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BOHMIAN MECHANICS & POSITION MEASUREMENTS

R. T. SCHLENGA

Abstract
The task of this work is to show that one of the research highlights 2010 of the Journal of Mathematical Physics,

[KW10], erroneously claims to find an experimentum crucis with which Bohmian mechanics could be disproved. We will
include a revision of Bohmian mechanics and its relevant aspects as well as a discussion of common misunderstandings
of the theory, some of which occured also in the article in question. We will show that Bohmian mechanics provides a
consistent account of measurements in a quantum setting and that its predictions are equivalent in statistics to those of
standard quantum mechanics.

1. Introduction

Bohmian mechanics, or more exactly ‘de Broglie-
Bohm theory’, is a realistic, non-relativistic quantum
theory about moving particles. As such, it represents
an attempt to formulate a quantum theory without
measurement problem. Put differently, Bohmian me-
chanics is an attempt to find the fundamental theory
behind the merely effective description of Nature in
usual quantum mechanics. Sadly, still today, almost
sixty years after its publication, Bohmian mechanics
divides the scientific community into two lairs. On the
one side are very few physicists and mathematicians
working on Bohmian mechanics, who are convinced
that Bohmian mechanics is the key to a deeper un-
derstanding of the quantum world. The other, much
larger division of scientists reject Bohmian mechanics:
Either they follow Feynman’s premise, ‘shut up and
calculate’, and do not take interest in the fundamen-
tal problems of quantum theory, or they subscribe to
an unfounded point of view in which Bohmian me-
chanics seems to disagree with Nature. Of course, the
latter attitude is plainly wrong, since Bohmian me-
chanics agrees with all measurements whenever ordi-
nary quantum mechanics does. Under ordinary, or
orthodox, or standard quantum meachnics (QM) we
understand the study of the wave function endowed
with several well-known axioms about the representa-
tion of states in a Hilbert space and the replacement
of physical variables by self-adjoint operators. It is of
no relevance to our work which interpretation of stan-
dard quantum mechanics is used since the main prob-
lem is the same in all of them: the (in)famous mea-
surement problem, which Schrödinger led to an ex-
treme exaggeration in his gedankenexperiment about

macroscopic superposition of states, better known as
his cat paradox.

Yet another attack on Bohmian mechanics was re-
cently led by Kiukas and Werner in their article
[KW10], even a research highlight of the Journal
of Mathematical Physics. It is our goal in this
work to show that and where they went wrong.

First, we will give an introduction to Bohmian me-
chanics, where we want to clarify the notion of posi-
tion and its measurement. Then we will encounter
[KW10]. In this paper position measurements are
used to construct quantum states which (maximally)
violate a Bell-type inequality, known as CHSH in-
equality (see [CHSH69]) which is experimentally eas-
ier to test than the original setting by Bell. While
succeeding in this endeavour, the authors failed in a
different one: They planned to use these measure-
ments to distinguish between orthodox and Bohmian
quantum mechanics – but they made glaring mistakes
which demand for refutation. Since such errors are
found rather often, we will very precisely show what
really is the content of Bohmian Mechanics and that
the POVMs (positive-operator valued measures) con-
structed in [KW10] are, like all POVMs used in the
description of any quantum system, a prediction of
Bohmian Mechanics.

The source for most misunderstandings of Bohmian
Mechanics lies in the fact that many physicists have
severe difficulties understanding that the ‘measure-
ment’1 of the position operator is not, in general, a
measurement of the Bohmian particle positions. It is
true that in Bohmian mechanics the position measure-
ment is also described mathematically by the expecta-
tion value of the position operator – which sometimes,
but certainly not always, coincides with the value of
the position variable.

Date: July 7, 2011.

1In fact, the usage of the word “measurement” is a bad habit in most cases – what do we mean by it? For criticism, see chapter

23, ‘Against Measurement’, in [Bel04]. A nice example of how to do it better is found in [DGZ04].
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2 R. T. SCHLENGA

Another great difference between Bohmian me-
chanics and orthodox quantum mechanics lies within
the collapse of the wave function. This nonunitary
process is more or less an axiom of orthodox quantum
mechanics, and thus it is taught very emphatically
as an admittedly strange but seemingly fundamental
law of Nature. Not only is it a pitty to have a pro-
cess in the theory which is not actually described by
the theory, it is also interesting to note that ortho-
dox quantum mechanics holds this process for real –
without having an observable for it. Nevertheless, the
notion of a collapse diffused into the intuitive think-
ing about Nature. But Bohmian mechanics does not
know any collapse and hence no such process occurs
in the Bohmian universe. There is only the concept
of an “effective” wave function, describing a system
after a measurement. This function resembles the col-
lapsed wave funtion known from orthodox QM which
may lead to misunderstandings. It is, however, of-
ten critizised that the particle’s dynamics would be
very strange and especially incontinuous if there were
a collapse – one could think of a “quantum leaping”
particle. But since there is no collapse in Bohmian
mechanics, all particle motions are perfectly continu-
ous. This is a typical example for the style of criticism
against Bohmian mechanics: Unneccessary and even
unjustified assumptions are added to Bohmian me-
chanics in a rather ‘handwaving’ manner, and then
these exact assumptions are – mathematically rigor-
ously, at best – refuted.

In [KW10], the line of reasoning is similar, but the
exact argument is not really clear. The authors state
that Bohmian mechanics yields a distribution for po-
sition measurement which disagrees with usual quan-
tum mechanics, unless the theory would be ‘made’
contextual. Since Bohmian mechanics is contextual,
this is not much of a problem, obviously.

Many of the questions concerning Bohmian me-
chanics are answered already. A short summary
of the theory, in nontechnical terms, can be found
in [Tum04], a somewhat more technical one in
[DGTZ09].

Acknowledgements. I wish to express my thanks
to my advisor Prof. Dr. Peter Pickl for clarifying
discussions, for his advice and his helpfulness. I am
especially grateful to Prof. Dr. Detlef Dürr for his
exposition of Bohmian mechanics and the effort he
made to help his students understand the shortcom-
ings of orthodox quantum mechanics and the beauty
of Bohmian mechanics.
This work had some careful human spellcheckers: Se-
bastian Lehrack, Max Mehlhorn und Peter Zeidler.
Thank you very much for your time and help!

2. Bohmian Mechanics

Hence we must inquire first what nature is: for thus
we shall also see what natural science treats of.

– Aristotle: Metaphysics

In his two 1952 papers, [Boh52], David Bohm re-
discovered an idea introduced by Louis de Broglie
already in 1929. It was the most natural way to merge
the wave-like distribution of point-like objects in ex-
periments like the famous double slit experiment: Use
Schrödinger’s wave function as a guiding field for
point particles. Let us see how we can put this in a
precise mathematical formulation.

2.1. Two equations govern the quantum world.
Suppose we have an N -particle system of spinless par-
ticles2. Then we assign to each particle k = 1, . . . , N
a parameter mk, called its mass and, most impor-
tantly, a position Qk ∈ R3. These positions al-
together form a single element of the configuration
space: Q = (Q1, . . . , QN ) ∈ R3N , (a1, . . . , an) stands
for the ordered n-tuple. From now on we will use up-
percase letters like Q (or boldface Q) to denote the
actual state of the system in the configuration space
(the actual particle position, respectively) and lower-
case letters like q for a generic element of the config-
uration space (or again a boldface q for the possible
particle positions). Particle positions in a quantum
theory? Yes, this is what Bohmian mechanics tells
us. We will see how these positions yield in a natu-
ral way all the predictions of usual quantum mechan-
ics, as well as most of its axioms. Another ingredient
to the theory, already known from standard quantum
mechanics, where it is the sole description of the state
of a quantum system, is the wave funtion ψ:

ψ : R3N × R→ C
(q, t) 7→ ψ(q, t) .

We note that the wave function lives on the con-
figuration space R3N for an N -particle system. It is
easy to talk about a configuration of N particles in
Bohmian mechanics, where one actually has particles.
However, in orthodox quantum mechanics, where the
notion of particle is absent, this is not so clear: There
are ways to find the configuration space by consider-
ing the results of experiments, but honest physicists
will admit that they intuitively very well think of par-
ticles – they should not be ashamed of that, since it
is possibly the most natural concept of all physics.

2The case with spin is similar with some conceptual changes here and there. As in [KW10] spinless particles are considered, we do

not overflow the formalism with unneccessary complications through spin.
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The wave function is a solution of the Schrödinger
equation for the system:

i~
∂

∂t
ψ(q, t) =−

N∑
k=1

~2

2mk
∆kψ(q, t) + V (q) · ψ(q, t)

(1)

where ∆k stands for the Laplace operator acting on
the k-subspace of the configuration space, i.e. it acts
on the three coordinates of the kth particle. V (q) ∈ R
is the potential funtion, e.g. a Coulomb potential
for atomic problems. The second ingredient to the
Bohmian description of nature is the guiding equa-
tion for the particles. This equation can be derived in
many different ways, a simple approach using symme-
try arguments can be found in [DT09]3, chapter eight.
The dynamics of the kth particle is given by

d

dt
Qk(t) =

~
mk
=〈ψ,∇kψ〉
〈ψ,ψ〉

(Q(t) , t) . (2)

We denote by = the imaginary part, 〈·, ·〉 stands for
the usual L2 scalar product,

〈ϕ,ψ〉 =

∫
ϕ(x) · ψ(x) dnx

for ϕ,ψ ∈ L2 (Rn,dx) or different suitable domains,
respectively. Note that the right hand side of equa-
tion (2) is evaluated at the actual particle positions at
time t. It is in this simple fact that the nonlocality of
Bohmian mechanics emerges, and it is this nonlocal
structure which fascinated John Bell and inspired
him to his famous inequalities4.

Bohmian mechanics is realistic in the sense that it
has a clear ontology, it spells out (in terms of the the-
ory, not just talk!) what it is about. It is interesting
to note that also orthodox quantum mechanics was in-
tended to be realistic in the beginning. Heisenberg
for example thought that the frequencies of emitted
and absorbed light in an atomic experiment are quite
real and should be taken as primary variables, sub-
stituting position and momentum. For more on that
topic, see [Hei86].

2.2. Positions and position measurements,
PVMs. In connection with Bohmian mechanics the
notion of trajectories enters the stage. But we have to
be very careful with this notion. Although a Bohmian
would speak of the real motion of a real particle, this

real movement need not be the result of a measure-
ment. In Bohmian mechanics it is crucial to distin-
guish between reality and the outcomes of certain ex-
periments, so-called measurements. Since the role of
position and its measurement is most confusing for
many we shall examine this subject a little closer.
First, we will work on more intuitive footing and try
to make clear why what follows fits well to our under-
standing of Nature and of measurements, thereby we
will find that projector-valued measures (PVMs) are
a very natural mathematical tool for the description
of measurements. Once we arrived at this result, we
will repeat the analysis on a more formal level which
then leads us to the most general mathematical ob-
ject in the toolbox of measurement analysis: that of
positive operator-valued measures (POVMs).

In the following, when we talk of the ‘wave function
of the system’, we will always mean the effective wave
function of the system, see Appendix A. In a nutshell,
the effective wave function is no more than that com-
ponent of the total wave function that actually guides
the particle(s). Most of the time, the effective wave
function will be denoted by ψ.

Before we come to position measurements, we need
to know what we mean by “measurement”5. Let
us consider the discrete case first. Under “measure-
ment” we understand an experiment in which a quan-
tum mechanical system interacts with some macro-
scopic (big compared to the de-Broglie wavelength
of the quantum system) device for a time T . Af-
ter the measurement, a pointer on the measurement
device points at some distinct value or the experi-
menter reads the result in a similar manner. Before
we go on, let us agree on notation: The quantum
mechanical system we wish to describe has a wave
function ϕ and particle configuration X ∈ Rm, the
measurement device is described by a wave function
Φ and configuration Y ∈ Rn. Let all wave functions
in this work be appropriately normalized. The mea-
surement process is then formalized as follows: Before
the measurement the apparatus is in some null state
Φ0(y) , Y ∈ suppΦ0(y). Let the wave function of the
system be ϕα where α ∈ A for an appropriate (count-
able) index set A. The system and the apparatus wave
function couple and evolve together under the usual
Schrödinger evolution UT . We suppose that, before
and after this evolution, the state of the combined
system factorizes into the product of the system and

3This book gives a thorough introduction to Bohmian mechanics and discusses most of the relevant aspects.
4See the second article, ‘On the Einstein-Podolsky-Rosen Paradox’ in [Bel04].
5We follow the book [DT09].
6This is not neccessary, however. We only intend to keep things simple and this is the simplest case.
7In the rest of the work, we will always assume that the apparatus is able to display the states α, it would be quite a shabby appa-

ratus if it could not anyhow. It is possible to describe measurements impulsive, i.e. we can neglect the change of the wave functions

due to the usual Schrödinger evolution and just consider the effect of the act of measurement.



4 R. T. SCHLENGA

apparatus wave functions6,7:

ϕα ⊗ Φ0
UT−−→ ϕα ⊗ Φα.

If the system is in a superposition state ψ =∑
α cαϕα with

∑
α |cα|

2
= 1, the measurement yields

what is commonly called “measurement problem”, a
superposition of pointer states:

ψ ⊗ Φ0 =
∑
α

cαϕα ⊗ Φ0
UT−−→

∑
α

cαϕα ⊗ Φα.

Since we are thinking in terms of Bohmian mechanics,
this “problem” is not a problem at all. The pointer
configuration is guided by equation (2) to one and
only one of the different final states. Since this final
state is determined by the initial conditions, it is pos-
sible to know exactly which component of the wave
function is “chosen” in a measurement. Accepting
the premise of |ψ|2 distributed initial conditions, we
may talk about probabilites in a classical sense: Av-
eraging over a statistical ensemble of possible initial
conditions. Then we can use the quantum equilib-
rium hypothesis8 to determine the probability of the
pointer pointing at some value k ∈ A:

Pψ(YT =̂ k) = Pψ(YT ∈ suppΦk) =

=

∫ ∣∣∣∣∣∑
α

cαϕα(x)Φα(y)

∣∣∣∣∣
2

χsuppΦk(y) dmx dny

with the characteristic function χ:

χA(x) :=

{
1 if x ∈ A
0 if x /∈ A

.

Now, what can we see from this equation? Obvi-
ously, the square of the sum will contain terms with-
out Φk and some mixed terms. The mixed terms
vanish because the pointer positions of our measure-
ment device are macroscopically distinct, such that
the overlap of the supports of the apparatus wave
functions for different pointer positions are negligi-
ble9: suppΦa ∩ suppΦb ≈ ∅ for a 6= b. We are left
with only square terms, multiplied by the character-
istic function that sets all terms but one to zero for
the same reason. Then the single term we need to
consider is:

Pψ(YT ∈ suppΦk) =

∫
{x,y|y∈suppΦk}

|ck|2 |ϕk(x)|2 |Φk(y)|2 dmx dny

= |ck|2

This equality is of course not exactly precise, but the
error we make is extremely small: A good estimate for
the width of the support for one particle is obtained

by the uncertainty relation: ∆x ≈ diam (suppϕ) ≈ ~
p

where diam denotes the diameter of a set and p is the
particle momentum. Let us assume the pointer moves
during the duration of the measurement T ≈ 1ms a
distance of about 100µm, which we take as the dis-
tance of distinct pointer states, then each particle has
a momentum p ≈ 10−29 kgm

s where we assumed the

particle to be of mass 10−27kg ≈ 1u. Thus we find
diam (suppϕ) ≈ 10−6m = 1µm. This is obviously
much smaller than the distance of the different pointer
states. But let us assume we made an error of order
ε ≈ diam(suppϕ)

m . Then this error is multiplied for each
particle, so for one gramme of material in the pointer

we will find approximately ε1023 ≈ 10−6·1023

as error,
which is extremely small. This estimate is no formal
proof, but it shows intuitively very well that our as-
sumptions are justified – experiment as the only valu-
able measure of success in physics supports Bohmian
mechanics correspondingly well.

So far, so good. We derived the result one usually
learns as an axiom in Schrödinger quantum mechan-
ics, all we had to do was exploiting the fact that in a
measurement a pointer points at a value. But this cal-
culation demands for abbreviations, since it is quite
long, especially compared to the usual approach in
standard quantum mechanics. If we were to perform
computations similar to this for every description of
an experiment, we would soon run out of paper and
time. Certainly, as a physicist one likes to extract the
structure and results of this computation to a mathe-
matical scheme, which then provides a handle for the
complete process and which simplifies our calculation.
Of course, the idea that comes to mind is to use oper-
ators for the description of such measurements. Note
that we do not need to postulate operators as primary
objects, we just want to use them as “bookkeeping
devices” to encode the information of an experiment
in one single mathematical object. This analysis will
lead us to the notion of PVMs, projector-valued mea-
sures, and we will later generalize that to POVMs
(positive operator valued measures). First we look
again at the previous calculation. We can not only
calculate the probability of an outcome k but also the
norm (i.e. the probabilty of the whole base space10)

8This hypothesis gives us the reason why |ψ|2 is the correct distribution, see [DT09].
9This is the task a good experimenter can complete: Arrange your experiment in such a way that the supports of the wave function
for different results are disjoint.
10Since the Schrödinger evolution preserves the norm ||·||2 by equivariance (see [DT09]), we can calculate the norm before or after

the Schrödinger evolution.
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of the product wave funtion of system and apparatus:

||ψ ⊗ Φ||2 =

∫
|ψ(x) Φ(y)|2 dmxdny

=

∫ ∣∣∣∣∣∑
α

cα ϕα(x) Φ(y)

∣∣∣∣∣
2

dmx dny

=
∑
α

|cα|2

by the same argumentation as above. If we write out
the second line of that equation in detail and carry
out the y-integration, we find the following:∫ ∣∣∣∣∣∑

α

cα ϕα(x) Φ(y)

∣∣∣∣∣
2

dmxdny

=

∫ ∑
α

|cα|2 |ϕα(x)|2 dmx+

+

∫ ∑
α6=β

cα cβ ϕα(x)ϕβ(x) dmx

=
∑
α

|cα|2

which means that the mixed terms have to vanish.
Since the coefficients are quite arbitrary, we find for
α 6= β the stronger statement

0 =

∫
ϕα(x)ϕβ(x) dmx

= 〈ϕα, ϕβ〉.

We also saw that 〈ϕα, ϕα〉 = 1, so in conclusion we
find orthogonality for the ϕα:

〈ϕα, ϕβ〉 = δα,β .

With this result we can use the scalar product to write
the orthogonal projector onto ϕα as follows:

Pϕαϕ = ϕα〈ϕα, ϕ〉.

If we assume that the ϕα form a basis, we can use the
family of orthogonal projectors {Pϕα}α to define an
operator which encodes the results of our experiment.
Let, for all α ∈ A, λα ∈ Λ be the number the hand
of our apparatus points at when it is in the state Φα
with Y ∈ suppΦα. Then we define the operator A by

A :=
∑
α

λαPϕα

its domain being the obvious one.

This mathematical object is a very handy tool for
the calculation of statistics of the experimental re-
sults, but in no way does it represent an actual phys-
ical quantity by itself. How to use this object to com-
pute any statistical quantity is well known from or-
thodox quantum mechanics, since there it is all there
is. Now we want to take the step to PVMs11 which
is most intuitively done by considering position mea-
surements since their results are continuous rather
than discrete. So we came full circle to the position
measurements. It is crucial that in Bohmian mechan-
ics the real positions need not be the result of a po-
sition measurement. Why is this? Obviously a mea-
surement needs a measurement device. This is true
for every physicist, but this simple statement has an
enormous impact when taken seriously. While in or-
thodox quantum mechanics the apparatus is cut out
of the picture by introducing the fuzzy notion of an
observer and axiomatically postulating the facts we
have shown so far, Bohmian mechanics takes the ap-
paratus seriously and introduces it in the mathemat-
ical description of the measurement12. But we saw
that whenever we performed an analysis of a mea-
surement, the apparatus played a crucial role which
lead us to introducing an operator for the description
of the results. So instead of the actual position, given
by equation (2), we rather measure a composite object
which to a certain extent respects the act of measur-
ing. What will this object be for a measurement of
position? Let in the following Ω be a measurable sub-
set of R (we denote the set of measurable subsets of
R with B(R)) and consider a single particle described
by wave function ψ and generic position x ∈ R. Then
the probability of finding this particle in Ω is of course

Pψ(Ω) =

∫
|ψ(x)|2 χΩ(x) dx

=:

∫
Ω

〈ψ, χ{dx}ψ〉.

Now it is natural to define an operator OΩ with
Ω ∈ B(R) by

OΩϕ(x) := χΩ(x)ϕ(x) =

{
ϕ(x) if x ∈ Ω

0 if x /∈ Ω
.

This operator is part of a family of operators indexed
by the measurable sets Ω which is called a PVM as it
fulfills the following definition13:

11Actually, the projectors Pϕα we defined form a PVM as well. But a discrete spectrum is not the most general case and would

not lead to an intuitive definition, so we postpone the introduction of PVMs to the next step.
12This situation is somewhat analogous to the difference between Riemann and Lebesgue integration theory: The former forces the
function, similar to what conventional quantum mechanics does to the system, into a tight corset to fulfill the demanded expecta-

tions, while the latter allows the function to behave freely and measures what is really there, very much like Bohmian mechanics
does it with a quantum system and the apparatus. It is clear which integration theory is more useful, the reader is encouraged to

draw his or her own conclusions regarding quantum theory.
13See e.g. [RS81]
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Definition. A family of projections {PΩ} with
Ω ∈ B(R) is called a projection-valued measure
(PVM) if it obeys:

(a) Each PΩ in the family is an orthogonal pro-
jection.

(b) P∅ = 0, PR = 1.

(c) If Ω =
∞
t
n=1

Ωn (i.e. Ω is the union

of pairwise disjoint subsets), then PΩ =

s-lim
N→∞

(
N∑
n=1

PΩn

)
(d) PΩ1

PΩ2
= PΩ1∩Ω2

The operator OΩ inherits these properties from the
characteristic function in its definition. Generaliza-
tion to three dimensions is straightforward, we just
use one operator for each component. To shorten the
notation we define the “three-dimensional” operator
OΩ by

OΩϕ(x) := χΩ(x)ϕ(x)

for x ∈ R3 and Ω ∈ B
(
R3
)
, using the same symbol

O since it will always be clear from context in how
many dimensions we work. With this definition we
can write the probability of finding the particle in the
set Ω as

Pψ(Ω) = 〈ψ,OΩψ〉

=:

∫
Ω

d〈ψ,Oxψ〉

=:

∫
Ω

〈ψ,dOxψ〉.

It is interesting to see that in Dirac’s bra-ket nota-
tion we can write dOx = |x〉〈x|d3x.

Now, what is the physical meaning, if any, of the
PVM OΩ? It is analogous to that of the projec-
tors Pϕα which we used to construct the operator
A =

∑
α
λαPϕα as a bookkeeping device for the sta-

tistics of a measurement with results λα ∈ Λ. So,
since we want to describe position measurements, we
construct an operator for the statistics of such an ex-
periment with the possible results of it, i.e. the generic
particle position x:

X =

∫
x dOx (3)

=

∫
x |x〉〈x| d3x. (4)

This is the famous position operator of quantum me-
chanics14. Now we see what describes position mea-
surements in Bohmian mechanics: It is the same po-
sition operator as in usual quantum mechanics, albeit
there is an exact particle position in the theory. This
fact leads to confusion, which is to a certain degree
understandable. On the other hand we can be sure
that any “measurement” of an operator in orthodox
quantum theory is also a prediction of Bohmian me-
chanics.

We need one more fact to complete our analysis of
PVMs: The Heisenberg operator, i.e. in our case, the
position operator at a time t. This operator is found
easily, just consider as before the probability of find-
ing a particle with coordinate x and wave function ψ
in a measurable set Ω, but now at time t:

Pψt(Ω) = 〈ψt,OΩψt〉
= 〈U(t)ψ,OΩ U(t)ψ〉
= 〈ψ,U∗(t)OΩ U(t)ψ〉
=: 〈ψ,OΩ(t)ψ〉.

This is of course also a PVM since U(t) is unitary. So
we find that the Heisenberg position operator at time t
is X(t) = U∗(t)XU(t). This calculation goes through
as in conventional quantum theory and the operator
is exactly the same. This comes as no surprise, since
all operators are associated to PVMs (or POVMs)
and they are what Bohmian mechanics brings as de-
scription of measurements, the Schrödinger evolution
being the same in orthodox and Bohmian quantum
mechanics.

It is clear that our analysis focused on position and
the position operator because the paper we wish to re-
fute is based on a position measurement. But what
is true for the position operator is also true for any
other operator of quantum mechanics: For every ex-
periment we can find a PVM (or, more generally, a
POVM, see below) which, when applied to the system
wave function, yields those components associated to
the outcomes of the experiment. Then we construct
an operator with the possible results as eigenvalues
(or the spectrum) and the PVM, which is of course a
simple application of the spectral theorem. This oper-
ator encodes the complete statistics of the experiment
in one single mathematical object.

Let us see what the connection between the posi-
tion operator and the actual particle positions is. It is
clear that if we want to (and if we are able to) measure
the Bohmian positions, this is described by “measur-
ing” the position operator, to use conventional lan-
guage. But does the position operator always describe
genuine15 measurements of position? Of course not.

14A word on the domain of this operator is in order: In the so-called position representation the operator boils down to a multi-

plication operator, and thus its domain is just maximal.
15This notion means no more than the measurement of a preexisting quantity. See [DGZ04].



BOHMIAN MECHANICS & POSITION MEASUREMENTS 7

All we have for certain is that a “measurement” of
the position operator yields the same statistics as a
genuine position measurement. Yet, who would infer
from the same statistics of experimental results that
the measured physical quantities were the same? The
classic example of this problem is the two-dimensional
harmonic oscillator, see [DGZ04]. There we find for
the Bohmian position of a certain state a movement
which is not periodic with the same period as the os-
cillator period. We conclude that the measurement
of the position operator (which yields a periodicity
equivalent to the harmonic oscillator) is not a mea-
surement of the Bohmian position.

Now, after we have come to an intuitive under-
standing of the Bohmian notion of experiment and
measurement, let us become more precise.

2.3. POVMs. Thus far we saw only PVMs, but we
announced POVMs as the most general description of
measurements in Bohmian mechanics. The structure
of such a POVM is very similar to that of a PVM,
we just drop the condition of the operators being pro-
jectors for the weaker condition that they are merely
positive (bounded) operators. Here is the formal def-
inition16:

Definition. For measurable subsets Ω of Rn, Ω ∈
B(Rn), we call a family of bounded linear operators
{PΩ}Ω ∈ L (H ) on a Hilbert space H a positive
operator valued measure (POVM) if:

(a) Each PΩ is positive, i.e. 〈ϕ,PΩϕ〉 ≥ 0 ∀ϕ ∈
H .

(b) P∅ = 0, PRn = 1H .
(c) For (Ωn)n∈N with Ωn ∩ Ωm = ∅ if n 6= m we

have

P ∞
t
n=1

Ωn
= s-lim
N→∞

N∑
n=1

PΩn .

Let us see why we would need this even more ab-
stract notion compared to PVMs in Bohmian mechan-
ics. For that, we go back again to the notion of mea-
surement. We consider the discrete case. In the be-
ginning, before the measurement starts, we have a
combined wave function of system and apparatus17

Ψ0 := ψ ⊗ Φ0.

Then the coupled system will undergo a change dur-
ing the time of the measurement T . This change is
caught in the unitary time evolution UT :

UT : H ⊗ Φ0 →
⊕
α

H ⊗ Φα

Ψ0 = ψ ⊗ Φ0 7→
∑
α

ψα ⊗ Φα =: ΨT .

Above we made clear that at the end of the exper-
iment the apparatus shows a macroscopically distin-
guishable result, say λα if the configuration of the
apparatus at the end YT lies in the right region Gα of
the configuration space. So there is a coarse-graining
function (one may call it “calibration”) F from con-
figurations to numbers. This function need not be
one-to-one, in general. But let us assume for now, F
were a bijection. Then the probability of outcome α
is:

PΨT (α) =

∫
F−1(λα)

|ΨT (x, y)|2 dx dy

=

∫
Gα

|ΨT (x, y)|2 dxdy

=

∫
dx

∫
Gα

dy

∣∣∣∣∣∑
α′

ψα′(x)Φα′(y)

∣∣∣∣∣
2

,

with Φα′(y ∈ Gα) = δα,α′ fapp :

=

∫
|ψα(x)|2 dx

= ||ψα||2 .

Everything is very similar to what we did before. But
note that the key item of the computation lies in the
single summands of the final wave function. We can
write them as follows:

ψα ⊗ Φα = PΦα [UT (ψ ⊗ Φ0)] .

This again allows for the definition of a family of op-
erators Rα by:

PΦα [UT (ψ ⊗ Φ0)] =: (Rαψ)⊗ Φα.

Note that we did not require the ψα to be orthogo-
nal. With help of the new operators, the probability
of outcome α is simply

PΨT (α) = ||ψα||2 = ||Rαψ||2 = 〈ψ,R∗αRαψ〉.

Since these probabilites add up to 1 we find∑
α

R∗αRα = 1.

Since we already know what we are headed to, it is
clear to introduce the (family of) operator(s) Oα =
R∗αRα. Now we are there: We define the POVM O(Λ)
by:

O(Λ) :=
∑
λα∈Λ

Oα.

And with this we are able to abstractly describe the
experiment in question18: The probability of finding

16A less formal approach to the topic of POVMs can be found in [LB06], we follow closely [DGZ04].
17Notation is as above.
18We shall from now on restrict ourselves to calling only those experiments measurements which can be described by a self-adjoint

operator, i.e. we use standard quantum mechanics terminology. Experiments without this property can still be described by a

POVM, we will simply refer to them as experiments.
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a result in Λ is given by 〈ψ,O(Λ)ψ〉, after the exper-
iment is done at time T , the system wave function is
effectively transformed to ψ → ψα = Rαψ.

We briefly remark on the case when F is not a bi-
jection. Then there will be several λα that are equal
to a certain λ. Hence we define the projector associ-
ated with the result λ as:

PA(λ) :=
∑

α : λα=λ

PΦα

where A is the operator constructed from the projec-
tors and the eigenvalues: A :=

∑
λαPΦα .

Now we know how to treat any experiment: using
POVMs. These are the most general means of descrip-
tion for quantum mechanical experiments, regarding
statistics. And since we derived their application for
quantum mechanics above using the main feature of
Bohmian mechanics, namely positions, POVMs are a
prediction of Bohmian mechanics in the sense that it
is extremely natural to use them to describe an exper-
iment. This will come in very handy in the analysis
of [KW10] in the following section.

Let us finish our analysis of Bohmian mechanics by
regarding the detailed description of a genuine posi-
tion measurement – note again, that a measurement
of the position operator is in general no genuine po-
sition measurement. Assume for simplicity that the
particle lives in one dimension. Clearly, if we had a
measurement device actively taking part in the mea-
surement process, we could not detect the actual po-
sition of the particle. Thus we have the case of a
passive, a so-called “no y, no Φ”19 experiment. The
calibration function of our passive apparatus is then
simply F (x) = x, so the result of the “measurement”
is just the actual configuration. The position PVM
we found above serves as POVM in this case, since
PVMs are a subset of POVMs. In our new notation,
this PVM is denoted by PX(∆), where ∆ is the set
for which we want to calculate the probability of find-
ing the particle in it. The chance of measuring the
particle’s position to be in ∆ then is

Pψ(X ∈ ∆) = 〈ψ,PX(∆)ψ〉,

where we assumed U = 1, an instantaneous measure-
ment. The actual process of measuring takes in fact
place after this formal measurement – in a detection
of the initial position of the particle. This detection is
again to be described together with the measurement
device and it transforms the effective wave function
of the particle to the one associated with the result,
according to the general way to handle experiments
we derived above. This fact is the key to disproving
[KW10].

2.4. Concluding remarks on Bohmian mechan-
ics. What did we learn about Bohmian mechanics
thus far? First and foremost we saw that a realistic
quantum theory can exist, since Bohmian mechanics
is one and it exists. This disproves many physicists
or mathematicians who proved that no such theory
could exist. All these proofs have in common that
additional assumptions about the theory are made,
which are not part of – and in fact, violated by –
Bohmian mechanics. It is then shown that these as-
sumptions together with Bohmian mechanics yield
false results. Most of these works are rigorous and
the mathematics is correct - but they scarcely deal
really with Bohmian mechanics. Of course, most im-
portant is that Bohmian mechanics agrees with Na-
ture. We learned that the operator calculus of or-
thodox quantum theory is exactly reproduced (and
in fact even derived) in Bohmian mechanics. All this
is achieved without the unsharp notion “observer” or
axiomatically stating what happens and what can be
measured in a measurement. In the field of statis-
tical predictions, Bohmian mechanics thus seems to
describe Nature as well as conventional quantum me-
chanics, where the latter actually makes predictions.
Yet there are differences: While orthodox quantum
mechanics postulates a collapse of the wave function,
no such thing happens in Bohmian mechanics. In
principle it may be possible to detect the “empty”
wave functions of Bohmian mechanics, i.e. the com-
ponents of the wave function which do not actually
guide the particle. Bohmian mechanics also yields re-
sults for problems which cannot, in fact, properly be
dealt with in conventional QM and which thus does
not provide testable predictions. Most often, these are
experiments involving measurements of timespans.

Now we know enough about the underlying
Bohmian theory to confront the paper [KW10] which
once more tries to disprove Bohmian mechanics.

3. Refutation of Kiukas’ and Werner’s
article [KW10]

Before we show that Kiukas and Werner went
wrong in their paper, let us discuss some common ob-
jections to Bohmian mechanics.

3.1. General misunderstandings of Bohmian
mechanics. When taken seriously, Bohmian me-
chanics is a realistic explanation of quantum mechan-
ics in the sense that it leads to many of the axioms
of orthodox quantum theory like Born’s rule or the
operator calculus. The ingredients of the theory are
only the wave function and the particle positions20.

19[DGZ04].
20Actually, we mean all the particles in the universe and the single wave function of the universe. But it is possible to reduce these

quantities to the system under consideration, see Appendix A
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Yet one often finds animosity towards Bohmian me-
chanics, which most of the time is unjustified and ir-
rational. It is true, of course, that in conventional
QM one only needs the wave function as a physical
object, all the predictions follow from the wave func-
tion and a collection of rules which seem quite reason-
able. And since one equation is less than two equa-
tions, many physicists tend to think that Bohmian
mechanics needs more input to the theory than ortho-
dox quantum mechanics, while it does not yield more
results than the latter. But this is nonsensical because
the axioms of quantum mechanics, without which the
theory could not describe anything, are all predictions
of Bohmian mechanics. The most important impact
might be that in Bohmian mechanics it is no longer
neccessary to postulate a collapse of the wave func-
tion which is not described mathematically in a dy-
namic law but is essentially only talk. Furthermore,
Bohm’s theory provides an actual physical theory of
the quantum world, whereas the orthodox description
consists to a great deal of talk, remember for example
the many notions like “observer” or “measuring an
operator”. At the very least, in Bohmian mechanics
one does not encounter a measurement problem.

A great many physicists believe that locality should
be an important feature of any physical theory. Of
course, Bohmian mechanics in nonlocal. So it can-
not be a feasible theory, correct? Not at all so! First
of all, Bohmian mechanics is a nonrelativistic quan-
tum theory and thus does not, as well as conventional
quantum mechanics, need to respect any locality as-
sumption. Secondly, it is not possible in Bohmian
mechanics to send a signal faster than the speed of
light. This is so because of the quantum equilib-
rium hypothesis – the results of distant measurements
of entangled particles are random and thus worth-
less until the experimenters can communicate about
their respective findings. This communication clearly
takes longer than light would need to travel the dis-
tance between the laboratories, thus no signal trav-
elled faster than light. Furthermore, locality is of-
ten held to be equivalent to causality and thus it is
stated that Bohmian mechanics is acausal. This is
wrong, however, since Bohmian mechanics is nonlcal
only in the “hidden variables”, the wave function and
the Bohmian positions, and these quantities are never
observed in any setting where causality plays a role.
The results of any experiment on the other hand have
to respect causality, since they are classical quantities,
numbers on a screen, and the classical world seems to
respect causality. But as we just said the quantum

equilibrium hyptothesis protects randomness of ob-
servables and thus Bohmian mechanics is causal in
all quantities which can be well defined in orthodox
quantum mechanics. In short, it is obvious that any
acausal theory is nonlocal, but the reverse is not true
in general – again, Bohmian mechanics is the coun-
terexample to such statements.

The biggest confusion one encounters lies in the
ambivalency of the term ‘position’ in Bohmian me-
chanics. On the one hand, there are particles in the
theory which do occupy actual positions and follow
actual trajectories. On the other hand, due to the
training in conventional quantum mechanics, people
tend to refer to the position operator as ‘position’.
However, it is totally clear in the Bohm theory that
the measurement of the position of a particle (or two
particles, or n, at any time or at different times) is
described by the suitable position operator, be it in
the Heisenberg picture time-dependent or not. This
position operator which we showed to agree with that
from standard quantum mechanics incorporates nat-
urally the same statistical predictions and thus there
cannot be a difference between Bohmian and orthodox
quantum theory in the measurement of positions. It
is also often stated that the Bohmian positions were
classical variables. This is not true: As we will see, in
most cases the Bohmian positions behave in a very un-
classical, nonlocal fashion, which is obvious to anyone
who took the pains to calculate a Bohmian trajectory.
These trajectories carry very little information. It is
interesting to see them, but for the actual workings of
the theory they are of little or even no importance.

3.2. ‘Maximal violations of Bell inequalities
with position measurements’. In their paper,
Kiukas and Werner consider a system of two en-
tangled particles, say a and b. Similar to the well-
known EPR experiment, there are two laboratories
(A and B) which are spacelike separated21. Then the
positions of the particles are measured twice for each
particle, each measurement taking place at a differ-
ent time22. From what we learned above we know
how to deal with the situation of a two-time posi-
tion measurement of one particle: We have a passive
measurement of position, then the detection trans-
forms the effective wave functions to that actually
guiding the particle. After that, a unitary time evolu-
tion takes place until the second measurement. Now
we have two entangled particles, so we need to de-
scribe both particles. Because of entanglement, the
system wave function does not factor out into the

21Actually, this fact does not matter at all in Bohmian mechanics. Since the entire dynamics is governed by the wave function

which lives on the configuration space, it is not so much important how far the sytems are remote in physical space, but how far
the supports of the wave functions are seperated in cofiguration space.
22The actual description of what happens is not included, however. Instead, we find a reference to [CM02], which deals with the

problem much more thoroughly, but this paper is equally wrong.
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single-particle wave functions. Hence the first mea-
surement transforms the entire wave function to the
component which guides both the measured and the
non-measured particle. Nota bene that the effective
wave function transforms to the actual guiding one,
which resembles the orthodox notion of a collapsed
wave function. However, this transformation, or col-
lapse if you wish, does in no way influence the actual
motion of the particle, since it has been guided by the
collapsed part of the wave function since the begin-
ning. But the transformation changes the statistics
very much! This answers directly to the statements
of Kiukas and Werner:

“The simplest position is to include
the collapse of the wave function into
the theory. Then the first measure-
ment instantaneously collapses the
wave function. So if agreement with
quantum mechanics is to be kept, the
probability distribution changes sud-
denly. There is no way to fit this
with continuous trajectories: When
the guiding field collapses, the parti-
cles must jump.”
([KW10], page 3.)

The collapse needs not to, and it must not, be in-
cluded to Bohmian mechanics. There is an effective
transformation of the wave function that does the job
– only better, since it is formulated in the theory and
takes place continuously (unitary, in other words).
Here is the explicit description with obvious notation:

At first, the two instruments are in their respec-
tive null state: ΦA0 (yA) and ΦB0 (yB). Since the two
particles are entangled, we need to describe them in
one single, non-factorizing wave function ψa,b(xa, xb).
Then Ψ0 = ψa,b ⊗ ΦA ⊗ ΦB . Now, suppose without
loss of generality that we measure first the position
of particle a at time t1 and after that the position of
particle b at t2, each in its respective laboratory. We
shall call the results of the measurements α and β,
respectively. Hence we describe the measurement as
follows:

Ψ0 → Ψβ,α =
(
PΦBβ

UM2

)
Ut2−t1

(
PΦAα

UM1

)
Ut1Ψ0

whereM stands for measurement. We put the paren-
theses very suggestively, indicating each act of mea-
surement. We can ‘zoom into’ this description and
talk solely about what happens to the system wave
function:

ψa,b → ψa,bβ,α = RβUt2−t1RαUt1ψ
a,b.

Now we see that the system wave function is trans-
formed to ψa,bα = RαUt1ψ

a,b after the first measure-

ment, and that it is transformed to ψa,bβ,α after the sec-
ond one. This transformation is only of significance
for the computation of statistics, however. This is so

because the particle has been guided by exactly that
wave function component which is found as result of
the measurement, and since the supports of the other
components are disjoint, these components can be ne-
glected. This is not a collapse, it is just tidying up
the mathematics! The probability of finding the result
β, α is then found as usual:

PΨ (β, α) = 〈RβUt2−t1RαUt1ψa,b,RβUt2−t1RαUt1ψa,b〉

= 〈Ut2RβUt2−t1RαUt1ψa,b,

Ut2RβUt2−t1RαUt1ψ
a,b〉

=: 〈Rβ(t2)Rα(t1)ψa,b,Rβ(t2)Rα(t1)ψa,b〉

= 〈ψa,b,R∗α(t1)R∗β(t2)Rβ(t2)Rα(t1)ψa,b〉

where we used that U is a one-paramter group of uni-
tary maps. If the operators R were projections and
if they commuted, we would find a consistent family
of joint distributions, but in general, we do not. The
bookkeeping operator for such a measurement is then
obviously R∗α(t1)R∗β(t2)Rβ(t2)Rα(t1).

We saw that treating the apparatūs seriously pro-
vided us with a powerful tool to describe a measure-
ment. But although this is an all-honest approach
using what we have in the theory, defenders of ortho-
dox quantum mechanics attack this approach and call
it ‘contextual’, meaning that the theory depends on
the measurement setting. This position is schizophre-
nia: whereas Bohmian mechanics is a theory describ-
ing Nature and also, since it is a subset of Nature,
the measurement process, conventional quantum me-
chanics on the contrary talks only about results of
measurements. To overcome this weakness, certain
postulations ensure that the results of measurements
of the same quantity always yield the same statistics.
A very cheap solution! The act of measuring the par-
ticle obviously changes the system, and what comes
next is predetermined in Bohmian mechanics by the
resulting wave function and configuration of the sys-
tem – which is not the product of a collapse but is
predicted by the theory.

“The downside of this argument is
that it also applies to single time
measurements, i.e., the agreement be-
tween Bohm–Nelson configurational
probabilities and quantum ones is
equally irrelevant. The naive version
of Bohmian theory holds “position”
to be special, even “real,” while all
other measurement outcomes can only
be described indirectly by including
the measurement devices. Saving the
Nelson–Bohm theory’s failure regard-
ing two-time two-particle correlations
by going contextual also for position
just means that the particle positions
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are declared unobservable according to
the theory itself, hence truly hidden.”
([KW10], page 3.)

A major drawback of Bohmian mechanics? Of course
not. Simply stating this is worth nothing – if the au-
thors had tried to justify their statement, they would
have encountered the simple fact that they are wrong.
We already showed above that it is very well possible
to describe a position measurement using a passive
apparatus. This is a rather delicate process, since it
involves a very fine-tuned device. Apparatus and sys-
tem have to be seperated very well, which is possible
in principle, but hard to do experimentally. Supposed
we were able to prepare our quantum system and
the measurement devices in such a good way, nothing
would keep us from measuring the Bohmian position
of a particle very precisely. But after we have done
so, the position and especially the wave function of
the system will have changed due to the detection of
the initial position. Thus it is a simple fact that the
first of a sequence of measurements changes the re-
sult of the following measurements. The dynamics of
the Bohmian positions changes after a measurement
since it affects the wave function, and when dynamics
change, the positions will be different from what they
would have been without the first measurement. This
process is reflected by applying the ordinary Heisen-
berg position operator to the system wave function
in order to determine the statistics of many position
measurements, so there is no difference to standard
quantum mechanics. However, we see again that the
contextual point of view explains why the Heisenberg
operator describes the distribution of experimental re-
sults. It is remarkable that this fact, which lies in
the heart of Bohmian mechanics, shall be stated as
a weakness of the theory. We believe that this mis-
understanding comes from the fact that the authors
hold the Bohmian positions to be classical variables,
which is mere nonsense as we already stated above.
They are exactly right when they write:

”This certainly explains the appar-
ent paradox that Bohmians on the
one hand place so much value on
being able to say where the par-
ticles really are, but are, on the
other hand, so remarkably uninter-
ested in actually computing trajecto-
ries.” ([KW10], page 3.)

Sadly, this correct insight is directly afterwards led to
a wrong conclusion:

”But when the interest in the real tra-
jectories is gone, the only gain from
the whole theory seems to be a pro
forma justification for saying that the

hand of a voltmeter is really some-
where. The mountain in labor gave
birth to a mouse.” ([KW10], page 3.)

It is baffling that there is such a widespread attitude
to neglect the fact that in othodox quantum mechan-
ics one talks about nothing. Not only is it concep-
tually important to have a theory of something, but
we also saw how fruitful the positions of particles are
when building the theory. Also, the “mountain in la-
bor” was very small, actually it is very ironically to
state this and then spend an article on disproving the
“mouse” that was born. It seems that this unjusti-
fied attack on Bohmian mechanics was only included
beacause the authors very well realized that the con-
textual theory that Bohmian mechanics is eludes their
refuation.

Those were the arguments of Kiukas and
Werner “refuting” Bohmian mechanics. We saw
that they are not valid. But it is a remarkable fact
that Bohmian mechanics even predicts its “refuta-
tions”, as long as they agree with Nature. So we are
going to show that the operator suggested in [KW10]
encodes a POVM and thus is completely covered by
Bohmian mechanics.

The position measurements each performed by ‘Al-
ice’ and ‘Bob’, as the two experimenters in the seper-
ated laboratories are usually called, are of course

P
A/B
1 = χ∆1

(
QA/B

)
and P

A/B
2 = χ∆2

(
Q
A/B
t

)
,

for A and B respectively. We already assumed,
as Kiukas and Werner do in their work, that
both experimenters choose the same position inter-
vals, i.e. ∆A

1 = ∆B
1 and ∆A

2 = ∆B
2 and time t. As we

follow their paper, we use a similar notation, thus Q is
the position operator. As the labs are far removed, it
suffices to speak about one experimenter only, so we
choose Alice’s laboratory and drop the index A. Now,
each of these projectors is a PVM on R. These pro-
jectors are then used to define operators for Alice and
Bob, for example: A1 = 2χ∆1(Q)− 1 which is equiv-
alent to A′1 = χ∆1(Q)− χ∆c

1
(Q) = +1P1 + (−1) Pc

1 ,
where ·c stands for the complement of ·. The struc-
ture of the definition of these operators is the same
as above: we find a PVM and use the spectral the-
orem to construct an operator encoding the statis-
tics. Since each experimenter conducts two mea-
surements, and Kiukas and Werner are only in-
terested in the violation of Bell inequalities, i.e. the
commutators A3 := 1

2i [A1,A2], they define an oper-
ator C := 1 −P1 −P2 + P1P2 + P2P1. Pulled
back to the level of the projectors, the commutators of
interest are then [P1,P2] (and of course, as always,
the analog for Bob), for which is found

[P1,P2]
∗

[P1,P2] = C (1− C) ,

so C carries all information about the commutators
and with that about the Bell violations. C finally is



12 R. T. SCHLENGA

restricted to the subspace of all ϕ with P1ϕ = ϕ,
i.e. the states in ∆1, but the kernel of the commuta-
tor is removed, since only non-commuting states can

violate a Bell inequality. This restriction of C is called
H and is the operator of interest in [KW10]. On the
fundamental level, this experiment is, as we have seen,
described by PVMs which are connected via unitary
time evolution. This altogether yields a POVM for
Alice and one for Bob. Hence it is a Bohmian ex-
periment, which comes as no surprise, as all quantum
measurements are Bohmian in a Bohmian universe.

4. Conclusion

We saw that the contextual understanding of quan-
tum theory in the setting of Bohmian mechanics yields
a consistent description of Nature and Its subsets, for

example measurements. We also found that Bohmian
mechanics not only agrees with orthodox quantum
mechanics on an experimental level, it is clear that
Bohmian mechanics predicts usual quantum mechan-
ics in a very elegant manner. The paper [KW10] did
not really attack Bohmian mechanics, since the au-
thors themselves state what saves Bohmian mechan-
ics, but they seemingly did not know that this point,
to wit, the contextuality, is already a central part of
Bohmian mechanics. The mathematical analysis they
provide then does not apply any pressure to Bohmian
mechanics. We hope that the elegance of Bohmian
mechanics and its consistent description of Nature
were convincing for the reader, so that Bohmian me-
chanics is at least appreciated as a strong alternative
to orthodox quantum mechanics.

Appendix A. Effective wave function

Since the notion of an effective wave function
is probably not known for readers unfamiliar with
Bohmian mechanics, we shall review it here.

At first, there is only one wave function in Bohmian
mechanics: that of the entire universe. This might be
a little repelling, since we want to describe a small
subsystem of the universe like an atom, not the uni-
verse. Additionally, we do not have the means to
detect the state of the whole space. Hence, we need
to find an object similar to the wave function which
guides the particles and provides the correct statistics
but takes only the coordinates of the system as argu-
ments. In the optimal case this object also obeys the
Schrödinger equation. This object will be the effective
wave function.

Before we can introduce the effective wave func-
tion, we wish to show an object similar in meaning
but somewhat weaker: the conditional wave function.
It is obtained by simply replacing the generic posi-
tions of all particles we are not interested in by their
actual values. We denote the conditional wave func-
tion by ϕY (x), as above x and y stand for the generic
positions of the system and the rest of the universe,
respectively, uppercase letters will then denote actual

positions. Then this is the conditional wave function:

ϕY (x) :=
Ψ(x, Y )

||Ψ(Y )||

with ||Ψ(Y )||2 :=
∫
|Ψ(x, Y )|2 dmx. Clearly, this func-

tion is not neccessarily a solution to the Schrödinger
equation (1) except for special cases, and we will not
know the actual configuration of the y-space.

Now, the effective wave function will be obtained
similarly and it will obey Schrödinger’s equation.
Here is the definition:

Definition. A system has an effective wave function
ψ if the combined wave function of system and envi-
ronment can be written as

Ψ(x, y) = ψ(x)Φ(y) + Ψ⊥(x, y)

and Y ∈ suppΦ. Also, suppΨ⊥(x, ·) ∩ suppΦ(·) ≈ ∅
since the apparatus states are disjoint.

The effective wave function ψ then obeys equation
(1) as long as the interaction term in the Schrödinger
equation allows for the splitting of the wave function.
Note that we did not need to know the positions of
all particles in the universe, we just demand that they
are restricted to suppΦ. For more on that topic, see
[DGZ92].
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[DGTZ09] D. Dürr, S. Goldstein, R. Tumulka, and N. Zanghi,

Bohmian Mechanics, ArXiv e-prints (2009), arXiv:

0903.2601[quant-ph].
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