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Summary. We review the foundations of the scattering formalism for one-particle
potential scattering and discuss the generalisation to the simplest case of many non-
interacting particles. We point out that the “straight path motion” of the particles,
which is achieved in the scattering regime, is at the heart of the crossing statistics
of surfaces, which should be thought of as detector surfaces. We prove the relevant
version of the many-particle flux across surfaces theorem and discuss what needs to
be proven for the foundations of scattering theory in this context.

4.1 Introduction

Quantum mechanical scattering theory is usually about the S-matrix. The
operator S maps the so-called in-states α to out-states β. That may seem
sufficiently self explanatory as a basic principle since

An experimentalist generally prepares a state . . . at t → −∞ and then
measures what this state looks like at t → +∞. — S. Weinberg in “The

quantum theory of fields” [18], Chapter 3.2: The S-Matrix

and

The S-matrix Sα,β is the probability amplitude for the transition α →
β . . . . — [18] Chapter 3.4: Rates and Cross Sections

so everything seems settled. However the quote continues

. . . but what does this have to do with the transition rates and cross
sections measured by experimentalists? . . .
. . . we will give a quick and easy derivation of the main results,

actually more a mnemonic than a derivation, with the excuse that (as
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far as I know) no interesting open problems in physics hinge on getting
the fine points right regarding these matters. . . . — Chapter 3.4: Rates

and Cross Sections

The mnemonic recalls that the plane waves in the S-matrix formalism are
limits of wave packets, but it does not come to grips with the time-dependent
justification of the scattering formalism, in fact it does not connect to the
empirical cross section.

We remark aside, that apart from not making contact with the empiri-
cal cross section, there is another—though quite related—problem with the
mnemonic, which—as is felt by many—can only be settled by interesting new
physics: When a particle is scattered by a potential its wave will be spread all
over. What accounts then for the fact that a point-particle event is registered
at one and only of the detectors? Where did the particle come from which
is suddenly manifest in that detector event? This is some facet of the mea-
surement problem of orthodox quantum theory [4, 5]. We shall not say more
on that in this paper and refer to [10]. We emphasize however that we shall
use Bohmian mechanics for a theoretical description of the cross section—a
theory free from the conceptual problems of quantum mechanics.

We immediately jump now to the technical heart of foundations of scat-
tering theory by observing that

t → ±∞

means the mathematical limit of the formulas capturing the physical situ-
ation (see (4.8) below). Experimentalists prepare and measure states at large
but finite times. They count the number of particles entering the detectors.
The physical meaning of the S-matrix derives from being the limit expression
of the theoretical formula for the number count. It is moreover immediately
clear—once this point of the finiteness of the physical situation has been
recognized—that the times at which particles cross the detector surfaces are
random. The detector clicks when the particle arrives. That time is random
and not fixed by the experimenters. Thus the foundations of quantum mechan-
ical scattering theory become slippery: No observables exist, neither for time
measurements nor for position measurements at random times. The question
is thus: What are the formulas which theoretically describe the empirical cross
section and which result in the appropriate limit in the S-matrix formalism?

In this paper we shall shortly review the simple one-particle potential scat-
tering situation. Apart from discussing the quantum flux we shall introduce
Bohmian mechanics, which allows us to capture the theoretical foundations
of scattering theory in the most straightforward way. We shall then extend
our considerations to multi-particle potential scattering and show why the
multi-time flux (which we shall introduce) determines the statistics in this
case in terms of a generalized flux across surfaces theorem. The first paper
on the flux across surfaces theorem [8] discusses also the multi-particle flux
but restricts the computation of statistics to the marginal statistics of one
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particle only, ignoring thus the most important correlations due to entangled
wave functions. Our multi-time analysis deals specifically with entangled wave
functions.

4.2 The theoretical cross section

We adopt conventional units in which �

m = 1 and recall that the theoretical
prediction σk0(Σ) for the cross section as given by S-matrix theory is

σk0(Σ) = 16π4

∫
Σ

dω |T (|k0|ω, k0)|2 . (4.1)

Here T = S− I, where the identity I subtracts the unscattered particles from
the scattered beam. As to be explained below, (4.1) is based on a model for a
beam of particles. Using heuristic stationary methods, Max Born [7] computed
T in the first paper on quantum mechanical scattering theory. We shall recall
his argument shortly, since it serves on its own as defining a theoretical cross
section.

Consider solutions ψ of the stationary Schrödinger equation with the
asymptotics

ψ(x) ≈ eik0·x + fk0(ω)
ei|k0||x|

|x| for |x| large (4.2)

and x = ω|x|. In naive scattering theory the first term is regarded as repre-
senting an incoming plane wave and the second term as the outgoing scattered
wave with angle-dependent amplitude.

Such wave functions can be obtained as solutions of the Lippmann–
Schwinger equation

ψ(x, k) = eik·x − 1
2π

∫
dy

ei|k||x−y|

|x − y| V (y) ψ(y, k) . (4.3)

The solutions form a complete set, in the sense that an expansion in terms of
these generalized eigenfunctions, a so-called generalized Fourier transforma-
tion, diagonalizes the continuous spectral part of H. Hence the T -matrix can
be expressed in terms of generalized eigenfunctions and one finds (cf. [14])
that

T (k, k′) = (2π)−3

∫
dx e−ik·x V (x)ψ(x, k′) . (4.4)

Thus the iterative solution of (4.3) yields a perturbative expansion for T ,
called the Born series.

Moreover, comparing (4.2) and (4.3), expanding the right-hand side of
(4.3) in powers of |x|−1, we see from the leading term that
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fk0(ω) = −(2π)−1

∫
dy e−i|k0|ω·y V (y)ψ(y, k0) .

Thus fk0(ω) = −4π2T (ω|k0|, k0).
We remark that in the so-called naive scattering theory, fk0(ω) is called the

scattering amplitude since Born’s ansatz offers also a heuristic way of defining
a cross section. One simply uses the stationary solutions of Schrödinger’s
equation with the asymptotic behavior (4.2) to obtain the cross section from
the quantum probability flux through Σ generated by the scattered wave:
The incoming flux has unit density and velocity v = k0. In the outgoing flux
generated by fk0(ω) ei|k0||x|

|x| the number of particles crossing an area of size
x2dω about an angle ω per unit of time is

|k0|(|fk0(ω)|2/|x|2)|x|2dω .

Normalizing this with respect to the incoming flux suggests the identification
of the cross section with

σnaive
k0

(Σ) :=
∫

Σ

dω |fk0(ω)|2 (4.5)

in agreement with the above. However, such a heuristic derivation of the
formula (4.5) for the cross section, based solely on the stationary picture of a
one-particle plane wave function, is unconvincing [3].

4.3 The empirical cross section

Consider a scattering experiment of the most naive kind where one particle is
scattered by a potential. In Figure 4.1 we depict a model for such a scattering
experiment, where a beam of identical independent particles (defining the
ensemble) is shot on a target potential.

The scattering cross section for a potential scattering experiment is mea-
sured by the detection rate of particles per solid angle Σ divided by the flux
|j| of the incoming beam. ∆T is the total time of duration of the measure-
ment. With N(∆T, RΣ) denoting the random number of particles crossing
the surface of the detector located within the solid angle Σ, the empirical
distribution is

ρ(∆T, Σ) :=
N(∆T, RΣ)

∆T |j| . (4.6)

The empirical distribution is a random variable on the space of “initial
conditions”: initial position of the wave packet within the beam, time of cre-
ation of wave packet, and also of the quantum randomness, encoded in the |ϕ|2
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Fig. 4.1. A beam of particles is created in a source far away (distance L) from
the scattering center. The particles’ waves are all independent from each other. The
detectors are a distance R away from the scattering center. In the simplest such
models, the wave functions are randomly distributed over the area A of the beam.
The particles arrive independently at random times at random positions at the
detector surfaces. σ(Σ) is the cross section, an area which when put in the incident
beam is passed by an equal number of particles which per unit of time cross the
detector surface defined by the solid angle Σ. The random Bohmian position of
the particle within the support of the wave is also depicted as well as its straight
Bohmian path X(t) far away from the scattering center.

randomness. It also depends (in fact very much so) on the parameters captur-
ing the physical situation, like the distances L, R and the area A of the beam.
The difficult part of this random variable is the dependence on the quantum
randomness, which, as we shall show, becomes simple in the limit of large dis-
tances. We wish to stress that the classical randomness (position of the wave
function within the beam, time of creation of the wave function) which arises
from the preparation of the beam and which in classical scattering theory is
all the randomness there is, adds by virtue of the typical dimensions of the
experiment very little to the scattering probabilities in quantum scattering
theory (see [10] for more on that).

The goal of scattering theory is to predict the theoretical value of (4.6).
The value predicted is (4.1) or if one so wishes (4.5).
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What needs to be shown is thus that, in the sense of the law of large
numbers,

“ lim
t→±∞

” lim
∆T→∞

ρ(∆T, Σ) = σk0(Σ) , (4.7)

where the law of large numbers (contained in lim∆T→∞) will have to be formu-
lated with the measure on the space of the initial conditions. The “limt→±∞”
refers to large distance limits and limits which make the expression beam-
model independent:

“ lim
t→±∞

” = lim
|ϕ̂(k)|2→δ(k−k0)

lim
L→∞

lim
|A|→∞

lim
R→∞

. (4.8)

In particular the limit limR→∞ is taken to obtain the “local plane wave”
structure (see (4.13)) of the scattered wave, which allows for a particular
simple expression for the crossing probability of a particle through the detector
surface. For more explanations of the limits see [10, 13].

4.4 The heuristics of quantum randomness

The random number N(∆T, RΣ) defining (4.6) is the random sum of “in-
dependent” single-particle contributions, i.e. it depends on the “trivial” ran-
domness arising from the beam, which is simply ensuring the independence
of the single detections in the ensemble for the law of large numbers to hold.
Most importantly, however, it depends on the quantum randomness inherent
in a single event. We shall from now on focus on the scattering of one single
particle and forget the beam. One particle is send towards the scattering cen-
ter. The question we must then answer is: Which detector clicks? We must
answer this question for the real situation where the detectors are a finite
distance away from the scattering center. The answer might be complicated
but it is that answer of which one can then take the mathematical limit of
infinite distances to obtain a simpler looking formula.

Once this question is clear one immediately sees that this question is coarse
grained, it already ignores that the time at which the particle is registered is
random too. The fundamental question is: Which detector clicks when? In
other words: What is the distribution for the first exit time and exit position
of the particle from the region defined by the detector surfaces (see Figure 4.2).

Pϕ
(
X(Te) ∈ dΣ, Te ∈ dt

)
= ? (4.9)

Heuristically it is clear that the probability is given by the quantum flux
through the surfaces. The quantum flux is

jϕt = Im ϕ∗
t∇ϕt,
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Fig. 4.2. Which detector clicks when? The detection time Te and position Xe =
X(Te) are random exit time and exit position.

and appears in an identity—the so-called quantum flux equation—that holds
for any ϕt being a solution of Schrödingers equation:

∂|ϕt|2
∂t

+ div jϕt = 0 . (4.10)

Consider as in Figure 4.3 the escape of a particle initially localized in G
through a section dS of the boundary ∂G (we can but need not think of a
freely evolving wave). If the surface is far away from the scattering region, it
is very suggestive that the probability should be given by the flux integrated
against the surface

Pϕ
(
X(Te) ∈ dS, Te ∈ dt

)
≈ lim

|R|→∞
jϕt(R, t) · dSdt . (4.11)

Based on this heuristic connection the flux across surfaces theorem, which we
formulate here in a lax manner, becomes a basic assertion in the foundations of
scattering theory [2, 15, 16, 17, 10]. By integrating the flux against the surface
integral over all times, we ignore the time at which the particle crosses the
surface and we focus merely on the direction in which the particle moves:

Theorem “FAST”: Let ϕ be a (smooth) scattering state, then
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Fig. 4.3. Escape of the particle from the region G. When the boundary ∂G is far
from the initial support of the wave function, the exit statistics are approximated
by the flux through the surface.

lim
R→∞

∫ ∞

0

dt

∫
RΣ

jϕt · dS = lim
R→∞

∫ ∞

0

dt

∫
RΣ

|jϕt · dS|

(4.12)

=
∫

CΣ

dk |Ŵ ∗
+ϕ(k)|2 .

The heuristics of the FAST is easy to grasp. If we think of a freely evolving
wave packet, then its long-time asymptotic (which goes hand in hand with a
long-distance asymptotic) is (recall �

m = 1)

e−itH0ϕ(x) ≈ ei x2
2t

t
3
2

ϕ̂
(x

t

)
. (4.13)

We call this approximation the local plane wave approximation. It corresponds
to a radial outward pointing flux. For scattering states ϕ of (short range)
potential scattering there exists a state ϕout moving freely, so that

lim
t→∞

‖e−iHtϕ − e−iH0tϕout‖ = 0

which leads to the wave operator

W+ := s- lim
t→∞

eiHte−iH0t

with
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W ∗
+ϕ = ϕout .

Combining this with (4.13) and computing the flux for this approximation
yields that the left-hand side of (4.12) equals the right-hand side of (4.12).
We note that the first equality in (4.12) asserts that the flux is outgoing,
a condition of vital importance for its interpretation as crossing probability.
We shall discuss its importance below. We remark that the further treatment
of the right-hand side of (4.12) is more or less standard and becomes upon
averaging over the beam statistics essentially (4.1) [1, 10, 13]. That is, given
the FAST, the connection with the S-matrix formalism is standard. The cross
section is justified in the sense of the law of large numbers, once (4.11) is
accepted.

4.5 Bohmian mechanics and the justification of (4.11)

The foregoing discussion is necessarily unprecise since the fundamental objects
exit time and exit position remain undefined: There is no time-dependent
position of the particle in quantum theory defining these random variables. In
Bohmian mechanics, e.g., [9], when the wave function is ϕt, there is a particle,
and the particle moves along a trajectory X(t) determined by the differential
equation

d
dt

X(t) = vϕt(X(t)) := Im
∇ϕt

ϕt
(X(t)) . (4.14)

Its position at time t is randomly distributed according to the probability
measure Pϕt having density ρt = |ϕt|2, see [11].

The continuity equation for the probability transport along the vector
field vϕt(x, t) becomes for the particular choice ρt = |ϕt|2 the quantum flux
equation (4.10), which establishes that |ϕt|2 is an equivariant density.

Hence the trajectories X(t, X0) are random trajectories, where the ran-
domness comes from the Pϕ-distributed random initial position X0, with ϕ
being the “initial” wave function. Having this, the escape time and position
problem (4.9) is readily answered. Define Te = inf{t|X(t) ∈ Gc} and put
Xe = X(Te), then both variables are random variables on the space of ini-
tial positions of the particle and Pϕ({X|Te(X) ∈ dt, X(Te(X), X) ∈ dS}) is
clearly the exit distribution we are looking for. Note also, that we may now
specify rigorously the probability space on which the empirical distribution
(4.6) is naturally defined, and we furthermore have the measure, with which
the law of large numbers (4.7) can be proven.

We explain now the connection of this exit probability with the flux. Con-
sider some possible exit scenarios of the particle as in Figure 4.4. We introduce
the random variables number of crossings

N(dS, dt) := N+(dS, dt) + N−(dS, dt)
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Fig. 4.4. Signed number of crossings of possible trajectories through the boundary
of the region G.

and number of signed crossings

Ns(dS, dt) := N+(dS, dt) − N−(dS, dt) ,

where N±(dS, dt) are the number of outward, resp. inward, crossings. Their
expectations are readily computed in the usual statistical mechanics manner:
For a crossing of dS in the time interval (t, t + dt) to occur, the particle has
to be in a cylinder (Boltzmann collision cylinder) of size |vϕt · dS dt| at time
t. Thus

Eϕ(N(dS, dt)) = |ϕt|2 |vϕt · dS|dt = |jϕt · dS|dt

and

Eϕ(Ns(dS, dt)) = jϕt · dS dt . (4.15)

Under the condition that the flux is positive for all times through the boundary
of G (a condition which needs to be proven, and which is asserted in the first
equality of (4.12)) every trajectory crosses the boundary of G at most once.
Hence

Eϕ(N(dS, dt)) = Eϕ(Ns(dS, dt))
= 0 · Pϕ(Te /∈ dt or Xe /∈ dS) + 1 · Pϕ(Xe ∈ dS and Te ∈ dt) .

In that particular situation the exit probability is thus

Pϕ(Xe ∈ dS and Te ∈ dt) = jϕt · dS dt . (4.16)

This and (4.12) are at the basis of quantum mechanical scattering theory
for single-particle potential scattering.
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4.6 Multi-time distributions for many particles

We extend the foregoing to the case of many-particle scattering. We shall dis-
cuss some of the main steps, which need to be filled with rigorous mathematics
in future works. For simplicity we consider the free case where the particles
are guided by an entangled wave function, but they do not interact via a
potential term in the Hamiltonian with each other. However, the following
naturally generalizes to interacting particles by replacing the wave function
ϕ by its free outgoing asymptote ϕout = W ∗

+ ϕ. While Bohmian mechanics
naturally extends to many particles (see (4.19) below), one sees immediately
that our task of getting our hands on the exit statistics for many particles is
nevertheless nontrivial, since every particle has its own exit time and position.
I.e. we need to handle

Pϕ
(
T (1)

e ∈ dt(1), X(1)(T (1)
e )∈ dS(1), . . . , T (n)

e ∈ dt(n), X(n)(T (n)
e )∈ dS(n)

)
.

(4.17)

To apply the statistical mechanics argument which we used in the last sec-
tion to compute the crossing probability, the multi-time position distribution
is needed

Pϕ
(
X(1)(t(1)) ∈ dx(1), . . . , X(n)(t(n)) ∈ dx(n)

)
(4.18)

= ρ(x(1), t(1), . . . , x(n), t(n)) dx(1) . . .dx(n) ,

which in general will not be a simple functional of the wave function. We will
show that in the scattering regime, when the wave approaches the local plane
wave structure, this multi-time position distribution can be computed and the
exit statistics are in fact given by a particular multi-time flux form. To our
best knowledge, this observation is new. The single-time multi-particle flux
has been used in [8] to compute exist statistics, necessarily ignoring particle
correlations.

For ease of notation we consider two particles with positions X, Y and
wave function ϕ(x, y, t). The Bohmian law of motion is

Ẋ(t) = vx
t (X(t), Y (t)) = Im

∇xϕ(x, y, t)
ϕ(x, y, t)

∣∣∣
x=X(t), y=Y (t)

, (4.19)

Ẏ (t) = vy
t (X(t), Y (t)) = Im

∇yϕ(x, y, t)
ϕ(x, y, t)

∣∣∣
x=X(t), y=Y (t)

, (4.20)

i∂tϕ(x, y, t) = − 1
2

(
∆x + ∆y

)
ϕ(x, y, t). (4.21)

With H = Hx + Hy = − 1
2

(
∆x + ∆y

)
we can easily produce a two-times

wave function by the appropriate action of the single-particle Hamiltonians
through
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ϕ(x, t, y, s) :=
(
e−iHxte−iHysϕ0

)
(x, y) , (4.22)

which reduces to the usual single-time wave function for t = s, because the
Hamiltonians Hx and Hy commute. Hence one could as well include single-
particle potentials into Hx and Hy. While the definition of ϕ(x, t, y, s) seems
very natural at first sight, note that the physical meaning of |ϕ(x, t, y, s)|2 is
not at all obvious. To get our hands on this question, let

Φt(x, y) =
(
Φx

t (x, y), Φy
t (x, y)

)
=

(
X(t, x, y), Y (t, x, y)

)
be the Bohmian flow along the vector field given by (4.19) transporting the
initial values x, y along the Bohmian trajectories to values at time t and let

Φt,s(x, y) =
(
Φx

t (x, y), Φy
s(x, y)

)
=

(
X(t, x, y), Y (s, x, y)

)
be the two-times Bohmian flow. Observe that

∂tΦt,s(x, y) =
(
∂tΦ

x
t (x, y), 0

)
=

(
vx

t

(
Φt(x, y)

)
, 0

)
, (4.23)

∂sΦt,s(x, y) =
(
0, ∂sΦ

y
s(x, y)

)
=

(
0, vy

s

(
Φs(x, y)

))
. (4.24)

From the definition of the multi-time wave function (4.22) it follows in the
same way as in the single-time case that

∂t|ϕ(x, t, y, s)|2 = −∇x · Im
(
ϕ(x, t, y, s)∗∇xϕ(x, t, y, s)

)
,

∂s|ϕ(x, t, y, s)|2 = −∇y · Im
(
ϕ(x, t, y, s)∗∇yϕ(x, t, y, s)

)
, (4.25)

which leads us to define a multi-time velocity field:

vx
t,s(x, y) = Im

∇xϕ(x, t, y, s)
ϕ(x, t, y, s)

(4.26)

if ϕ(x, t, y, s) �= 0 and vx
t,s(x, y) = 0 if ϕ(x, t, y, s) = 0 and analogously for

vy
t,s(x, y).

We show now, that under certain conditions there exists a two-times conti-
nuity equation for a two-times density ρ(x, t, y, s). We start with the definition,
setting ρ(x, 0, y, 0) = ρ(x, y),

Eϕ
(
f
(
X(t), Y (s)

))
=

∫
dxdy f

(
Φt,s(x, y)

)
ρ(x, y)

=:
∫

dxdy f(x, y)ρ(x, t, y, s) , (4.27)

where f varies in a suitable class of test functions. Next differentiate the
equation with respect to t, respectively s. This yields in the second equality

∂t

∫
dxdy f

(
Φt,s(x, y)

)
ρ(x, y)

=
∫

dxdy∇(1)f
(
Φt,s(x, y)

)
· vx

t

(
Φt(x, y)

)
ρ(x, y)

=
∫

dxdy f(x, y)∂tρ(x, t, y, s) , (4.28)
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and similarly for differentiation with respect to s. Here ∇(1) denotes the gra-
dient with respect to the first argument. If the following “multi-time indepen-
dence” condition

vx
t

(
Φt(x, y)

)
= vx

t,s

(
Φx

t (x, y), Φy
s(x, y)

)
,

(4.29)
vy

t

(
Φt(x, y)

)
= vy

t,s

(
Φx

t (x, y), Φy
s(x, y)

)
is satisfied, we can replace vx

t

(
Φt(x, y)

)
, vy

t

(
Φt(x, y)

)
in (4.28) by

vx
t,s

(
Φx

t (x, y), Φy
s(x, y)

)
.

Using definition (4.27) followed by partial integration yields for the second
integral in (4.28)∫

dxdy∇(1)f
(
Φt,s(x, y)

)
· vx

t

(
Φt(x, y)

)
ρ(x, y)

=
∫

dxdy∇(1)f
(
Φt,s(x, y)

)
· vx

t,s

(
Φt,s(x, y)

)
ρ(x, y)

(4.28)
=

∫
dxdy∇(1)f

(
x, y

)
· vx

t,s

(
x, y

)
ρ(x, t, y, s)

= −
∫

dxdy f(x, y)∇x ·
(
vx

t,s(x, y)ρ(x, t, y, s)
)

.

From this and (4.28) we may conclude, repeating the same for the s-differen-
tiation, the two-times continuity equation

∂tρ(x, t, y, s) = −∇x ·
(
vx

t,s(x, y)ρ(x, t, y, s)
)
,

∂sρ(x, t, y, s) = −∇y ·
(
vy

t,s(x, y)ρ(x, t, y, s)
)

. (4.30)

Comparing this with (4.25) we see that ρ(x, t, y, s) = |ϕ(x, t, y, s)|2 is equiv-
ariant. All this depends crucially on the “multi-time independence” condition
(4.29). It is easy to see that the condition is satisfied if the wave function
is a product wave function. But that is uninteresting. The condition can be
expected to be also approximately satisfied when the wave function attains
the local plane wave structure

ϕ(x, t, y, s) ≈ ei x2
2t

t
3
2

ei y2

2s

s
3
2

ϕ̂
(x

t
,
y

s

)
(4.31)

of an outgoing scattering state at large times (see next section). In this case
the trajectories are approximately straight lines and the velocity of parti-
cle X does not change if particle Y is moved along its straight path and
vice versa. We remark that the local plane wave structure is preserved under
multi-time evolution (as it is preserved under single-time evolution). Thus in
the scattering regime condition (4.29) holds true and we conclude that in this
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regime the two-times wave function (4.22) yields the two-times joint distribu-
tion ρ(x, t, y, s) = |ϕ(x, t, y, s)|2 for the positions of the two particles. Hence,
approximately, we have that

Pϕ
(
X(t) ∈ Λ1 andY (s) ∈ Λ2

)
≈

∫
Λ1

dx

∫
Λ2

dy |ϕ(x, t, y, s)|2 .

Moreover we have in that regime single crossings only. We can thus com-
pute the exit statistics in the scattering regime as before (the Boltzmann col-
lision cylinder argument) but now using the two-times density |ϕ(x, t, y, s)|2
and the approximate straight path velocities

vx
t,s(x, y) ≈ x

t
, vy

t,s(x, y) ≈ y

s
. (4.32)

This way one obtains

Pϕ(T x
e ∈ dt, T y

e ∈ ds, X(T x
e ) ∈ dSx, Y (T y

e ) ∈ dSy) (4.33)

≈ |ϕ̂
(x

t
,
y

s

)
|2

(x

t
· dSx

) (y

s
· dSy

)
dt ds

≈: jsp(x, t, y, s) · (dSx ⊗ dSy) dt ds ,

where the two-times “straight paths” flux form jsp(x, t, y, s) is the straight
path approximation to the multi-time flux form

j(x, t, y, s) := |ϕ(x, t, y, s)|2 vx
t,s(x, y) ⊗ vy

t,s(x, y) . (4.34)

It is remarkable and relevant for its meaning in the foundations of scatter-
ing theory that this unmeasured Bohmian joint probability is in this particular
situation the same as the measured probability, which is in general not true
for joint probabilities [6]. Measurements lead—in the language of orthodox
quantum theory—to a collapse of the wave function, which in the local plane
wave approximation however does not have any effect on the trajectory of the
other particles. In the two-particles case the collapse (due to the detection of
one particle) picks out simply the rightly correlated pair, which in fact can be
EPR correlated pairs.

The N -particle multi-time flux (4.34) as well as the N -particle single-
time flux have taken alone no significance for the description of scattering (in
contrast to the one-particle situation), while the crossing probabilities (4.33)
of course do. We shall in the next section compute the value of the right-hand
side of (4.33), which is the usual scattering into cones (in momentum space)
formula.

4.7 The exit statistics theorem for N particles

We abbreviate the joint exit time-exit position distribution for N particles
through a sphere of radius R as
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Pϕ(dt1 . . .dtN dS1 . . .dSN )
:= Pϕ(X1(T1e) ∈ dS1, T1e ∈ dt1, . . . , XN (TNe) ∈ dS1, TNe ∈ dtN ) ,

where we recall that Tne is the first exit time of the nth particle through the
sphere and dSn an infinitesimal surface element on this sphere. Neglecting the
possibility of clustering, the generalization of the flux-across surfaces theorem
of potential scattering then becomes the following conjecture.

Exit Statistics Theorem: Let ϕ be a (smooth) scattering state of an N -body
Hamiltonian H at time t = 0; then for any −∞ < T < ∞,

lim
R→∞

∫ ∞

T

· · ·
∫ ∞

T

∫
RΣ1

· · ·
∫

RΣN

Pϕ(dt1 . . .dtN dS1 . . .dSN )

= lim
R→∞

∫ ∞

T

dt1 · · ·
∫ ∞

T

dtN

∫
RΣ1

· · ·

· · ·
∫

RΣN

jϕout,sp(x1, . . . , xN , t1, . . . , tN )(dS1 ⊗ · · · ⊗ dSN )

=
∫

CΣ1

dk3
1 · · ·

∫
CΣN

dk3
N |ϕ̂out(k1, . . . , kN )|2 . (4.35)

Recall that ϕout = W ∗
+ϕ and that

ϕout(t1, . . . , tN ) = ei∆x1 t1 · · · ei∆xN
tN ϕout

evolves according to the free multi-time evolution.
The theorem provides a precise connection between the joint distribution

of the measured exit positions of N scattered particles (the first expression
in (4.35)) and the empirical formula for this quantity in terms of the Fourier
transform of the outgoing wave (the last expression in (4.35)). A rigorous proof
of this connection seems to involve necessarily a multi-time formulation of the
quantum mechanics in the scattering regime in the sense of the intermediate
expression in (4.35). Notice that the first equality in (4.35) is, as discussed
in the previous section, the highly nontrivial part to prove. More precisely,
one needs to establish (4.33) rigorously and with error estimates which are
integrable in the sense of (4.35). The second equality in (4.35) is an easy
computation, with which we shall conclude the paper. We shall first remind
the reader of the local plane wave structure which approximates the scattering
state and which is presumably crucial for the proof of the theorem.

Since |ϕ̂out(k)| is invariant under the free time-evolution we can choose
without loss of generality T ≥ 1. To shorten notation let us introduce the
configuration variables x = (x1, . . . , xN ) and t = (t1, . . . , tN ). Then

ϕout(x, t) =
(
ei∆x1 t1 · · · ei∆xN

tN
)
ϕout(x)

=
∫

R3
dy1 · · ·

∫
R3

dyN
ei

|x1−y1|2
2t1

(2πit1)
3
2
· · · ei

|xN −yN |2
2tN

(2πitN )
3
2

ϕout(y1, . . . , yN ) ,
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where here and in the following ϕout without a time-argument means always
ϕout(t = 0). Expanding every factor in the integrand as

ei
|xn−yn|2

2tn = ei
|xn|2
2tn e−i xn·yn

tn + ei
|xn|2
2tn e−i xn·yn

tn

(
ei

|yn|2
2tn − 1

)
,

one obtains

ϕout(x, t) =
ei

|x1|2
2t1

(it1)
3
2
· · · ei

|xN |2
2tN

(itN )
3
2

ϕ̂out

(
x1

t1
, . . . ,

xN

tN

)
+ R(x, t) , (4.36)

where every term in the sum R has at least one factor of the form(
ei

|yn|2
2tn − 1

)
in the integrand. Under appropriate assumptions on ϕout it is now easy to
get estimates on the remainder term R(x, t) for large tn by stationary phase
methods. For details we refer to [12]. In particular the remainder term does
not contribute to the time integrals in (4.35).

Neglecting R we obtain from (4.36) for the nth component of the velocity

vn
t (x) =

xn

tn
+

1
tn

Im
∇nϕ̂out

(
x1
t1

, . . . , xN

tN

)
ϕ̂out

(
x1
t1

, . . . , xN

tN

) , (4.37)

of which we only need the first term (the straight path velocity) and for the
density

|ϕout(x, t)|2 =
1

t31 · · · t3N

∣∣∣∣ϕ̂out

(
x1

t1
, . . . ,

xN

tN

)∣∣∣∣2 .

Using xn·dSn = |xn|R2dωn = R3dωn, where dω denotes Lebesgue measure
on the unit sphere S2 ⊂ R3, we now conclude with the computation of the
second equality of (4.35):

lim
R→∞

∫ ∞

T

dt1 · · ·
∫ ∞

T

dtN

∫
RΣ1

· · ·
∫

RΣN

jϕout,sp(x, t) · (dS1 ⊗ . . . ⊗ dSN )

= lim
R→∞

∫ ∞

T

dt1 · · ·
∫ ∞

T

dtN

∫
RΣ1

· · ·
∫

RΣN

∣∣∣ϕ̂out

(
Rω1
t1

, . . . , RωN

tN

)∣∣∣2
t41 · · · t4N

R3N

dω1 · · ·dωN

= lim
R→∞

∫ R
T

0

d|k1| · · ·
∫ R

T

0

d|kN |
∫

RΣ1

· · ·
∫

RΣN

|ϕ̂out(k1, . . . , kN )|2

|k1|2 · · · |kN |2 dω1 · · ·dωN

=
∫

CΣ1

dk3
1 · · ·

∫
CΣN

dk3
N |ϕ̂out(k1, . . . , kN )|2 .
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In the above computation we substituted kn = xn

tn
, which, in particular, gives

dtn = −t2nR−1d|kn| and R/tn = |kn|.

4.8 Conclusion

For the first time we formulate the connection between the joint distribution
of the measured exit positions of N scattered particles and the empirical for-
mula for this quantity in terms of the Fourier transform of the outgoing wave.
While in the case of potential scattering for a single particle the distribu-
tion of the measured exit position can be formulated, at least heuristically,
in terms of the quantum flux, this is no longer true for the joint distribu-
tion of N particles. In the case of N -particle scattering even the definition
of the relevant distribution is not possible within orthodox quantum mechan-
ics. Therefore we use the Bohmian trajectories of the particles to define the
distribution of exit positions and times. The flux-across-surfaces theorem for
N particles then connects this fundamental joint distribution with the em-
pirical formulas of quantum mechanics. While a completely rigorous proof of
the flux-across-surfaces theorem for N particles seems a challenging task, we
sketched a possible argument and showed that a multi-time formulation of
the quantum mechanics in the scattering regime should play a crucial role in
this program.
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