beome Newtonian. There are various physialsituations in whih this is the ase. The question itself presents no oneptualdiÆulties. Conerning the transition of a �rst-order theory to a seond ordertheory, one may note that the Bohmian trajetories do have at a given time (saythe initial time) a position and a veloity, and that the veloity is determined bythe wave funtion. The extra degree of freedom needed for a seond order theory(the free hoie of an initial veloity) resides in the wave funtion. (Note also thata one dimensional Bohmian world is speial sine Bohmian trajetories an neverross, whih in one dimension presents a `topologial' barrier for the partilemotion, while lassial trajetories do not have that. Here lassial motion stillemerges from the motion of narrow wave pakets.) For a reent disussion of thelassial limit of quantum mehanis from a Bohmian perspetive see [14℄.Conerning the appearane of masses (and the potential V ) in (1) and (2)we note that atually only naturalized quantities �k = mk~ (or V~ ) appear in thelaw, whih only a posteriori, in the Newtonian limit of Bohmian mehanis, arereognized as onneted with the inertial mass (or lassial potential) [9℄.What About Relativity? Can Bohmian mehanis be turned into a relativis-ti theory?There are various ideas behind this question. One idea is that relativistiquantum theory is a quantum theory of �elds, so, super�ially, quantum �eldtheory shows that partiles annot be ontologial. The phenomena of pair re-ation and annihilation support that argument. On the other hand, pair reationand annihilation is a partile phenomenon, and the aim of quantum �eld theoryis to desribe partiles (for example in sattering situations). Therefore underfurther srutiny it may well be the ase that partiles are still part of the ontol-ogy. To ome to grips with these aspets of relativisti quantum phenomena mayin fat be easy ompared to the following: Nature is nonloal and any relativistitheory of nature must respet that, i.e. it must aount in a Lorentz invariantway for faster than light e�ets to ahieve ation at a distane. For toy modelsin whih this is ahieved see [13℄, and see also the disussion in [10℄.There is also the more metaphysial idea that eventually physis will lookquite di�erent from the way it looks now: I am thinking here of future quantumgravity and physis beyond the Plank length. From a Bohmian perspetive, themetaphysial answer to this is the following: The moral of Bohmian mehanisis not that the ontology must be a partile ontology, but rather that physis,and I mean now in partiular quantum physis, an still be (I would ratherlike to say must be) about something very lear, about some lear ontology.



Bohmian Mehanis 5Otherwise one ends in endless debates about interpretations of mathematialsymbols. Furthermore Bohmian mehanis shows that one should not be afraidof thinking of the simplest ontology, one diretly suggested by the phenomena,as the right ontology, despite of the droppings of authorities. All the same, itmay also happen that the primitive ontology for quantum theory at deeper levelsis more elusive.2 The Explanation Of Phenomena2.1 TrajetoriesNewtonian mehanis applies with a high degree of auray over a very widerange of sales: From planetary motion, to apples falling to earth, to bullets shotfrom a gun, and further on to the motion of gas moleules in a dilute gas. Thedi�erene of desription of the gas and of the motion of the bullet (or of othermarosopi bodies) is rather striking. In the ase of the bullet one is used totaking aim, that is, one thinks of a very preise initial position and veloity ofthe bullet for omputing its trajetory, or, better, for prediting its trajetory,and one ould even onsider testing suh a predition in experiment, observingfor example where and at whih time the bullet arrived. Thus the bullet motionis desribed in detail. However, for the gas a statistial desription is used andaepted. I shall ome to that in the next setion, beause what springs to mind�rst when a mehanial law is written down, is the study of detailed motions likethe bullet motion. I will go along with that here but I warn that the omputationof partile trajetories in Bohmian mehanis analogous to what one is used toin Newtonian mehanis is not as illuminating. The reason is that in Bohmianmehanis the positions of the partiles are, as I shall explain later, typiallyrandomly distributed, given the wave funtion, just as one would expet fromBorn's statistial law: At every moment of time, the on�guration of the systemis j j2 distributed, and that is that, for most of the ases at least2.Motion in Ground States Ground state wave funtions an be taken tobe real; thus by (2) the veloity �eld is zero, so Q(t) = Q(0) { the partilesdo not move. Many �nd this at �rst disturbing, in partiular when it omesto the ground state of the hydrogen atom: First one learns the Bohr-model,where eletrons move on orbits around the nuleus, then one learns that that isfalse beause the existene of trajetories ontradit the Heisenberg unertaintypriniple, and now Bohmian mehanis says that the eletron is at rest. Thisseems even worse, beause the Coulomb fore is supposed to at on the hargeand standing still is not muh of a reation. So this is a good example to getfamiliar with the radially non Newtonian harater of Bohmian mehanis, inwhih the ation of fores does not play a fundamental role.2 Exit time, tunneling times and sattering, as well as the lassial regime are situationswhere trajetories are helpful [11,14℄.



6 Detlef D�urrDouble Slit Experiment This is one of the experiments that strongly suggeststhe partile ontology. Partiles are sent one at a time through a double slit.There is always only one partile on the way. One an see it oming at thesreen, let's say a photo plate! When it arrives it makes a blak spot where itlands. At the end, after many partiles have passed, the blak spots add upto a pattern, whih looks like an interferene pattern of waves, and Bohmianmehanis explains that. Just look at the trajetory piture of the omputersolutions (due to Dewdney et al. see [5℄) of the equations (1) and (2), where theinitial positions of the trajetories are hosen in a random manner. Now note thefollowing: The trajetories urve wildly. Why? Look how the trajetories spreadimmediately after passing through the slit, the partiles moving on straight linesguided by the spherial wave parts originating at the slits, until the two parts ofthe wave begin to interfere (the typial interferene pattern of spherial wavesbuilds up before the photo plate) and the partiles, guided by this wave, move soas to reprodue the j j2-distribution. Furthermore if one onsiders the symmetry

Fig. 1. Possible trajetories in the two slit experimentline in this experiment and realls that trajetories an't ross, one sees thattrajetories starting in the upper half must go through the upper slit and musthit the upper half of the photoplate. (This is one way of observing through whihslit the partile has gone without destroying the interferene pattern. Just lookwhere it arrives on the photo plate.)Tunneling In textbooks tunneling through a barrier is often disussed by sta-tionary wave methods. In one dimension trajetories annot ross, and one �ndsimmediately that in this stationary piture partile trajetories an only traveltowards the barrier. This, one sometimes hears, is bad for Bohmian mehanis,beause it does not desribe bak sattering of partiles. But this is wrong. When



Bohmian Mehanis 7a partile is sent towards a barrier, it is guided by a wave paket whih is notstationary, and that's all. Beause trajetories an't ross, if the partile is `infront' of the paket it goes through the barrier, if it is in the bak it turns bak.It ouldn't be nier than that.
Fig. 2. Tunneling through a barrier: A potential VCats and Cloud Chamber Traks A marosopi Bohmian trajetory, whihlooks Newtonian, is that of the at, when it jumps out of the box in whih theatom did not deay. Other Bohmian trajetories are made visible to the eye inloud hamber traks.2.2 Statistial MehanisEquilibrium Statistial mehanis and the kineti theory of gases is by nowwell established. A famous suess is Boltzmann's explanation of the seond lawof thermodynamis { the meaning of entropy and why it should inrease. SeeSheldon Goldstein's as well as Herbert Spohn's ontributions to this volume.To desribe a gas, a statistial desription is used, and the regularities derivedare not ertain but merely overwhelmingly `probable.' Nevertheless it is lear tomost that a statistial desription is a matter of onveniene, not neessity: it isimpratial to speify the initial veloities and positions of all the gas moleules,ompute their motion and observe where they are later. We are simply ignorantabout these details, about whih we don't muh are, and that's where thestatistial analysis omes to the resue.Boltzmann haraterized the initial onditions for whih the thermodynamiregularities hold as overwhelmingly probable. Nowadays, it is widely reognizedthat it would be more appropriate to speak in terms of typiality. The goodinitial onditions are typial with respet to a measure of typiality, in the sensethat, with respet to this measure, exeptions are rare { they are assigned verysmall weight by the measure. This measure is determined by the physial law:It must be \equivariant" with the motion of the partiles, so that the notionof typiality is independent of time. Typiality is disussed and applied in theontributions by Goldstein, Kiessling and Spohn. I shall return to this in latersetions, where I disuss the meaning of typiality statements in more detail.



8 Detlef D�urrIn the Newtonian ase the measure is determined by a strong form of equivari-ane, namely stationarity, i.e. its density is a stationary solution of the ontinu-ity equation for the Hamiltonian ow on phase spae, whih is alled Liouville'sequation for Hamiltonian or Newtonian dynamis. Liouville's equation allows formany stationary solutions, and some feel uneasy that the measure of typialityis sometimes not uniquely determined.Nonequilibrium But we think that in priniple we ould do without statistisin a lassial world, in priniple we ould know all the veloities and positionsof all the gas moleules and we ould even displae some or all of the moleulesaording to our taste, i.e., we ould hange what looks typial into somethingthat looks atypial. More to the point: We have the impression that we ould getrid of randomness altogether if we wished to do so. Why? Beause our universeis in a state of global nonequilibrium (see [3℄)! Typiality with respet to anequivariant measure is in ontrast an equilibrium notion.If one applies this idea of omplete ontrol of initial onditions at least forsmall subsystems to Bohmian mehanis, it is often felt disturbing that oneannot ontrol wave funtion and position of a Bohmian partile the way onewould like. Born's statistial law is a law! If the wave funtion is  , the positionis j j2-distributed. A ommon reation is then this: If the position of the partileannot be experimentally ontrolled and given a sharp value, no matter what thewave funtion is, then what are the partiles good for? Then they play no physialrole! As super�ial as this argument is, we may as well apply it to the universe.We humans annot experimentally ontrol the initial onditions of the stars inthe milky way, hene the stars play no physial role. Should we deny then thatthey are?I think what is felt as disturbing is that now it seems that there is a fat tobe explained: Why is it that Born's statistial law holds without fail, while theequidistribution of gas moleules in a ontainer may fail to hold (by prior propermanipulation from outside)3?Boltzmann's answer to this ould turn out to be surprisingly simple: Maybethe statistial law of Born arises beause it is `overwhelmingly probable,' or,better, typial. Beause if that were the ase then it would explain why it doesnot fail (see also Goldstein's artile) { no more than the seond law of thermo-dynamis, no more than it is possible to build perpetual motion mahines. Andit would explain why the name Born's law is properly hosen.2.3 Statistial Bohmian MehanisIn [3℄ we showed that the empirial import of Bohmian mehanis emerges fromtypiality. What is typial is the distribution of partile positions. But before3 So as long as one does not talk about partiles, i.e. as long as Born's statistial lawis not about a distribution of partiles but about results of `observations,' it hasseemed aeptable. On what grounds? On no grounds.



Bohmian Mehanis 9I explain more, I reall that in orthodox quantum theory it is often said thatrandomness is intrinsi. What is meant by that?Observe that in orthodox quantum theory only the Shr�odinger equation (1)appears and that equation has no intrinsi randomness. (The ollapse models, asdisussed by Rimini in this volume ould serve as examples for an intrinsiallyrandom theory). The Shr�odinger evolution thus annot aount for the randomspots on the photo plate in the two slit experiment. (Moreover, it annot aountfor any fat, random or nonrandom.) This is related to the measurement problemof orthodox quantum theory, whih I desribe next.The Collapse The evolution of a system oupled to a measurement devie inwhih the wave funtion of the devie (�) beomes orrelated with partiularwave funtions ( k; k = 1; 2; :::) of the system, k(x)�0(y) �!  k(x)�k(y); (3)is alled a measurement proess, where the arrow indiates the evolution of thewave funtion of the ombined system: the measured system and the apparatus.The �k are wave funtions orresponding to distint pointer positions, and �0is the ready state. Then by the linearity of the Shr�odinger equationXk ak k(x)�0(y) �!Xk ak k(x)�k(y): (4)That is what omes out of the theory { a marosopi superposition of pointerwave funtions. That is not familiar in nature and that is the measurementproblem. It is `solved' by talk: The observer ollapses the sum in (4) to onlyone of the wave funtions, let's say to  k0(x)�k0 (y). And he does so with theprobability jak0 j2. But no one knows why he should do that. That is the intrinsipart. That is why there is nothing to show. It's intrinsi.The observer is supposed to do two things. He reates fats and he doesso in a random fashion, but at the same time obeying Born's statistial law.So he must be very smart! That is why Bell asked whether the observer musthave a degree in physis { who else would know about Born's statistial law?But it is lear that the measurement problem annot be talked away, it is not aphilosophial issue. It is a hardware problem!It is worthwhile to understand the measurement situation in Bohmian me-hanis. The Bohmian trajetories of the system and apparatus partiles arein on�guration spae made of the system-oordinates X and the apparatus-oordinates Y . Then look at the following piture:When the apparatus wave funtions have suÆiently disjoint supports, thenit is very diÆult to have them interfere again. This is beause of purely ther-modynamial onsiderations onerning the number of degrees of freedom whihhave to be ontrolled to ahieve interferene in the future. Some have diÆultieswith suh arguments, espeially if they go further, to inlude the reordings ofthe pointer positions on paper. That is, when the wave funtion is now one whih



10 Detlef D�urr

Fig. 3. The apparatus axis represents the on�guration spae of Y oordinates, thesystem axis that of the X oordinates. Sine the supports of the apparatus wave fun-tions �k are suÆiently disjoint, orresponding, as they do, to marosopially di�erentpointer positions, only the term in (4) in whose support Y is situated is relevant to thebehavior of the system, so that as a pratial matter all but one of the terms in (4)may be ignored.is even more marosopially entangled, inluding patterns of ink on paper. Ev-eryone would agree that it would be exeedingly diÆult to produe interferenewhih ould turn suh fats into fakes, but that it is all quantum mehanis, andthat it is only beause of thermodynamis that these funny things do not hap-pen, that not everyone agrees about. In fat, in the ollapse models, disussed byRimini, these funny things annot happen. The wave funtion does ollapse bylaw. But in Bohmian mehanis it is simply a matter of onveniene to proeedwith the omponents of the wave funtion that will guide the partiles from nowon and forget about the other parts of the wave funtion. After all, what wereally are about is what the partiles are doing; this, aording to Bohmianmehanis, is what quantum theory is fundamentally about, and it is out of thebehavior of the partiles that physial phenomena emerge. The ollapse is not aphysial proess, but a matter of pragmatism.4This explains the ollapse, but the randomness, where does that ome from?That is what I address in the last setion.Deoherene A note on the side: The Shr�odinger equation determines theevolution of the wave funtion of the N -partile system. When this system `in-terats' with another system, of, say, M partiles, the wave funtion for theombined system lives on the on�guration spae of the M +N partiles (as in4 At the same time, it is true that the ollapse of the wave funtion an be regardedas a physial proess for Bohmian mehanis, but the wave funtion that ollapses isthe e�etive wave funtion of a subsystem of a larger system, see De�nition 1 below.



Bohmian Mehanis 11(3),(4).) This should not be seen as extra requirement supplementing the theo-retial desription but rather as a onsequene of the basi equations (1),(2). Ishall return to this point in the next setion. In any ase, as we just said, theinteration of one system with another brings about the entanglement of theirwave funtions, and the more omplex the entanglement beomes, in partiularwhen the entanglement beomes marosopi, interferene between terms of theresulting superposition beomes pratially impossible. In (4) it is ertainly thease that interferene of the di�erent pointer positions is pratially impossi-ble, and this pratial impossibility gets stronger with further interations, sinepointers are usually in some room full of radiation, air, ies and all kinds ofinterating environments. This aspet of entanglement is now being alled `de-oherene'. It is a prerequisite for the ollapse to do no harm: For all pratialpurposes one may forget about marosopi superpositions. And it is a prereq-uisite for the formulation of the measurement problem, and in and of itself in noway its solution.Subsystems Bohmian mehanis is, like all fundamental physial theories, atheory of the Universe { of a Bohmian partile universe, nonrelativisti and soon. So what we are dealing with in everyday life are subsystems of this universeand subsystems of subsystems, and what we want to have is a good desriptionof subsystems, in fat we would like to have Bohmian subsystems, meaning thatthere is a Shr�odinger wave funtion whih guides the partiles of the subsystem,at least for some time. What I imply here is indeed that the wave funtion whihenters (1),(2) as de�ning equations of Bohmian mehanis is the wave funtionof the largest system oneivable { the universe. What we need to have is a wavefuntion of a hydrogen atom, of a moleule, of many moleules, of pointers, ofats. How an we get suh a thing, a wave funtion for a system of interest,whih is a subsystem, almost always, of a larger system?Let us denote the mother of all wave funtions { the wave funtion of theuniverse { by 	(q) and let us write x for the system-oordinates and y for theenvironment-oordinates, desribing the rest of the universe, everything whihis not the system. So we have a splitting q = (x; y); Q = (X;Y ). Reall thatthe small letters stand for generi variables and the apital letters for the atualon�guration of the partiles. By inspetion of (1), (2) and realling the lastsetions, one is quikly lead to the following onept:De�nition 1. Let 	(q) = '(x)�(y) + �?(q)with � and �? having (marosopially) disjoint y-supports and suppose Y 2supp �. Then ' is the e�etive wave funtion of the system.Easy to hek: The e�etive wave funtion of a system governs the motion ofits on�gurationX(t). Moreover, by virtue of the deoherene e�ets disussed inthe deoherene and ollapse setions, as long as a system is deoupled fromits environment, the evolution of its e�etive wave funtion will be governed by



12 Detlef D�urrthe Shr�odinger equation (1) for that system. The e�etive wave funtion is thepreise substitute for the ollapsed wave funtion in orthodox quantum theory,so one should feel omfortable with this notion.Quantum Equilibrium Hypothesis What omes now is tehnially very easybut at the same time misunderstood by many. This setion is about the founda-tions of statistial Bohmian mehanis (in fat of the statistial analysis of anyphysial theory). Where does the randomness ome from?Reall the double slit { or the Stern{Gerlah { experiment. What is strikingis that we have regular random outomes: For the double slit we get relativefrequenies of blak points on the photo plate whih are given by Born's law, andfor the Stern Gerlah experiment we an get outomes as in a oin tossing, i.e., ina long run of sending many partiles through the inhomogeneous magneti �eld,half go up and half down. How an this lawful random behavior be aountedfor? Easy: By the law of large numbers for independent random positions ofthe partiles. Just as one would argue in lassial physis: Given some initialrandomness { that is, the statistial ansatz { the instability of the motion shouldprodue enough independene for a law of large numbers statement to hold (thiswas made very lear in [15℄).Having said this, a hard question seems to remain: What is responsible forthe randomness of the initial onditions? Sine in a deterministi physial theorythere is apparently no room for genuine randomness, it would seem that it mustome from `outside'. Thus the usual answer is: Systems are never losed and fromthe `outside' ome random disturbanes. But after inluding the `outside' we aredealing only with a bigger physial system, itself physial and deterministi;thus we have merely shifted the question of the origin of randomness to a biggersystem, and so it ontinues and one hopes that eventually the question willevaporate into empty spae. But it does not and only if one ontinues to ask anone know for sure that the shift to inlude the `outside' is a dead end. The biggestsystem oneivable, the universe, has no outside. It is for the universe that thequestion of the origin of the randomness must be answered! The answer wasgiven by Boltzmann. It is that there is no need for (and, more to the point, nosense to) randomness in the initial onditions of the universe. Rather, a randompattern of events emerges from the deterministi evolution from a �xed initialondition for the universe { provided that initial ondition is typial. I shallexplain this a bit more here, but for a deeper understanding the reader shouldonsult [3℄.We begin by realling the well-known fat that the `quantum equilibrium'distribution j j2 for the on�guration of a system has, mathematially, a spe-ial status within Bohmian mehanis: It is a quasi-invariant or, more preisely,equivariant distribution, analogous to the miroanonial distribution of statisti-al mehanis. Consider the ontinuity equation of the Bohmian ow, analogousto Liouville's equation for a Hamiltonian ow,�t�(q; t) +r � v't�(q; t) = 0: (5)



Bohmian Mehanis 13Now v't = j'tj'tj2 , with j't the quantum ux, whih satis�es an identity holdingfor solutions of Shr�odinger's equation�tj'tj2 +r � j't = 0: (6)This is roughly analogous to the fat that a Hamiltonian veloity �eld is diver-gene free whih { used on the ontinuity equation for the Hamiltonian ow {yields Liouville's equation, for whih the usual stationary solution is obvious.Here, (6) may be rewritten�tj'tj2 +r � v't j'tj2 = 0 (7)so that �(q; t) = j'(q; t)j2 satis�es (5) and thus de�nes an equivariant distribu-tion: It does not hange its form as a funtional of 't during the evolution (�equivariane).Just as in statistial mehanis, this simple mathematial fat leads naturallyto the Quantum Equilibrium Hypothesis (QEH):`If a system has e�etive wave funtion ' then its on�guration has j'j2.' Muhin the spirit of Gibbs, this may be regarded merely as a reasonable statistialansatz for dealing with subsystems: It is supported by the physial theory, itis simple and it works. As is the ommon praxis in statistial mehanis, wean think of this distribution as desribing an ensemble of idential subsystems,obtained by sampling aross spae and time.Typiality We are now at a stage analogous to the present status of statistialmehanis. It is known that the rigorous justi�ation of the statistial hypothesisthat systems tend to be miroanonially (or Gibbs) distributed is a very hardand unsolved problem. What we would like to have is a rigorous proof thatnormal thermodynami behavior emerges for a suÆiently large lass of initialonditions for the universe, or, failing that, for the systems of diret interest tous, at least for some initial onditions for these systems. But even the latter isway beyond our reah (see also Goldstein's ontribution to this volume).For Bohmian mehanis, however, one an provide just suh a rigorous jus-ti�ation of the QEH; one an show, in fat, that it emerges for `most' initialonditions for the universe. I will not go through the proof here but rather om-ment on misoneptions about this statement and its proof.The statement that the QEH an be justi�ed is a law of large number state-ment: What we must look at are the empirial distributions of the on�gurationfor ensembles of small subsystems. Small here means ompared with the size ofthe universe. A laboratory is extremely small.Consider equations (1) and (2) for the evolution of the universe! So Q om-prises the oordinates of all the partiles of a Bohmian universe and 	 is themother of all wave funtions: the wave funtion of the universe. Now let�N;'emp(Q; x; t) = 1N NXi=1 Æ(Xi(Q; t)� x) (8)



14 Detlef D�urrbe the empirial distribution of the on�guration for an ensemble of N similarsubsystems (subsystem i having on�guration Xi), eah subsystem having ef-fetive wave funtion ' at a given time t (for simpliity I disuss here spatialensembles at a given time. In general one has time and spae ensembles [3℄).Here Xi(Q; t) is determined by (2) and the initial onditions Q. We emphasizethat �emp is a funtion of Q. Moreover, the set of Q's relevant to (8) is verymuh onstrained by the requirement that the subsystems have e�etive wavefuntion ' (see the de�nition of e�etive wave funtion).Suppose now that we ould show the following: There exists one initial on-dition Q, i.e. one evolution of a Bohmian universe, for whih5�N;'emp(Q; x; t) � j'j2(x): (9)for all appropriate subsystems, wave funtions ', and times t. In other words,that Born's statistial law holds within that speial universe. This would be afantasti result, learly demonstrating the ompatibility of quantum randomnesswith absolute determinism. Moreover, the empirial data would enourage us tobelieve that we are in that universe. Nonetheless, suh a result would not explainwhy Born's statistial law holds: we would need to know why we should be inthat very speial universe. Now take the other extreme: Suppose it turned outthat for all initial Q' (9) is true. That would mean that Born's statistial lawis a theorem following from (1) and (2). Then { provided we believe in theorretness of our theory { we must be in one of these universes and purestsatisfation would result.But Boltzmann's analysis of the origin of the seond law of thermodynamis(see the ontribution of Goldstein to this volume) should have taught us thatthe latter is too muh to expet. Moreover, it follows from our analysis in [3℄that in fat it is impossible { i.e., that there must be bad initial onditions Qfor whih the QEH fails (see [9℄). What is proven in [3℄, a law of large numberstheorem for (8), thus annot be muh improved upon.6The usual way of formulating a law of large number result is in terms oftypiality: Typially the numbers in the interval [0; 1℄ have a deimal expansionin whih every digit omes with relative frequeny � 110 . That is: Most of thenumbers in the interval [0; 1℄ have a deimal expansion in whih every digitomes with relative frequeny � 110 . Now, `most' is here with respet to theLebesgue measure. That measure is a measure of typiality, and one may askwhat its relevane is. In physis, aording to Boltzmann, we are in the fortunatesituation that the measure of typiality is ditated by physis:Typiality must bestationary, whih requires the measure to be equivariant. (The stationarity of5 for preise formulations see [3℄6 In statistial physis the exploration of mixing, the relaxation of a nonequilibriumdistribution on the full phase spae towards an equilibrium distribution, has beomewidespread and has led some to the belief that mixing is entral to the justi�ation ofthe equilibrium hypothesis. This belief is partiularly attrative, sine it is onnetedwith notions like haotiity and independene. It is nonetheless quite wrong. For moreon this see the ontribution of Goldstein to this volume.



Bohmian Mehanis 15the notion of typiality makes it equilibrium-like, hene `Quantum Equilibrium'.)Thus for Bohmian mehanis typiality is de�ned using the j	 j2 distribution. Itgives us a notion of `most' and `few' in this situation, where ounting is notpossible.Warning: We used j'j2 to formulate the statistial hypothesis, in whih itrepresents an empirial distribution. Now we refer to it (or, rather, to j	 j2)to de�ne the measure of typiality, an entirely di�erent onept. Moreover, thewave funtion 	 of the universe and the wave funtion ' of a subsystem arealso rather di�erent objets, and it is in a sense an aident that they seem sosimilar and obey the same equations { and (for good reasons) go by the samename. But while for ensembles of subsystems of one universe empirial statistisare relevant, a statistial ensemble of universes is quite another matter.We show that for typial solutions of (2) (the universal wave funtion isassumed to be given) Born's law (9) is valid: the set of exeptions is assignedvery small measure by the j	 j2 distribution. The failure to distinguish betweenj'j2 as an empirial distribution and j	 j2 as a measure of typiality leads to thefollowing reformulation of our analysis: Consider a probability distribution ofuniverses with density j	 j2. Then the on�guration of a subsystem with e�etivewave funtion ' is j'j2 distributed.7 But this is not a very useful result, sinesampling aross universes is neither possible for nor relevant to humans.More sensible, but still besides the point, is the following. Consider ointossing. I make the following model. The outomes of every toss are independentidentially distributed random variables. I take the produt measure on theprobability spae of sequenes of outomes. Then the law of large numbers holds:Typially, the relative frequeny of heads is approximately 12 . That is `trivially'true, by onstrution. It is important to appreiate how this appeal to typialitydi�ers from Boltzmann's and from ours in [3℄. Note in partiular that there isno simple relationship between the initial on�guration Q of the universe andthe empirial statistis that emerge from Q via the dynamis (2). Note also thatin general we make no laim about empirial statistis at the initial universaltime, sine it need not be the ase that a deomposition into subsystems withthe same e�etive wave funtion (or any e�etive wave funtion at all) is possibleat this time.This result justi�es for me the QEH; it explains why Born's law holds {or, what amounts to more or less the same thing, it explains why it should beexpeted to hold. To go further we would need to analyze just what is meantby explanation; see the ontribution of Goldstein to this volume, where this istouhed upon.I remark that the operator formalism of quantum theory emerges (with sur-prising ease) from statistial Bohmian mehanis [4,17,18℄.7 In [16℄ this is referred to as the nesting property.



16 Detlef D�urr3 Simpliius SimpliissimusWhat is typiality? It is a notion for de�ning the smallness of sets of (mathe-matially inevitable) exeptions and thus permitting the formulation of law oflarge numbers type statements. Smallness is usually de�ned in terms of a mea-sure. What determines the measure? In physis, the physial theory. Typialityis de�ned by a measure on the set of `initial onditions' (eventually by the ini-tial onditions of the universe), determined, or at least strongly suggested, bythe physial law. Are typial events most likely to happen? No, they happenbeause they are typial. But are there also atypial events? Yes. They do nothappen, beause they are unlikely? No, beause the are atypial. But in priniplethey ould happen? Yes. So why don't they happen then? Beause they are nottypial.Using typiality one may de�ne probability in terms of law of large numberstype statements, i.e., in terms of relative frequenies and empirial statistis.What is meant by: In a Stern{Gerlah experiment the probability for spin upis 12? The same as for heads turning up in a oin tossing. So what is meant?The law of large numbers: That in a long run of repetitions of the experimentthe relative frequeny of the outome in whih the spin is up or the oin showsheads will typially be lose to the value 12 .Is there another sense of probability? Probably there is! Does explanation viaappeal to typiality require deeper oneptual analysis? Certainly. Can appealto typiality be entirely eliminated from sienti� explanation? Very unlikely!4 AknowledgementsIt is a pleasure to thank Sheldon Goldstein and Roderih Tumulka for their veryritial reading of the manusript leading to substantial improvements of thepresentation.Referenes1. J. Bell: Speakable and Unspeakable in Quantum Mehanis (Cambridge UniversityPress, Cambridge 1987)2. S. Goldstein: Physis Today, 51, 3, pp. 42-47 and 4, pp. 38-42 (1998)3. D. D�urr, S. Goldstein, N. Zangh��: Journal of Stat. Phys. 67, pp. 843{907 (1992)4. D. Bohm: Phys. Rev. 85 pp. 166{193 (1952),5. D. Bohm and B. Hiley: The Undivided Universe (Routledge, London and NewYork 1993)6. J. Baggott: The Meaning of Quantum Theory (Oxford Siene Publiation, Oxford1992)7. E. Nelson: Quantum Flutuations (Prineton University Press, Prineton 1985)8. J.A. Wheeler, R.P. Feynman: Rev. Mod. Pys. 17,157 (1945), Rev. Mod. Phys.21,425 (1949)
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