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Abstract

In this thesis we consider the quantum mechanical time evolution of a many
particle fermionic system which interacts with a so called tracer particle. We
focus on the question whether it is possible to describe the tracer particle by
some free, one particle evolution equation. This effective dynamics arises from the
replacement of the full Hamiltonian by the conjectured mean-field Hamiltonian.
Using perturbation theory, we investigate this problem on a mathematical rigorous
level. It is shown that the quantum density fluctuations are partially responsible
for the deviation from free evolution. In dimension one, the fluctuations of the
emergent potential are shown to be constant. This is used to prove convergence
of the real time evolution to its mean-field dynamics. In contrast to prior results
about mean-field dynamics, the Hamiltonian considered in the theorem does not
require the scaling of the potential.
Furthermore, the density fluctuations are calculated for both the three-dimensional
Dirac and the nonrelativistic Schrödinger equation. For both cases, the fluctuations
are always suppressed compared to classical and bosonic systems. The question
whether these three-dimensional systems can be described by some mean-field
dynamics cannot be answered with the methods employed in this thesis.
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Dürr, whose teaching and thinking helped me a lot during my studies and eventually led to
this work.



Contents

1 Introduction 1

2 The Mean-field Idea 7
2.1 Mean field for bosonic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 A Short Summary of Known Results 11

4 The One-dimensional System 15
4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Definition of the nonrelavistic, one-dimensional system . . . . . . . . . . . . . . 18
4.3 Derivation of the mean-field Hamiltonian . . . . . . . . . . . . . . . . . . . . . 19
4.4 Heuristic discussion of the system . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Structure of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 The variance of a fermionic system . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7 The proof of the validity of the mean-field picture . . . . . . . . . . . . . . . . 35

4.7.1 First-order perturbation theory . . . . . . . . . . . . . . . . . . . . . . . 37
4.7.2 Second-order perturbation theory . . . . . . . . . . . . . . . . . . . . . . 41

4.8 Corollaries to the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.9 The ultra-relativistic, one-dimensional system . . . . . . . . . . . . . . . . . . 64

5 The Three-dimensional System 67
5.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 The nonrelativistic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 The Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 The Analysis of General Systems 89

7 Conclusion and Outlook 93
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Statutory Declaration 97

iii





Chapter 1

Introduction

The main goal of this thesis is to investigate the following question:
Is it possible to derive an effective evolution equation for a tracer particle which interacts with
a sea of electrons?

The precise meaning of this question is the following: Consider a quantum mechanical
system of a finite but huge number of fermions, confined to some bounded region of space.
Suppose that another particle (the tracer particle) interacts with this so called sea of electrons
by means of some pair potential. In order to analyse the evolution of this tracer particle we
want to derive some effective one particle evolution equation.
Of course, such an equation might only exist if it is possible to encode the interaction of
all fermionic particles in some collective interaction term, which, furthermore, must not
depend on the exact evolution of the system. The motivation to investigate such a system
originates from at least four reasons; the one being historical, two being physical and one
being mathematical.

The historic motivation bases on the insight of Dirac: Shortly after deriving his famous
Dirac equation describing relativistic electrons, he was facing the problem of negative energy
solutions. In principle, these states may emit an infinite amount of energy, which, as a
consequence, leads to the so-called radiation catastrophe.
To solve this problem, he conjectured that the vacuum is in reality a collection of an infinite
number of electrons with negative energy. This ingenious concept prevents the electron sitting
”on top” of the sea to emit radiation by lowering its energy. Yet, there is no evidence of a
cloud of charged particles everywhere around us, so, at first sight, this idea seems inconsistent.
Dirac was of course aware of this problem and provided the following explanation:
Due to the Pauli principle, the electrons tend to arrange in such a way that the sea has an
almost uniform density. This implies that the net force exerted on any particle should be zero
on average. It is in analogy to e.g. gravity where the gravitational force in the center of earth
vanishes.
So, in the reading of Dirac, his one particle Dirac equation emerges as an effective equation
which originates from a multi particle fermionic system. By taking this model seriously, he
predicted the existence of positrons, which were shortly after discovered experimentally by
Anderson. Here, the positrons should be thought to be identical to the missing electrons in
the sea. This approach is usually called ”hole theory”.
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2 CHAPTER 1. INTRODUCTION

Dirac illustrated the mechanism which should prevent the sea to be detected in most
experiments 1 , but he provided no further evidence to support this conjecture. So, even if we
would know that his idea is not in agreement with physical reality, it would still be worthwhile
to develop his thoughts further for the sake of a complete understanding of his theory. This
knowledge would open up the possibility to compare the Dirac sea theory with some other,
perhaps more advanced one.

Yet, we do not believe his ansatz to be ruled out by quantum field theory as some people
claim. This takes us to the second motivation, which can be seen as a pursuit of Dirac’s ideas,
but this time physically motivated. Nowadays, Dirac’s explanation is widely considered to be
outdated and superseded by the field formalism. While physical textbooks usually ”derive”
QED by quantising some classical field, another option is to think of it as the generalisation
of quantum theory with particle creation and annihilation. The latter option means that one
starts with some quantum mechanical system (e.g. the Dirac Hamiltonian) and lifts it to Fock
space, which is the infinite copy of N -particle Hilbert spaces. Afterwards, one can introduce
interactions which will create or destroy particles. Ultimately, these two derivations result in
the same theory, yet they are different regarding their physical motivation.
The first one takes a field to be the basic constituent of the theory. In this reading, particles
should be thought as lumps or excitations of the field. The other ansatz, starting from Fock
space, emphasizes the analogy to standard quantum theory. We will not try to argue here for
one interpretation or the other, but want to make another observation for which the latter
picture is more suited. As commonly known, field theories are plagued with divergences at
every level of the theory. To better understand this peculiarity, one needs to analyse the
underlying mathematical construction of the theory.
While commonly not stated, it is possible to formulate quantum field theories using the Dirac
sea picture. In order to recognise this, remember the method one usually introduces field
operators 2: To render the system stable, the annihilation operator of a negative energy
electron is reinterpreted as the creation operator of a positron. This implies that the two
theories above are related by a simple Bogoliubov transformation. Moreover, the normal
ordering scheme, which loosely speaking subtracts the ”infinite constants”, is also hinting
at Dirac’s picture. These ”constants” are indeed a manifestation of the sea particles. Of
course, these terms are problematic, and one may wonder how things could improve by
simply renaming terms. We do not try to give an answer here, but refer to the mathematical
analysis of external field QED. In [Deckert et al., 2010] it was proven that the time evolution
in external field QED is describable by a system consisting of an infinite number of electrons.
For this proof it is more convenient and natural to start from the Fock space construction.
After identifying the electrons which belong to the Dirac sea, this formalism can be used to
calculate e.g. cross sections or the g − 2 correction.
Furthermore, the Dirac sea picture has gained recent interest, both in the physical and
mathematical literature. In [Hainzl et al., 2007], the Dirac sea picture is used to prove a
static mean-field theorem. Also [Finster, 2011] uses this formulation to describe the full time
evolution of quantum fields, both perturbatively and exactly.
While we are indecisive if Dirac’s idea may be ultimately correct, we do not believe that field

1Except, of course, in experiments where vacuum effects have to taken into account, as is the case for, e.g.,
pair creation or the Unruh effect. These effects may be thought of as arising from interaction of particles or
fields with the sea.

2This discussion is for example found in [Schweber, 1961].
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theories provide a more fundamental or different picture of nature, at least not at their current
status. The ultimate goal should be a mathematically well defined theory with a reasonable
physical interpretation. For this, it is important to understand possible solutions to cure the
various problems field theories have. By investigating Dirac’s proposal, it might be possible to
gain further insight into these peculiarities.

So far, we considered a quite fundamental question. However, the question of this thesis is
also important for many applications. Here, we will focus on the semiconducter. In order to
describe the system efficiently, one considers excited electrons and holes only, neglecting the
full interaction of all other electrons. This very simple picture may be used to explain the
semiconductor in laymen’s terms, but it is also employed in theoretical models. Considering a
one particle equation, it is for example possible to model conductance properties by lattice
impurities caused by the imperfect structure of atomic solids 3.
Explicitly, the emergence of a one particle equation is often presented like this:

If the electron-electron interaction is averaged, we can regard any deviation from
this average as a small perturbation. Thus we replace the repulsion term as follows:∑

i,j

e2/4πε0
|ri − rj |

= He0 +Hee

where He0 contributes a constant repulsive component to the electronic energy
and Hee is a fluctuating electron-electron interaction, which can be regarded as
small. If Hee is disregarded each electron reacts independently with the lattice of
ions. [Ridley, 2000, p.3-4]

One may wonder how a justification of such a tremendous simplification looks like and how
one should understand the averaging of the interaction exactly. A more sophisticated analysis
(performed for example in [Markowich et al., 1990]) will first perform this averaging explicitly.
That is, the real interaction is replaced by its mean field, which is generated by all electrons. If
this collective field turns out to be almost constant, the statement from above might be valid.
As a matter of fact, we will also rely on this method for our analysis. Yet, it is important to
notice in this context that it is not enough to replace the real interaction by its mean field,
but one needs to justify it.

This leads us to the mathematical motivation. While physically strongly interacting
fermions are usually treated using approximative methods, only few papers treat this problem
on a mathematical rigorous basis. As we will argue, the mathematical justification of the
mean-field method is important insofar that in principle an approximative treatment may
break down.
Given the considerations above, we want to rephrase our question from the introduction:

Is it possible to derive a free evolution equation for a particle interacting with a sea of
electrons?

In this thesis we were able to prove the following 4

3This is done by some one particle random Schrödinger equation.
4throughout this thesis, we set ~ = 1.
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Theorem 1.0.1. Let

H =

N∑
k=0

(−∆xk)−∆y + u(y) +

N∑
k=0

(v(xk − y) +A(xk)) (1.1)

be the generator of the time evolution defined on the Hilbert Space

H = L2(dy;T) ⊗
N∧
k=0

L2(dxk;T) of N + 1 electrons and one tracer particle. T denotes the

underlying one-dimensional space of a torus of length L. Let

|ψ0〉〉 = |χ0

)
⊗ |Λ〉 (1.2)

be the inital wave function, where |Λ〉 ∈
N∧
k=0

L2(dxk;T) denotes the fermionic ground state

of the non-interacting theory i.e., the ground state of the free Schrödinger equation, without
external fields. |χ0

)
∈ L2(dy;T) is the initial wave function for the tracer particle. Let

furthermore

Hf =
N∑
k=0

(−∆xk)−∆y + u(y) + constant (1.3)

denote the effective time evolution. The constant will be determined later and is equal to the
expectation value of the field strength exerted on the particles. Denote by lim

TD
the thermodynamic

limit N →∞, L→∞; ρ := N+1
L = constant.

Then, for smooth, compactly supported potentials, the following holds:

lim
ρ→∞

lim
TD

∣∣∣〈〈Utψ0|Uft ψ0〉〉
∣∣∣2 = 1 (1.4)

More explicit, there exists a constant Bt, depending on t, such that

1− lim
TD

∣∣∣〈〈Utψ0|Uft ψ0〉〉
∣∣∣2 ≤ Bt√

ρ
(1.5)

The theorem states that, for high densities, the tracer particle moves freely, or said
differently, that it behaves as if no fermionic sea was present. The free Hamiltonian Hf is the
mean-field Hamiltonian, hence the theorem actually shows that the real interaction felt by the
tracer particle is in very good approximation equal to the mean-field potential, which turns
out to be constant. Note that this result, here stated for a one-dimensional, nonrelativistic
system, is in accordance with the conjecture made by Dirac.

In this thesis we want to study the emergence of a mean-field equation using both
mathematical rigour and physical insight. As it will turn out, the physical understanding of
our system will also lead us to the proof of the theorem above.
We want to emphasize already at this stage that the analysis will rely on the rigidity of the
fermionic sea. That is, the potential exerted on the tracer particle is so homogeneous that
the tracer particle moves freely. For a physical understanding of the system, the reader is
encouraged to skim over section 4.4 before start reading the detailed proof.
The thesis is structured as follows:
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Chapter 2 In order to illustrate the mean-field idea, we will analyse the Hartree equation. We will
focus especially on the heuristic justification of the mean-field treatment and identify
the density fluctuations of the potential to be an important indicator of the validity of
this method.

Chapter 3 This chapter will list a short summary of known results which are of interest for our
thesis.

Chapter 4 This chapter contains the main part of this thesis. We will analyse the one-dimensional
system mentioned in the introduction, calculate the density fluctuations and prove the
theorem above. We will also consider an ultrarelativistic model and list the differences
compared to the nonrelativistic case.

Chapter 5 In this chapter the density fluctuations for both the Schrödinger and the Dirac equa-
tion in three dimensions are calculated. We will emphasize the different structure
of these two systems and compare our findings to a similar calculation performed in
[Colin and Struyve, 2007].

Chapter 6 This chapter summarises the methods employed in the one and three-dimensional system.
As it will turn out, our treatment can be generalised to arbitrary dimensions.

Chapter 7 The last chapter lists some topics which are important for further investigations.





Chapter 2

The Mean-field Idea

2.1 Mean field for bosonic systems

This thesis will focus on the mean-field idea, which was developed on physical grounds in
order to deal with a huge collection of interacting particles. The main idea can be stated as
follows: The interaction felt by each constituent of the system can be approximated by the
expected field generated by all other particles. Since this idea is crucial, we will illustrate it
using the well understood Hartree equation.
Consider the following quantum mechanical system which describes N interacting bosons:

i
d

dt
ψ(x1, ..., xN , t) =

 N∑
k=1

(−∆xk) +
1

N

N∑
i<j

v(xi − xj)

ψ(x1, ..., xN , t)

ψ(x1, ..., xN , 0) =
N∏
k=1

ϕ(xk)

(2.1)

The corresponding one particle mean-field equation, called Hartree equation, is given by: i
d

dt
φ(x, t) =

(
−∆x + (v ∗ |φ(·, t)|2)(x)

)
φ(x, t)

φ(x, 0) =ϕ(x)
(2.2)

It is known that, under some regularity assumptions on the potential v(x) and on the initial

state ϕ(x), the one particle reduced density matrix γ
(1)
ψt

:= trx2,...,xN |ψt〉〈ψt| converges to
|φt〉〈φt|, that is

‖γ(1)
ψt
− |φt〉〈φt|‖tr → 0 (2.3)

as N →∞ (see e.g. [Knowles and Pickl, 2009] for a proof).
The convergence of the one particle marginal to the Hartree equation can be shown to be
equivalent to the statement that almost all particles in the condensate evolve according to
(2.2) [Knowles and Pickl, 2009]. Equation (2.3) demonstrates the validity of the following
semiclassical model, which explains the structure of the Hartree equation physically:
In order to determine the evolution of any component ϕ(xi) of the wave function ψ(x1, ..., xN , 0),
we may consider ϕ to interact with N − 1 classical particles which are distributed according to

7



8 CHAPTER 2. THE MEAN-FIELD IDEA

|ψ|2. This is in accordance with common physical intuition: Given a huge number of particles,
the interaction felt by each constituent should be approximately equal to the potential which
would arise if all the other particles were classical ones, distributed according to Born’s law.
Consequently, the potential felt by e.g. ϕ(x1) should be approximately equal to its classical
counterpart, given by the expectation value

Eρ(x2,..,xN )

 1

N

N∑
j=2

v(xj − x1)

 =
N − 1

N
(v ∗ |ϕ|2)(x1) ≈ (v ∗ |ϕ|2)(x1) (2.4)

where

ρ(x2, .., xN ) =
N∏
k=2

|ϕ(xk)|2 =

∫
dx1|ψ(x1, ..., xN , 0)|2 (2.5)

denotes the joint probability measure of all remaining particles.
In order to construct an approximative time evolution, we may employ a self-consistent mean-
field picture where the statistical distribution of the classical particles is given by |φ(x, t)|2. In
return, this quantity is used to calculate the expected field strength on each component at
any moment of time and therefore also determines the evolution of φ(x, t):

i
d

dt
φ(x, t)︸ ︷︷ ︸

Evolution of each tensor component

=
(
−∆x + (v ∗ |φ(·, t)|2)(x)︸ ︷︷ ︸

Expected potential at time t

)
φ(x, t) (2.6)

We know this semiclassical treatment to hold for a huge number of bosons in the sense of
(2.3). This motivates the following question:

Why is it legitimate to replace the real interaction by its expected one, as it is done in
(2.2) ?

We may think of Brownian motion as an illuminating example where such a treatment
fails. While the mean field, which in this case is just the average force exerted on the
Brownian particle, is constant, the particle undergoes an erratic motion. The dynamical
analysis, first performed by Einstein and Smoluchowski, reveals the density fluctuations to
be responsible for this behaviour. So, at one moment of time, there might be more particles
on the left, which cause the particle to move to the right. At some later time, it might
get kicked back a bit since now there may be more particles coming form the right. This
behaviour is far away from the conjectured mean-field dynamics where the net interaction is
zero. This classical system demonstrates the importance to analyse the validity of a mean-field
equation. Following this line of argumentation, we propose the variance of the potential to be
a first indicator for the legitimacy of a mean-field equation in general. It would be in fact
questionable to consider only the expected potential if the real one was fluctuating strongly.
As a rule of thumb, we expect the mean-field model to hold true if fluctuations can be neglected.

In our system we can calculate these fluctuations explicitly:
Owing to the special initial condition (which can be relaxed, see [Knowles and Pickl, 2009]),
the joint probability measure ρ(x2, .., xN ) is factorised, i.e. we have N − 1 i.i.d. random
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variables. We obtain1 :

Varρ(x2,..,xN )

 1

N

N∑
j=2

v(xj − x1)

 =
1

N2
Varρ(x2,..,xN )

 N∑
j=2

v(xj − x1)


=

1

N2

N∑
j=2

var|ϕ|2 (v(xj − x1)) = O
(

1

N

)
(2.7)

where var|ϕ|2 (v(xj − x1)) denotes the one particle variance. The mean deviation scales as 1√
N

and is thus negligible. By the law of large numbers this result also holds for more general
initial conditions. This analysis reveals two important observations:

Used scaling: In (2.1), the interaction was scaled such that it gets weaker as N increases.
Our analysis indicates this to be necessary in order to obtain a meaningful mean-field equation.
If one cannot neglect fluctuations, further evidence is needed why nevertheless the mean-field
idea should work. As we will see, for a fermionic system the variance is always smaller than it
would be for bosons or classical particles. This allows us to weaken the scaling substantially.
Moreover, it is possible to resolve the fluctuations in more detail and to give an improved
indicator for the validity of the mean-field picture.

Different scaling: It is commonly stated that the scaling can be determined on mathe-
matical grounds, namely by the requirement that the potential of the full Hamiltonian has to
be chosen of the same order as the kinetic energy. To this end consider the kinetic and the
potential energy of each particle to be of order 1:

N∑
k=1

(−∆xk) ≈NO(1) = O(N) (2.8)

1

N

N∑
i<j=1

v(xi − xj) ≈
1

N
N2O(1) = O(N) (2.9)

Thus, for a bosonic system, the total energy scales as N , which means that each particle
contributes equally to the energy. This is also reflected in the Hartree Hamiltonian which is
of order 1. Yet, it should be apparent that the physical properties of the system dictate the
scaling behaviour. A detailed analysis conducted in [Michelangeli, 2007] explains for example
that the mean-field Gross-Pitaevskii equation, which arises from a different scaling than the one
presented here, corresponds to a dilute gas of bosons. So, by carefully tuning the parameters
in the experiment, one can prepare a physical system whose evolution is described by the
corresponding scaled Hamiltonian. Yet, for our fermionic system, we seek a description which
stays the same at the microscopic level. This is reflected in the Hamiltonian (1.1), where no
scaling at all is used.

1See also section 4.6.





Chapter 3

A Short Summary of Known
Results

As we have outlined in the introduction, the analysis of a system, governed for example by
the Hamiltonian (1.1), is motivated by two physical systems, namely the Dirac equation and
the semiconductor. While it is very easy to derive mean-field equations by simply replacing
the real interaction by its expected one , the ultimate justification needs to be grounded on a
mathematical proof. This is especially important for a system such as (1.1), where no scaling
is introduced. Thus, the analysis we will perform will be mathematically rigorous.
Keeping this in mind, we will now have a short look on the existing literature and summarise
the main results which are related to our discussion.

Mean-field Dynamics

The system we consider will neglect the mutual electron-electron interaction, but will only
focus on the interaction of the tracer particle with the sea. A Hamiltonian similar to (2.1), but
now defined to act upon antisymmetric states, would describe mutually interacting fermions
and was first treated rigorously by [Bardos et al., 2002] (see also [Fröhlich and Knowles, 2011]
for the case of the Coulomb-potential). Under the assumption that the potential scales as 1

N ,
they were able to derive the so called Hartree-Fock equations, which are the analogue to the
Hartree equation. In [Elgart et al., 2004] and [Benedikter et al., 2013] a different scaling was
considered that is coupled to a semiclassical limit. Note that the methods employed in the
proofs rely on the fact that the interaction is scaled with the number of particles. We want to
emphasize once more that for our system, which only considers interactions with the tracer
particle, no scaling is introduced. As a consequence, we cannot employ the methods which are
presented in these works.
We further like to remark that in [Deckert et al., 2012] a similar model to ours was considered
for bosons. There, a tracer particle interacts with a sea of bosons. As a matter of fact, the
mass of the tracer particle needs to be scaled such that it gets heavier as N increases. This is
a consequence of the discussion above, that is, for bosonic systems some physical parameter
has to be scaled for the mean-field picture to hold. While the system considered there has
some similarities to our model, the method of the proof is substantially different to the one
presented in this work.

11



12 CHAPTER 3. A SHORT SUMMARY OF KNOWN RESULTS

Fluctuations and the Dirac Sea

As we tried to motivate, one important indicator of the validity of mean-field dynamics is
the statistical deviation of the expected potential from the real one. This indicator is closely
related, but not equal to the density fluctuations of the mean-field constituents. Thus, in
order to elaborate on Dirac’s idea, one needs to calculate the density fluctuations which arise
in the Dirac equation. While one often finds statements about ”vacuum fluctuations”, there
are little concise calculations available in the literature. The most comprehensive survey was
conducted by [Colin and Struyve, 2007].
In this work, Colin and Struyve calculate the density fluctuations of the fermionic vacuum
using the standard model with UV-cutoff Λ. While their ultimate goal is related to ours, that
is they also want to reformulate quantum field theories using the Dirac sea, their calculations
were performed using the standard textbook quantum field formalism. Explicitly, they were
able to estimate the density fluctuations of all fermionic constituents of the standard model to
be given by Varparticles(V ) ≈ ΛV 1/3, where V is some spherical region in space. As Λ � 1,
this quantity is much smaller than the expected variance for uncorrelated particles, which
scales like Λ3V 1. Henceforth, this estimate states that fluctuations are strongly suppressed,
which confirms Dirac’s idea of an almost uniform charge distribution.
As we found out in our thesis, the authors use an implicit assumption in their model. By
dropping this assumption (see chapter 5), the fluctuations turn out to be stronger.

Before analysing the Dirac equation, we will first investigate the one-dimensional system.
At this point we want to thank Sören Petrat once more for making an unpublished paper
available to us [Petrat, 2012]. In this work, while using a slightly different derivation than the
one we will present later, he was able to derive the explicit formula for the fluctuations (see
formula (4.30)) and to give the same asymptotic behaviour for the particle fluctuations (see
equation (4.47)). Moreover, he comments on the validity of the thermodynamic limit and on
the fluctuations of a bosonic system in detail. Since bosons are not our main concern here,
this topic will only be sketched in section 4.6.
We like to remark in this context that the magnitude of density fluctuations are an important
indicator of the validity of the mean-field idea, yet, in order to proof the theorem stated in
the introduction, a more profound analysis will be required.

We have also commented on the fact that the Dirac sea picture is equivalent to normal
QED. At least, in external field QED it can be proven rigorously that the S-matrix, derived
from the standard formalism, is equivalent to the S-matrix one computes by means of the Dirac
sea picture [Deckert et al., 2010]. It is important to note here that quantum field calculations
are usually only interested in the S-matrix, so this theorem is quite strong. Since this theorem
does not apply to mutually interacting fermions, it would be desirable to investigate such
system in detail. Of course, this analysis is tremendously complicated for various reasons.
Most importantly, one needs to consider the Dirac sea to consist of only finitely many electrons
with negative energy since otherwise a meaningful analysis is probably not possible. While we
employ this picture in our thesis, it is not known whether such a system is stable or how it
behaves. We refer to [Deckert et al., 2010] and [Finster, 2011] for further discussion. In this
context, we also want to mention [Hainzl et al., 2007], where the emergence of a self-consistent,
static mean-field equation was proven, using the Dirac sea picture.

1This scaling will also be derived in this thesis, c.f. the discussion in section 5.3.
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Semiconductor Physics

The semiconductor is such an important constituent of electronic devices, so the literature
about it is tremendously big. Consequently, there are a couple of different ways how this solid
state system is treated. One approach was already cited in the introduction. Without giving
a detailed justification, one directly studies the one particle Schrödinger equation of a particle
which only feels the potential of the nuclei (see e.g. [Ridley, 2000]). Such a treatment is
ultimately justified by comparison with experiment, yet, it does not scrutinize on the physical
explanation of its success. A more profound method begins with the full Hamiltonian and
directly employs some mean field or related technique (see e.g. [Markowich et al., 1990]). As
already mentioned, a mathematical rigorous proof usually requires the scaling of the interaction.
Without this scaling, it is unclear if the mean-field description holds or if it breaks down as in
the example of Brownian motion. So, starting from an unscaled system, the analysis presented
may be physically correct in some cases, yet, a profound understanding is still missing.
There exists a different approach which can handle strongly correlated systems. Starting from
some very specific Hamiltonian, it is sometimes possible to construct the solution explicitly.
An example would be the well-known Luttinger model. We will give another simple example
for such a procedure in section 4.9. A clear disadvantage of this method is that it works only
with very specific Hamiltonians.
We like to remark that we found no conclusive, mathematical sound justification why it should
be possible to neglect electron-electron interactions or to treat them perturbatively.





Chapter 4

The One-dimensional System

4.1 Notation

First, we will fix the notation we will use throughout this chapter. Most definitions will also be
valid in three dimension upon small redefinitions which will be indicated. As mentioned in the
introduction, we will consider N+1 nonrelativistic, spinless electrons interacting with a tracer
particle on a one-dimensional torus T = [−L/2;L/2]. We choose units where ~ = 1;m = 1/2.
The reader is encouraged to use this list as a reference, whenever the precise definition of the
various norms we will use is needed.

HN+1
sea : The sea Hilbert space is defined as the space of all antisymmetric wave functions:

HN+1
sea :=

N∧
k=0

L2(dxk;T)

|Λ〉: A vector in HN+1
sea will be denoted by |Λ〉 ∈ HN+1

sea .
In some calculations we will write Λ(x0, ..., xN ) and treat |Λ〉 as an everywhere defined
function of its N + 1 variables.

‖ · ‖∞: In this context, we will compute ‖Λ‖∞, which is the infinity norm of all variables. In
general, ‖ · ‖∞ will denote the supremum norm of a function.
In this thesis the L2-norm on HN+1

sea will never be used and hence we will not introduce
it.

|ϕkm〉: An orthonormal basis for each component L2(dxk;T) is given by:

|ϕkm〉 =
1√
L
e

2πi
L
mxk m ∈ Z , xk ∈ T

The superscript index indicates the position variable xk, the lowerscript index m the
quantized momentum. Note that we use the same ket notation for a vector in L2(dxk;T)
and in HN+1

sea . This should not cause any confusion since it will be obvious at any stage
of the thesis to which Hilbert space the vector belongs.

|ϕm〉: If a distinction between different variables is not need, we will use solely |ϕm〉, as for
example in the expression 〈ϕl|v(x− y)|ϕm〉.

15
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â†(ϕl)â(ϕm): In lemma 4.3.1 the following operator, defined on HN+1
sea , will be introduced:

â†(ϕl)â(ϕm) :=
N∑
k=0

|ϕkl 〉〈ϕkm|

Hparticle: The tracer particle Hilbert space is defined as:

Hparticle := L2(dy;T)

|χ
)

and ‖ · ‖y: A vector in Hparticle will be denoted by |χ
)
; the L2(dy;T)-norm by ‖ · ‖y. In order to

keep the notation handy, we may write ‖χ‖y instead of ‖|χ
)
‖y.

H: The full Hilbert Space H is simply:

H := Hparticle ⊗HN+1
sea

|ψ〉〉 and ‖ · ‖: A vector in H will be denoted by |ψ〉〉 = |χ)⊗ |Λ〉 ∈ H, its corresponding L2-norm by
‖ · ‖. Again, we may write ‖ψ‖ instead of ‖|ψ〉〉‖.

F(v): The Fourier transform of the potential v ∈ C(T) is defined as:

F(v)(k) :=

∫
R
dx v(x)e2πikx =

∫ L/2

−L/2
dx v(x)e2πikx

‖ · ‖1: In some bounds the L1-norm of the potential is needed. This norm will be denoted by
‖v‖1.

ρ: The particle density ρ is defined as ρ := N+1
L .

lim
TD

: In order to disregard boundary effects, the thermodynamic limit will be performed. We

will express this limit by lim
TD

. To this end, consider f(N + 1;L) to be a regular enough

function. Then

lim
TD

f(N + 1;L) := lim
N+1→∞
ρ=const

f

(
N + 1;

N + 1

ρ

)
This will be a function of ρ, whenever this limit exists. In particular

lim
TD

N∑
k=0

1

L
g

(
k

L

)
=

∫ ρ

0
dk g(k)

holds for any Riemann integrable function g.

∼ : In our estimates we want to bound expressions by some function of ρ. Since ρ will
be very big, we are only interested in bounding this expressions asymptotically in ρ,
neglecting constants and lower order terms. For example we may write∫ ρ

0
(x+ x3)dx ∼ ρ4

The exact definition is the following:

f(ρ) ∼ g(ρ)⇔ lim
ρ→∞

g(ρ)

f(ρ)
= O(1)
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& and .: In the same way, we can bound expressions asymptotically. For example, we may write
1
ρ . ln(ρ)

ρ . In general, the following holds:

f(ρ) . g(ρ)⇔ lim
ρ→∞

f(ρ)

g(ρ)
=

{
0 or

O(1)

f(ρ) & g(ρ)⇔ lim
ρ→∞

g(ρ)

f(ρ)
=

{
0 or

O(1)

In the upper case, if lim
ρ→∞

f(ρ)
g(ρ) = 0, f(ρ) is strictly smaller than g(ρ), as in the example

above. The case lim
ρ→∞

f(ρ)
g(ρ) = O(1) corresponds to f(ρ) ∼ g(ρ). Note that f(ρ) & g(ρ)

and f(ρ) . g(ρ) implies f(ρ) ∼ g(ρ).
C: The letter C in our estimates will denote a constant which will always be of order one.

This constant will be unspecified and its exact value may change during the estimates.

Θ(t): The Heavyside step function will be denoted by Θ(t) =

{
1 if t ≥ 0

0 if t < 0
.

δ⊥l,m: We will introduce the ”anti Kronecker symbol” δ⊥l,m, which is defined as:

δ⊥l,m :=

{
0 if l = m

1 if l 6= m

| · |: The absolute value of a function will be denoted by | · |.
∗: The complex conjugate will be denoted by ∗.

Further symbols will be introduced whenever they are needed during the computations.
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4.2 Definition of the nonrelavistic, one-dimensional system

Now we can finally study the one-dimensional system. While for both the semiconductor and
the Dirac sea the electrons are indistinguishable, we will consider a slightly modified system
where the tracer particle has a distinguished role. We choose a simple Hamiltonian where
the sea particles only interact with the tracer particle, while the sea particles don’t interact
among each other. This is a reasonable simplification, since the mutual interaction among sea
particles would complicate the analysis tremendously. One should think of this system as
follows: A charged particle (maybe a tau-lepton) moves in the sea of electrons which should
be thought to be in some equilibrium state. While the structure of this state is not known in
general, we assume that it is sufficient for our analysis to model this state using the ground
state of non-interacting fermions. Whether mutual electron-electron interaction might change
our result, remains of course an open and intersting question we would like to discuss later.

First, only interactions between the tracer particle and the sea will be considered. The
theorem stated in the introduction, where in addition an external potential is present, then
follows as a corollary. For the sake of simplicity, assume the interaction potential
v ∈ C∞(T) ∩ C∞0 (R) 1. That is, for v ∈ C∞(T), the embedded potential with support T ⊂ R
is in C∞0 (R). The need for this additional requirement will be apparent later within in the
proof. Thus, the full Hamiltonian is given by:

H =
N∑
k=0

(−∆xk)−∆y +
N∑
k=0

v(xk − y) (4.1)

which is essentially self adjoint on C∞(dy;T) ⊗
N∧
k=0

C∞(dxk;T). First, we will study this

nonrelativistic Hamiltonian in detail. Afterwards, in section 4.9 we will apply our results to
an ultrarelativistic system and in chapter 5 to the Dirac equation.

The mean-field Hamiltonian is given by:

Hf =

N∑
k=0

(−∆xk)−∆y + ρF(v) (0) (4.2)

The derivation of the constant mean field ρF(v) (0) will be performed in the next section. By
standard Kato-Rellich, we conclude that D(H) = D(Hf ).

Let ∣∣Λ〉 :=
∣∣ϕ−N

2
∧ ... ∧ ϕN

2

〉
(4.3)

denote the fermionic ground state of the free Hamiltonian Hf .
In order to keep the notation simple, we will always assume that N/2 is an integer. Due to
the zero mode ϕ0, the total number of sea particles is N + 1. This explains the seemingly
awkward choice we made. Within the calculations, this choice will simplify the notation.
As mean-field limits are only sensible for large systems, one should think of N and L as being

1Much less regular potentials would also work, yet we want to simplify the proof as much as possible.
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very large and being determined by nature. Moreover, for both the semiconductor and the
Dirac sea, the particle density ρ is also very large.

The initial state |ψ0〉〉 is given by:

|ψ0〉〉 = |χ0

)
⊗ |Λ〉 (4.4)

where |χ0

)
∈ D(−∆y) is some arbitrary initial state for the tracer particle. As for the potential,

we need to assume that this state is regular enough which means the following: The embedded
state in R has finite kinetic energy. This excludes cases where the embedded function |χ0

)
is

not differentiable at the boundary 2. While we choose a very specific initial fermionic state, the
proof will actually hold for very general wave functions. We will comment on this in section 4.8.

We will need the following time evolutions:

|ψt〉〉 := Ut|ψ0〉〉 := e−itH |ψ0〉〉 (4.5)

|ψft 〉〉 := Uft |ψ0〉〉 := e−itHf |ψ0〉〉 (4.6)

|χt
)

:= Uyt |χ0

)
:= e−it(−∆y)|χ0

)
(4.7)

4.3 Derivation of the mean-field Hamiltonian

In order to derive (4.2), we employ the method outlined in chapter 2, that is we replace the
real interaction by its mean field. Starting from the static picture at t = 0, the joint probability
density ρ(x0, ..., xN , 0) = |Λ(x0, ..., xN )|2 determines the expected potential exerted on the
tracer particle initially.
Abbreviate the real potential by

W (~x, y) :=

N∑
k=0

v(xk − y) (4.8)

where ~x = (x0, ..., xN ).
Using

〈ϕl|v(x− y)|ϕm〉 =
1

L
F(v)

(
m− l
L

)
e

2πi
L

(m−l)y (4.9)

the expected potential, denoted by EvN+1(y), which is exerted on the tracer particle at point
y, reads:

EvN+1(y) :=〈Λ|W (~x, y)|Λ〉 =
N∑
k=0

〈Λ|v(xk − y)|Λ〉

=

N∑
k=0

〈Λ|

( ∞∑
l=−∞

|ϕkl 〉〈ϕkl |v(xk − y)
∞∑

m=−∞
|ϕkm〉〈ϕkm|

)
|Λ〉

2Since D(−∆y) = H2(T), by the Sobolev embedding theorem, the function |χ0

)
is in C1(T).
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=

∞∑
l=−∞

∞∑
m=−∞

1

L
F(v)

(
m− l
L

)
e

2πi
L

(m−l)y〈Λ|

(
N∑
k=0

|ϕkl 〉〈ϕkm|

)
|Λ〉

=:
∞∑

l=−∞

∞∑
m=−∞

1

L
F(v)

(
m− l
L

)
e

2πi
L

(m−l)y〈Λ|â†(ϕl)â(ϕm)|Λ〉 (4.10)

We introduced a suggestive notation for the operator
(∑N

k=0 |ϕkl 〉〈ϕkm|
)

. As one might

already conjecture, this operator replaces a particle in the state ϕm by ϕl. Note that we
are not working on Fock-space. Thus, one should keep in mind that â†(ϕl)â(ϕm) has to be
understood as one operator. Henceforth, at every stage of the proof, we will always consider
the combination â†(ϕl)â(ϕm). Of course, we might have formulated everything in the second
quantised formalism, but this is simply not necessary.
The following lemma proves the equivalence:

Lemma 4.3.1.

â†(ϕl)â(ϕm) : HN+1
sea → HN+1

sea

â†(ϕl)â(ϕm) =
N∑
k=0

|ϕkl 〉〈ϕkm|

is a bounded operator with operator norm 1 which replaces a particle in the state ϕm by ϕl.

Proof.
By linearity it suffices to check the proposition on basis vectors, i.e. on all Slater determinants.
Moreover, for a vector which does not contain the state ϕm, the operator vanishes. We
therefore need to show that the following expression vanishes:(

N∑
k=0

|ϕkl 〉〈ϕkm|

)
|ϕm ∧ ϕi1 ∧ ... ∧ ϕiN 〉 − |ϕl ∧ ϕi1 ∧ ... ∧ ϕiN 〉 (4.11)

This expression vanishes iff

〈Φa|

((
N∑
k=0

|ϕkl 〉〈ϕkm|

)
|ϕm ∧ ϕi1 ∧ ... ∧ ϕiN 〉 − |ϕl ∧ ϕi1 ∧ ... ∧ ϕiN 〉

)
= 0

∀Φa, {Φa} is an orthonormal basis of HN+1
sea (4.12)

Since
∑N

k=0 |ϕkl 〉〈ϕkm| is symmetric under the exchange of particle labels, we get the following
equality:

〈Φa|

(
N∑
k=0

|ϕkl 〉〈ϕkm|

)
|ϕm ∧ ϕi1 ∧ ... ∧ ϕiN 〉

=
√

(N + 1)!〈Φa|

(
N∑
k=0

|ϕkl 〉〈ϕkm|

)
|ϕ0
m〉 ⊗ |ϕ1

i1〉 ⊗ ...⊗ |ϕ
N
iN
〉

=
√

(N + 1)!〈Φa|
(
|ϕ0
l 〉 ⊗ |ϕ1

i1〉 ⊗ ...⊗ |ϕ
N
iN
〉
)

=〈Φa|ϕl ∧ ϕi1 ∧ ... ∧ ϕiN 〉 (4.13)
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By this lemma, we conclue that

〈Λ|â†(ϕl)â(ϕm)|Λ〉 = δl,mΘ(N/2− |l|) (4.14)

holds, so the final result reads:

EvN+1(y) =
∞∑

l=−∞

∞∑
m=−∞

1

L
F(v)

(
m− l
L

)
e

2πi
L

(m−l)yδl,mΘ(N/2− |l|)

=
N + 1

L
F(v) (0) = ρF(v) (0) (4.15)

=EN+1(0) =: W f (4.16)

Note that a factor of ρ appears in the expression of W f . This expresses the fact that the
tracer particle interacts with its ρ neighbours around it. In this context, we may think of |χ0

)
to describe some well localised particle which interacts by means of the short range potential
v. Moreover, as expected, the mean field grows with the number of particles and does not
stay constant as in the example of the Hartree equation.
As the free evolution |ψft 〉〉 does not change the fermionic state, but only introduces a global
phase, ρ(x0, ..., xN , t) = ρ(x0, ..., xN , 0) = |Λ(x0, ..., xN )|2 holds. The expected field exerted on
the tracer particle is therefore constant for all y and all t and is exactly the constant we use
in (4.2). Consequently, the mean-field dynamics of the tracer particle and the sea are decoupled.

Remember, however, that this derivation was conducted on heuristic grounds, so at
this stage we do not have any insight if the conjectured Hamiltonian provides an adequate
description of the interacting system. For a bosonic system, a simple calculation, which will
be done later, shows the mean field to be constant, too. This result is simply a consequence
of the homogeneity of the system. Yet, thinking of Brownian motion, we cannot expect the
mean field to provide an adequate description there. This point will be further elaborated later.

We can choose

v(x− y) = 1B(x− y) =

{
1 if x− y ∈ B
0 else

(4.17)

to calculate the expected number of particles in any line segment B, whose length we also
denote by B. Not very surprisingly it is given by:

Eparticle(B) :=
N + 1

L
F(1B) (0) = ρB (4.18)

which reflects Dirac’s idea of a uniform density distribution.
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4.4 Heuristic discussion of the system

Before proving the theorem stated in the introduction, we want to discuss the method we are
going to employ.
In theorem 4.6.1 it will be proven that the difference between the real and the mean-field time
evolution can be estimated by the variance of the potential. Explicitly, it will be shown that

‖ψt − ψft ‖2 ≤ t2 VarvN+1(0) (4.19)

holds, where

VarvN+1(y) := 〈Λ|(W (~x; y)−W f )2|Λ〉 (4.20)

denotes the variance of the potential. As already discussed, this theorem states that density
fluctuations are indeed some indicator of the validity of the mean-field description.
Furthermore, it is possible to give an explicit formula for VarvN+1(y). Namely, this expression
is the sum of all possible transitions from any occupied state ϕm to any unoccupied state ϕl.
This means:

VarvN+1(0) =
∑

|m|≤N/2

∑
|l|>N/2

|〈ϕl|v(x)|ϕm〉|2 (4.21)

A deviation from free motion will thus be caused by transitions of a sea particles to excited
states by means of the potential.
Heuristically, this statement is obvious. If all sea particles remain in the ground state, then
the tracer particle will move freely, too. If however one electron interacts with the tracer
particles and gets excited, it will cause the tracer particle to loose energy. Hence, neither the
sea, nor the tracer particle will move freely.
The variance sums up all these possible transitions. It will turn out that this sum stays
bounded for all densities, that is

sup
ρ>0

lim
TD

VarvN+1(0) = constant (4.22)

It should be noted in this context that both W f and W (~x; y) are of the order ρ, which means:

O(1) = VarvN+1(0)�W f = O(ρ) (4.23)

So, in contrast to i.i.d. random variables, in a fermionic system the variance of the potential
is much smaller than its expectation. Owing to this result, the mean field is indeed a
good approximation of the real potential and one might conjecture that it also provides an
approximative time evolution. Note however, inequality (4.19) does not prove the validity of
the mean-field picture. While the variance is strongly suppressed, the estimate given above
does not yet show closeness of the two time evolutions.

For this proof, we need to employ a dynamical picture, which not only sums up all possible
transitions |〈ϕl|v(x)|ϕm〉|2, but treats them also dynamically. This will be done in section
4.7.1 and 4.7.2.
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Let us therefore analyse (4.21) in more detail. We may rewrite

VarvN+1(0) =
∑

|m|≤N/2

∑
|l|>N/2

|〈ϕl|v(x)|ϕm〉|2

=
∑

|m|≤N/2

∑
|l|>N/2

1

L2

∣∣∣∣F(v)

(
m− l
L

)∣∣∣∣2 (4.24)

Since the potential v is smooth and has compact support, the Fourier transform F(v)
(
m−l
L

)
decays in m−l

L faster than any polynomial. This means that only transitions where the momenta
differ by |m− l| ∼ L give a significant contribution to the variance. Such transitions are only
possible near the Fermi surface (which in one dimension consists of the two points ±N/2), so
only states where N − L / m / N holds are of interest for our discussion.
This result is again in accordance with physical intuition. Only particles near the Fermi
surface can get excited. All other particles are ”stuck”, since they would need to absorb a
tremendous amount of energy to overcome the energy gap. This is a direct consequence of the
Pauli principle.
Yet, the particles near the Fermi surface have energy EF ∼ N2

L2 = ρ2 and move around fast. As
a consequence, any interaction with the tracer particle, which might excite a sea particle, only
happens at very short time scales t ≈ 1

ρ . This results in the observation that any interaction
which, in principle, might alter the free time evolution is so short that it can be neglected.
Explicitly, we show that we can provide an improved bound using first-order perturbation
theory.
Heuristically, the following expansion can be derived:

1− |〈〈ψt|ψft 〉〉|2 ≈
∑

|m|≤N/2

∑
|l|>N/2

L2

l2 −m2

1

L2

∣∣∣∣F(v)

(
m− l
L

)∣∣∣∣2
+higher order terms

The quantity L2

l2−m2 arises from the dynamics and is exactly the inverse of the energy difference
between the unoccupied state ϕl and the occupied state ϕm. The precise estimate looks a bit
more complicated, but has essentially the same structure. As

L2

l2 −m2
=

L2

(|l| − |m)(|l|+ |m|)
≤ 1

ρ

2L

|l| − |m|
(4.25)

holds for |l| > N/2, the contribution arising in first-order perturbation theory vanishes.
Note that we have actually put the analysis upside-down: In order to show that the tracer
particle moves freely, we actually prove that the sea remains unperturbed by the tracer
particle. While the tracer particle has of course little influence on the whole sea, it might
in principle interact with ρ sea particles around it and lift some of them, destroying the
mean-field picture. We show that this behaviour is not realised.
In the proof we are able to estimate the closeness of the two time evolved vectors, one
describing the real evolution, the other one arising from the mean-field dynamics, in L2 sense.
Usually, this convergence is much stronger than the convergence of reduced density matrices
in trace norm, as it us usually done in the literature. Yet, for our system, these two, while
mathematically not equal, should be thought to be equally valid. If, for example, we would
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know that only the tracer particle moves freely, but not the sea, we would conclude that the
sea is in some excited state. Explicitly, this means that some of the sea particles are excited
and have more kinetic energy. Using energy conservation and the fact that the tracer particle
moves freely, the sea particles must arrange such that they have more kinetic energy but
less potential energy without interfering with the tracer particle. Such a behaviour would
indeed be strange. This explanation might be useful to understand why we are able to prove
a mean-field limit in norm.

What remains is to bound the terms which arise in higher order perturbation theory. As
we will see, we can estimate them by considering the contribution which arises in second-order
perturbation theory only. This quantity vanishes by the same line of argumentation.
Remember, in second-order perturbation theory, the process happened at first-order now
happens twice.
Thus, at first order, a sea particle below the Fermi surface gets excited. Afterwards, either
the already excited or another particle interacts with the tracer particle again. In analogy to
(4.21), we will show that the sum of all these possible transitions stays bounded. Using the
dynamical estimate for the first transition, it will be possible to get the same bound obtained
in first-order perturbation theory.
We like to remark that this strategy works only in one dimension and only for a Hamiltonian
with a nonrelativistic energy-momentum relation. We will comment on this further in section
4.9 and in chapter 6.

4.5 Structure of the proof

We will prove the following

Theorem 4.5.1. For the system described above the following estimate holds:

lim
TD

(
1−

∣∣∣〈〈ψft |ψt〉〉∣∣∣2) ≤ Bt√
ρ

(4.26)

where Bt depends only on the potential v, on |χ0

)
and grows at most like t2.

The proof will be structured as follows:
1. In the next section, we will calculate the variance and prove inequality (4.19). Moreover,

this section contains some estimates on the particle fluctuations of the sea and a short
discussion of the bosonic case. These last two topics are included for a comprehensive
understanding of the underlying picture but will not be needed for the proof.

2. The explicit formula derived for the variance will be used to proceed in first-order
perturbation theory. This will be done in section 4.7.1.

3. Finally, section 4.7.2 estimates the remaining terms coming from higher order perturba-
tion theory.

The theorem stated above then follows from the estimates given in 4.7.1 and 4.7.2.
In section 4.8 we list some corollaries to the proof.

4.6 The variance of a fermionic system

As already mentioned, in order to analyse the dynamics of the system, we cannot employ the
powerful methods usually employed when proving mean-field limits. These rely on the fact
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that one needs to weaken the interaction as the number of particles increases. Consequently,
we cannot circumvent the detailed analysis of the fully interacting system. As one knows, the
rigorous analysis of a many body problem can be very hard. Yet, experience tells us that
perturbation theory might give us an accurate picture and might hint at how one should think
about the system. By using Cook’s lemma, the main factors which determine the evolution
of the coupled dynamical system can be spotted. As one might guess, the variance of the
potential will serve as a first indication if the replacement of the potential by its mean field is
justified.
For sake of completeness let us phrase

Lemma 4.6.1. (Cook)
Let (H;D(H)) and (H ′;D(H ′)) be two self adjoint Hamiltonians with D(H) = D(H ′). Let
Ut = e−itH and U ′t = e−itH′. Then, ∀ψ ∈ D(H) the following is true:

(Ut − U ′t)ψ = −i

∫ t

0
dt′Ut−t′(H −H ′)U ′t′ψ (4.27)

Proof.
Formally,

−i

∫ t

0
dt′Ut−t′(H −H ′)U ′t′ = −

∫ t

0
dt′

d

dt′
(Ut−t′U

′
t′) = −U ′t + Ut (4.28)

holds. Note that U ′tψ ∈ D(H), so we can use strong differentiability of Ut−t′ and U ′t on D(H)
to conclude (4.28).

Remark: As already mentioned, within this thesis we shall only consider compactly
supported, smooth potentials. Hence, by Kato- Rellich, D(H) = D(Hf ) holds. Of course, it
might be very well possible to consider less regular and even singular potentials, but this
generalisation will not be our concern here.

We will apply Cook’s method to obtain the following

Theorem 4.6.1. Let v ∈ C∞(T) ∩ C∞0 (R). Then the following bound holds:

‖ψt − ψft ‖2 ≤ t2 VarvN+1(0) (4.29)

where

VarvN+1(y) =VarvN+1(0) := 〈Λ|(W (~x; 0)−W f )2|Λ〉

=
∑

|m|≤N/2

∑
|l|>N/2

|〈ϕl|v(x)|ϕm〉|2 (4.30)

does not depend on y and satisfies:

lim
ρ→∞

lim
TD

VarvN+1(y) =: Varv∞(y) <∞ (4.31)

So, the quantum fluctuations of the potential are finite and do not increase with higher densities.
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Corollary 4.6.1. Denote by vρ,δ(xk − y) := 1
ρδ
v(xk − y) the scaled two particle interaction.

Then , ∀δ > 0, the following equality holds:

lim
ρ→∞

lim
TD
‖ψt − ψft ‖2 = 0 ∀t (4.32)

Proof.
Use the theorem above with VarvN+1(y)→ 1

ρ2δ
VarvN+1(y).

While this result already gives a good hint about the validity of the mean-field Hamiltonian,
the physically relevant microscopic description of the system is given for δ = 0 and hence
requires more effort.

Proof. of (4.6.1):
Let us contemplate a bit about this theorem and understand what it actually states:
Actually two statements are made: The first one is that the variance of the potential is indeed
some indicator of the validity of the mean-field description. Secondly, these fluctuations are
highly suppressed, i.e. stay asymptotically constant at high densities. That is, the Pauli
exclusion principle yields to an effective repulsion of the electrons (not mediated by some
potential), which arranges the particles in a homogeneous way. A small calculation we will do
afterwards shows that density fluctuations behave classically when looking at bosons, i.e. the
variance there is of order ρ.

1.Proof of (4.29): Using Cook’s lemma, the following estimate holds:

‖(Ut − Uft )ψ0‖ =

∥∥∥∥∫ t

0
dt′Ut−t′(H −Hf )Uft′ψ0

∥∥∥∥
=

∥∥∥∥∫ t

0
dt′U−t′(W (~x, y)−W f )Uft′ψ0

∥∥∥∥
≤
∫ t

0
dt′
∥∥∥(W (~x, y)−W f )Uft′ψ0

∥∥∥ (4.33)

Note that the free evolution Uft′ acts as an multiplication operator on |Λ〉, i.e.

Uft′ |ψ0〉〉 = Φt′ |Uyt′χ0

)
⊗ |Λ〉 (4.34)

where

Φt′ := e
−it′

( ∑
|k|≤N/2

(2π k
L)

2
+ρF(v)(0)

)
(4.35)

This allows us to compute the integrand explicitly:

||(W (~x, y)−W f )Uft′ψ0||2 =
(
χt′ | ⊗ 〈Λ|(W (~x, y)−W f )2|χt′

)
⊗ |Λ〉 (4.36)

We will integrate over the sea components first. The result we will obtain will not depend
further on y, which shows that(

χt′ | ⊗ 〈Λ|(W (~x, y)−W f )2|χt′
)
⊗ |Λ〉 = 〈Λ|(W (~x, y)−W f )2|Λ〉 = VarvN+1(0) (4.37)
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Let us first rewrite W (~x, y)−W f using the same techniques as above:

W (~x, y)−W f =

N∑
k=0

( ∞∑
l=−∞

|ϕkl 〉〈ϕkl |
(
v(xk − y)− 1

L
F(v) (0)

) ∞∑
m=−∞

|ϕkm〉〈ϕkm|

)

=

 ∞∑
l=−∞

∞∑
m=−∞
m 6=l

1

L
F(v)

(
m− l
L

)
e

2πi
L

(m−l)y

(
N∑
k=0

|ϕkl 〉〈ϕkm|

)
=

∞∑
l=−∞

∞∑
m=−∞
m6=l

1

L
F(v)

(
m− l
L

)
e

2πi
L

(m−l)yâ†(ϕl)â(ϕm) (4.38)

Keeping the fermionic structure in mind, (W (~x, y)−W f )|Λ〉 gives a vector where any particle
from the ground state is lifted to any excited state.

(W (~x, y)−W f )|Λ〉 =
∑

|m|≤N/2

∑
|l|>N/2

1

L
F(v)

(
m− l
L

)
e

2πi
L

(m−l)yâ†(ϕl)â(ϕm)|Λ〉 (4.39)

Taking the squared norm of this expression, two of the appearing sums will be cancelled since

〈â†(ϕl1)â(ϕm1)Λ|â†(ϕl2)â(ϕm2)Λ〉 = δl1,l2δm1,m2 (4.40)

holds, whenever |m1|, |m2| ≤ N/2, |l1|, |l2| > N/2.
We plug the explicit formula (W (~x, y)−W f )|Λ〉 in the expression for the variance and obtain:

VarvN+1(y) =〈Λ|(W (~x, y)−W f )(W (~x, y)−W f )|Λ〉

=
∑

|m|≤N/2

∑
|l|>N/2

1

L2

∣∣∣∣F(v)

(
m− l
L

)∣∣∣∣2
=

∑
|m|≤N/2

∑
|l|>N/2

|〈ϕl|v(x)|ϕm〉|2 (4.41)

=VarvN+1(0)

Consequently, the variance of the potential is equal to the transition amplitude from any
occupied to any unoccupied state and furthermore does not depend on y.
In total, we obtain the desired bound:

||(Ut − Uft )ψ0|| ≤
∫ t

0
dt′
√

VarvN+1(0) = t
√

VarvN+1(0) (4.42)

2. Proof of (4.31): Next, we want to estimate (4.30) for regular enough potentials. As
already mentioned, we do not seek the weakest regularity condition but choose for simplicity
v ∈ C∞(T) ∩ C∞0 (R). The intersection is necessary to exclude cases where the potential is
chosen to be smooth for one specific L′ (just take v =const. in L′ as one example), but fails to
be even differentiable for any L > L′. Stated differently, the support of the smooth potential
should be smoothly embedded in any L containing its support . Our estimates will rely on
the Paley-Wiener theorem (see [Reed and Simon, 1975, p.16]) which states:
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Figure 4.1: The variance sums up all transitions from ϕm to ϕl.

Theorem 4.6.2. (Paley-Wiener)
An entire analytic function g(~k) of n complex variables ~k = (k1, ..., kn) is the Fourier transform
of a C∞0 (Rn) function with support in the ball
{~x = (x1, ..., xn)||~x| ≤ R} if and only if for each p ≥ 0 there is a Dp (depending on g), so that

∣∣∣g(~k)
∣∣∣ ≤ Dpe

R| Im~k|

(1 + |~k|)p
(4.43)

We will use this theorem extensively in our work and we will always assume p big enough,
such that all estimates considered in this work are optimal.
Thereupon, the Fourier transform of our potential v has rapid decrease, which can be used
to conclude that the transition amplitude between states which differ significantly in their
energies is highly suppressed.
In order to estimate (4.30), we will first perform the thermodynamic limit. Upon taking this
limit, all Riemann sums will be replaced by the corresponding integrals. We like to emphasize
that we will use this limit in order to simplify our analysis. Technically, it is possible to fix N
and L at every stage of our proof with the clear disadvantage that the estimates will read
more complicated.
Heuristically, it should be clear that for fixed and sufficiently big values of N , L and ρ, the
estimates provided here are also valid. A more profound (and probably cumbersome) analysis
would be required to prove this explicitly. It was for example shown in [Petrat, 2012] that in
the case of v(x) = 1B (we will consider this case soon), the error one makes upon switching to
the thermodynamic limit is, for both N,L large, proportional to N

L2 and is thus negligible for
high densities.
So, taking this limit, we obtain:

lim
TD

VarvN+1(0) =

∫
|m|≤ρ/2

dm

∫
|l|≥ρ/2

dl |F(v) (m− l)|2

=2

∫ ρ/2

0
dm

∫ ∞
ρ/2

dl |F(v) (m− l)|2 + 2

∫ 0

−ρ/2
dm

∫ ∞
ρ/2

dl |F(v) (m− l)|2 (4.44)
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Choosing p ≥ 2 and C = O(1), the first contribution can be estimated as follows:∫ ρ/2

0
dm

∫ ∞
ρ/2

dl |F(v) (m− l)|2 ≤
∫ ρ/2

0
dm

∫ ∞
ρ/2

dl
D2
p

(1 + |m− l|)2p

=

∫ ρ/2

0
dm

∫ ∞
m

dl
D2
p

(1 + l)2p

=

∫ C

0
dm

∫ ∞
m

dl
D2
p

(1 + l)2p
+

∫ ρ/2

C
dm

∫ ∞
m

dl
D2
p

(1 + l)2p

≤C
∫ ∞

0
dl

D2
p

(1 + l)2p
+

1

2p− 1

∫ ∞
C

dm
D2
p

m2p−1
<∞ (4.45)

By the same means, the second term can be shown to be bounded. Due to the separation of
m and l by at least ρ/2, it will eventually go to zero as ρ→∞.∫ 0

−ρ/2
dm

∫ ∞
ρ/2

dl |F(v) (m− l)|2

=

∫ 0

−ρ/2
dm

∫ ∞
ρ/2

dl |Θ (|m− l| − ρ/2)F(v) (m− l)| |F(v) (m− l)|

≤ Dp

(1 + ρ/2)p

∫ 0

−ρ/2
dm

∫ ∞
ρ/2

dl
Dp

(1 + |m− l|)p︸ ︷︷ ︸
finite for all ρ

ρ→∞−−−→ 0 (4.46)

Of course, the theorem just proven does not state that our mean-field picture is correct.
In order to prove this, we need also consider the dynamical evolution of the system. We can
nevertheless conclude that the deviation from free evolution can only happen if some state ϕm
of the sea is lifted to an excited state ϕl by interacting with the tracer particle. This transition

amplitude is proportional to
∣∣F(v)

(
m−l
L

)∣∣2, which essentially means that only transitions near
the Fermi edge need to be considered. As we have already discussed, these states are expected
to interact only weakly with the tracer particle. In order to illustrate this behaviour, consider
the interaction of some one-dimensional wave packet with some bounded potential, such as the
square well. If the kinetic energy of this particle is very high, the particle moves approximately
freely and almost all of the wave gets transmitted. We can expect the very same behaviour to
be true in our system, that is, the particles near the Fermi surface do not interact with the
tracer particle significantly, but pass it without mutual transfer of energy. On the other hand,
the particles with slow momentum are ”stuck” due to the Pauli principle, i.e. they cannot be
excited. Exactly this behaviour will be apparent in first-order perturbation theory.
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4.6.0.1 Density fluctuations of the sea

Before we present the proof, let us pause one moment and determine the particle fluctuations
in our model and compare them to a bosonic system. The estimates given here will not be
needed further. The reader who is mainly interested in the proof can therefore skip this section.
As already mentioned, this calculation was essentially performed in [Petrat, 2012]. We will
give a different presentation here which takes the thermodynamic limit first. By doing this,
we cannot control the error we make upon switching to this limit, but, as already mentioned,
this error was shown to be very small for high densities.
While we can calculate the density fluctuations using (4.44) and v(x− y) = 1B(x− y), this
time we have to perform the integral explicitly. As it will turn out, the non-differentiability of
1B(x− y) changes the result slightly, as its Fourier transform does not decay rapidly enough.

Theorem 4.6.3. For v(x− y) = 1B(x− y) the variance is asymptotically given by

lim
TD

Var1BN+1(0) ∼ 1

π2
ln(πBρ/2) (4.47)

that is

lim
ρ→∞

π2 limTD Var1BN+1(0)

ln(πBρ/2)
= 1 (4.48)

Proof.
We have already seen that for fermions fluctuations of the potential are suppressed. The
theorem shows this to hold also for the particle density fluctuations. The difference between
this result and the constant result in the case of smooth potentials may be explained as follows:
Using the semiclassical picture once again, the variance of the potential is caused by density
fluctuations of the classical particles which are distributed according to Born’s law. While
small fluctuations of the constituents do not change the collective potential significantly, the
particles at the edge of B may in principle leave or enter the line segment under consideration
causing the number of particles inside B to change. Therefore, the variance of the particle
number is in general bigger than the variance of the potential.
For the proof we will only consider the first contribution in (4.44). The other one can again
be neglected for high densities.

lim
TD

Var1BN+1(0) ∼2

∫ ρ/2

0
dm

∫ ∞
m

dl |F(1B) (l)|2

=2

∫ ρ/2

0
dmB2

∫ ∞
m

dl
sin2(πBl)

(πBl)2

=
2B

π

∫ ρ/2

0
dm

∫ ∞
mπB

dl
sin2(l)

l2

=
2B

π

∫ ρ/2

0
dm

(
d

dm
m

)∫ ∞
mπB

dl
sin2(l)

l2

=ρ
B

π

∫ ∞
ρπB/2

dl
sin2(l)

l2
+ 2B2

∫ ρ/2

0
dm m

sin2(πBm)

(πBm)2

≤ρB
π

∫ ∞
ρπB/2

dl
1

l2
+

2B

π

∫ ρ/2

0
dmπBm

sin2(πBm)

(πBm)2



4.6. THE VARIANCE OF A FERMIONIC SYSTEM 31

=2 +
2B

π

∫ ρ/2

C
Bπ

dm πBm
sin2(πBm)

(πBm)2
+

2B

π

∫ C
Bπ

0
dm πBm

sin2(πBm)

(πBm)2︸ ︷︷ ︸
independent of ρ

(4.49)

The leading contribution is clearly the second term, which behaves roughly as 1/m, so we
expect the integral to grow logarithmically with ρ. For further convenience, the function was
cut out around zero. Again, C

Bπ should be thought to be of order one.

2B

π

∫ ρ/2

C
Bπ

dm πBm
sin2(πBm)

(πBm)2

=
2

π2

∫ πBρ/2

C
dm

sin2(m)

m

=
2

π2

∫ πBρ/2

C
dm

sin2(m)− 1/2

m
+

1

π2

∫ πBρ/2

C
dm

1

m

=
1

π2
ln(πBρ/2) +

2

π2

∫ πBρ/2

C
dm

sin2(m)− 1/2

m
− ln(C)

π2︸ ︷︷ ︸
bounded for all ρ>0

(4.50)

The variance is therefore asymptotically given by:

lim
TD

Var1BN+1(0) ∼ 1

π2
ln(πBρ/2) (4.51)

It remains to show the boundedness of the remaining term in (4.50). The basic idea is that
for high values of m the function 1/m only changes slightly. Hence, we expect that∫ x2

x1

dm sin2(m)
1

m
≈ 1

2

∫ x2

x1

dm
1

m
(4.52)

holds for x1, x2 � 1. The precise version is stated in the next

Lemma 4.6.2. For C > 1 the following estimate holds:

2

π2

∫ πBρ/2

C
dm

sin2(m)− 1/2

m
≤ γ

π2
(4.53)

where γ is the Euler-Mascheroni constant.
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Proof.
Without loss of generality choose C such that C + sπ = πBρ/2 for some s ∈ N. Then∫ πBρ/2

C
dm

sin2(m)− 1/2

m
=
s−1∑
k=0

∫ C+(k+1)π

C+kπ
dm

(
sin2(m)

m
− 1

2m

)

≤1

2

s−1∑
k=0

(
π

C + kπ
−
∫ C+(k+1)π

C+kπ
dm

1

m

)

=
1

2

s−1∑
k=0

∫ C+(k+1)π

C+kπ
dm

(
1

bmc
− 1

m

)
≤1

2

∫ ∞
1

dm

(
1

bmc
− 1

m

)
=

1

2
γ ≈ 0.577/2 (4.54)

holds, where bmc denotes the floor function.

This result tells us that within a region B we are almost sure to find ρB particles.
The deviation scales as ln(ρ) and is thus much smaller than its expectation. Again,
we reproduce the same picture discussed above: The particle density we expect in a
fermionic system is almost constant. Small density fluctuations are caused by fast particles
at the Fermi surface, which in return do not interact with the tracer particle, but just fly trough.

We like to remark that one should not think of the wave function |Λ〉 itself, defined on
configuration space 3 L ⊂ RN+1, to be constant in some sense. Instead, it fluctuates rapidly
as the following lemma illustrates.

Lemma 4.6.3. For |Λ〉 the following holds:

‖Λ‖L∞ =

(
(N + 1)N+1

LN (N + 1)!

)1/2

(4.55)

The value is attained for x0 = 0, x1 = L
N+1 , x2 = 2L

N+1 , ..., xN = NL
N+1 and its permutations.

Proof.
By the homogeneity of the norm and the structure of |Λ〉, it suffices to prove the lemma for
L = 1. We can rewrite |Λ〉 as a determinant of its one particle wave functions |ϕkm〉:

Λ(x0, ..., xN ) =
1√

(N + 1)!

∣∣∣∣∣∣
ϕ−N/2(x0) ... ϕN/2(x0)

... ... ...
ϕ−N/2(xN ) ... ϕN/2(xN )

∣∣∣∣∣∣ (4.56)

By Hadamard’s lemma we can bound |Λ〉 pointwise as:

|Λ(x0, ..., xN )| ≤ 1√
(N + 1)!

N∏
l=0

 N/2∑
m=−N/2

|ϕm(xl)|2
1/2

=
1√

(N + 1)!
(N + 1)

N+1
2 (4.57)

3For the precise meaning of L c.f. [Dürr and Teufel, 2009]
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On the other hand, the ground state can be rewritten (up to a complex phase) as (see
[Sutherland, 2004]):

Λ(x0, ..., xN ) =
1√

(N + 1)!

∏
0≤k≤l≤N

2 sin ((xl − xk)π) mod U(1) (4.58)

Choosing x0 = 0, x1 = 1
N+1 , x2 = 2

N+1 , ..., xN = N
N+1 , one can confirm the following equality:

Λ

(
0,

1

N + 1
, ...

)
=

1√
(N + 1)!

2 sin
( 1

N + 1︸ ︷︷ ︸
=x0−x1

π
)
...2 sin

( N − 1

N + 1︸ ︷︷ ︸
=x0−xN−1

π
)

2 sin
( N

N + 1︸ ︷︷ ︸
=x0−xN

π
)

×2 sin
( 1

N + 1︸ ︷︷ ︸
=x1−x2

π
)
...2 sin

( N − 1

N + 1︸ ︷︷ ︸
=x1−xN

π
)

×...

×2 sin
( 1

N + 1︸ ︷︷ ︸
=xN−1−xN

π
)

mod U(1)

=
1√

(N + 1)!

N∏
k=1

(
2 sin

(
k

N + 1
π

))N+1−k
mod U(1) (4.59)

Squaring this expression and using sin
(
N+1−k
N+1 π

)
= sin

(
k

N+1π
)

, we can complete the trian-

gular form in (4.59) to a square, yielding N + 1 equal terms.

∣∣∣∣Λ(0,
1

N + 1
, ...

)∣∣∣∣2 =
1

(N + 1)!

(
N∏
k=1

2 sin

(
k

N + 1
π

)
︸ ︷︷ ︸

=N+1

)N+1

=
(N + 1)N+1

(N + 1)!
(4.60)

Consequently, Hadamard’s inequality gets sharp for equally distributed particles.

Thus, varying for example x1 from 0 to L
N+1 = 1

ρ � 1, while keeping all other variables as

above, the wave functions takes values from 0 to ‖Λ‖L∞ ≈ eN/2

LN/2
.

Yet, the particle density on physical space is almost constant in every region B.

4.6.0.2 The bosonic system

We want to compare our result to a system composed of bosons. For simplicity, we assume all
of them to be in the same state |ϕ〉. Hence, the N + 1 particle wave function, now defined to
be symmetric, is given by:

|ΛB〉 :=
N∏
k=0

|ϕk〉 (4.61)
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The expectation value is the same as for the fermionic state:

EN+1(y) = 〈ΛB|W (~x, y)|ΛB〉 =
N∑
k=0

〈ΛB|v(xk − y)|ΛB〉

=
∞∑

l=−∞

∞∑
m=−∞

1

L
F(v)

(
m− l
L

)
e

2πi
L

(m−l)y〈ΛB|â†(ϕl)â(ϕm)|ΛB〉

(4.62)

Since we have this time N + 1 copies of the same wavefunction (let us define |ϕ〉 = |ϕ1〉), we
obtain:

EN+1(y) =
N + 1

L
F(v) (0) (4.63)

Thus, if we considered bosons and used the mean-field picture without any justification, the
result would be that the tracer particle moves freely, too. Yet, we know that the classical
analogy of Brownian motion shows this claim to be questionable. Also here we expect the
mean-field picture to break down. Explicitly, we show the density fluctuations to grow like ρ,
which implies that the mean field is not a very good approximation to the real potential.
Using

W (~x, y)−W f =

∞∑
l=−∞

∞∑
m 6=l=−∞

1

L
F(v)

(
m− l
L

)
e

2πi
L

(m−l)yâ†(ϕl)â(ϕm) (4.64)

once again, we obtain:

(W (~x, y)−W f )|ΛB〉 =
∑
|l|>1

1

L
F(v)

(
l − 1

L

)
e

2πi
L

(1−l)yâ†(ϕl)â(ϕ1)|ΛB〉 (4.65)

and hence

〈ΛB|(W (~x, y)−W f )2|ΛB〉 = (N + 1)
∑
|l|>1

∣∣∣∣ 1LF(v)

(
l − 1

L

)∣∣∣∣2 (4.66)

Taking the thermodynamic limit, this expression reads

lim
TD
〈ΛB|(W (~x, y)−W f )2|ΛB〉 = ρ

∫
R
dl |F(v) (l)|2 (4.67)

Note that ∑
|l|>1

∣∣∣∣ 1LF(v)

(
l − 1

L

)∣∣∣∣2 = 〈ϕ1|(v(x− y)−F(v)(0))2|ϕ1〉 (4.68)

is actually the variance of the one particle state |ϕ1〉. The variance of the full state |Λ〉 is
consequently just the sum of the corresponding one particle variances. This reflects the fact
that the state is factorised and no correlations are present. Furthermore, this characteristics
holds for arbitrary dimensions.
Actually, any bosonic state has fluctuations at least of order ρ. This can be seen easily by
noting that it is possible for any state |ϕm〉 to hop to any neighbouring state.
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4.7 The proof of the validity of the mean-field picture

We will employ Cook’s lemma to perform a perturbation expansion of

αt := 〈〈ψt|Q|ψt〉〉 :=〈〈ψt|
(
1− |ψft 〉〉〈〈ψ

f
t |
)
|ψt〉〉 (4.69)

=1−
∣∣∣〈〈ψt|ψft 〉〉∣∣∣2 (4.70)

αt gives the projection onto the orthogonal complement of the free time evolution. If this
quantity vanishes, the two evolutions are the same up to some global U(1) phase. That is, if

αt = 0 would be true, then |ψft 〉〉 = eiφ|ψt〉〉.
Since |ψft=0〉〉 = |ψt=0〉〉 holds, we expect by continuity that φ = 0, i.e.

‖ψft − ψt‖ = 0⇔ αt = 0 (4.71)

Of course, αt will not be exactly zero, yet, according to theorem 4.5.1, which we are going to
prove now,

lim
ρ→∞

lim
TD

αt = 0 (4.72)

holds. Therefore, we may conclude

lim
ρ→∞

lim
TD
‖ψft − ψt‖ = 0 (4.73)

which shows norm convergence of the two time evolutions.
We like to emphasize that our proof only shows the smallness of αt. While we do indeed
expect norm convergence, we could not provide an explicit proof of this. However, since
quantum states which only differ by some global phase cannot be distinguished, it is actually
suffcient to show the smallness of αt.
We can replace Q by qy := 1− |χt

)(
χt|. Following the discussion in [Knowles and Pickl, 2009]

, this quantity is a measure of the closeness of the reduced density matrix, describing the
tracer particle only, to its free evolution |χt

)
in trace norm. This type of convergence is, as it

was already mentioned, normally considered in the literature.

For the subsequent proof we need the following

Lemma 4.7.1. Let αt be defined as above. Then

αt ≤
∥∥∥∥∫ t

0
dt′Uf−t′

(
W (~x; y)−W f

)
Uft′ψ0

∥∥∥∥︸ ︷︷ ︸
=:E1

(4.74)

+

∣∣∣∣∫ t

0
dt′〈〈U−tQψt|(U−t′ − Uf−t′)

(
W (~x; y)−W f

)
Uft′ |ψ0〉〉

∣∣∣∣︸ ︷︷ ︸
=:R

(4.75)
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Proof.
Using Cook’s lemma, we obtain:

〈〈ψt|Q|ψt〉〉 =〈〈ψt|Q(Ut − Uft )|ψ0〉〉

=− i

∫ t

0
dt′〈〈ψt|QUt−t′

(
W (~x; y)−W f

)
Uft′ |ψ0〉〉

=− i

∫ t

0
dt′〈〈U−tQψt|U−t′

(
W (~x; y)−W f

)
Uft′ |ψ0〉〉

=− i〈〈U−tQψt|
∫ t

0
dt′(U−t′ − Uf−t′)

(
W (~x; y)−W f

)
Uft′ |ψ0〉〉

− i〈〈U−tQψt|
∫ t

0
dt′Uf−t′

(
W (~x; y)−W f

)
Uft′ |ψ0〉〉 (4.76)

Using Cauchy Schwarz and the triangle inequality yields the desired result.

E1 is the estimate we would get from first-order perturbation theory and will be treated
now. In section 4.7.2, the remainder R will be estimated using second-order perturbation
theory.
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4.7.1 First-order perturbation theory

In this section we will estimate E1, which is the first order of a perturbation expansion. Until
now, our estimate (4.29) can be considered to be static. It bounds the deviation from the free
evolution by the sum of all possible transitions. Yet, if we also consider the dynamics, these
possible transitions may actually be suppressed. That is, during the actual time evolution, the
fermionic state remains approximately in its ground state.
After we have treated E1 successfully, we will bound the remainder R using the very same
techniques we will develop now. The next theorem states that E1 can be bounded by 1√

ρ and

hence vanishes for high densities.

Theorem 4.7.1.

lim
TD

E2
1 ≤

I1 + tI2 + t2I3

ρ
(4.77)

where I1, I2, I3 are given in (4.90),(4.91) and (4.92), respectively. They depend on v, on |χ0

)
and stay bounded for all ρ.

Proof.
E2

1 is given by

E2
1 =

∥∥∥∥∫ t

0
dt′Uf−t′(W (~x, y)−W f )Uft′ψ0

∥∥∥∥2

=

∥∥∥∥∥∥
∫ t

0
dt′Uf−t′

∑
|l|>N/2

∑
|m|≤N/2

1

L
F(v)

(
m− l
L

)
e

2πi
L

(m−l)yâ†(ϕl)â(ϕm)Uft′ψ0

∥∥∥∥∥∥
2

(4.78)

Note that the free time evolution with parameter −t′ acts on the time evolved state

e
2πi
L

(m−l)yâ†(ϕl)â(ϕm)Uft′ |ψ0〉〉. Since the free time evolution of the sea components can
be evaluated explicitly, we conclude that:

Uf−t′ e
2πi
L

(m−l)yâ†(ϕl)â(ϕm)Uft′ |χ
y
0

)
⊗ |Λ〉

=e
−it′

( ∑
|k|≤N/2

(2π k
L)

2
+ρF(v)(0)

)
Uf−t′ â

†(ϕl)â(ϕm)
(
e

2πi
L

(m−l)yUyt′
)
|ψ0〉〉

=e
4π2i
L (l2−m2)t′ â†(ϕl)â(ϕm)

(
Uy−t′e

2πi
L

(m−l)yUyt′
)
|ψ0〉〉 (4.79)

Hence Uf−t′ sets all the acquired phases back, expect the ones from ϕl and ϕm.
E2

1 is therefore given by:

E2
1 =

∥∥∥∥∥∥
∫ t

0
dt′

∑
|l|>N/2

∑
|m|≤N/2

1

L
F(v)

(
m− l
L

)
â†(ϕl)â(ϕm)e

4π2i
L2 (l2−m2)t′Uy−t′ e

2πi
L

(m−l)yUyt′ψ0

∥∥∥∥∥∥
2

(4.80)
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In order to evaluate this norm, note that we already calculated a similar expression in (4.39).
We can carry the result over here, obtaining:

E2
1 =

∫ t

0
dt′
∫ t

0
dt′′

∑
|l|>N/2

∑
|m|≤N/2

1

L2

∣∣∣∣F(v)

(
m− l
L

)∣∣∣∣2 e
4π2i
L2 (l2−m2)(t′−t′′)

×
(
Uy−t′′ e

2πi
L

(m−l)yUyt′χ0|Uy−t′ e
2πi
L

(m−l)yUyt′χ0

)
=
∑
|l|>N/2

∑
|m|≤N/2

1

L2

∣∣∣∣F(v)

(
m− l
L

)∣∣∣∣2 ∥∥∥∥∫ t

0
dt′e

4π2i
L2 (l2−m2)t′Uy−t′ e

2πi
L

(m−l)yUyt′χ0

∥∥∥∥2

y

(4.81)

In the thermodynamic limit, which will be easier to handle, this expression reads:

lim
TD

E2
1 =

∫
|l|>ρ/2

dl

∫
|m|<ρ/2

dm |F(v) (m− l)|2
∥∥∥∥∫ t

0
dt′e4π2i(l2−m2)t′Uy−t′ e

2πi(m−l)yUyt′χ0

∥∥∥∥2

y

(4.82)

The structure of (4.82) reflects our heuristic discussion. The validity of our mean-field
description relies on the variance being small and in addition on the fact that transitions near
the Fermi edge are also suppressed by the dynamics.
The variance expresses the static picture where every possible transition is weighted by
|F(v) (m− l)|2. The fast oscillating phase e4π2i(l2−m2)t′ , integrated over time, also prohibits
transitions near the Fermi surface. These transition could not be excluded solely using the
static analysis.
In order to estimate (4.82) by some stationary phase argument, we need to separate the critical
point m2 = l2. To this end, let us split up the integral into two parts:

lim
TD

E2
1 =

∫
|l|>ρ/2

dl

∫
|m|<ρ/2

dm |F(v) (m− l)|2
∥∥∥∥∫ t

0
dt′e4π2i(l2−m2)t′Uy−t′ e

2πi(m−l)yUyt′χ0

∥∥∥∥2

y

=

∫
|l|>ρ/2

dl

∫
|m|<ρ/2

dm Θ

(
1
√
ρ
− |m− l|

)
|F(v) (m− l)|2

∥∥∥∥∫ t

0
dt′e4π2i(l2−m2)t′Uy−t′ e

2πi(m−l)yUyt′χ0

∥∥∥∥2

y

+

∫
|l|>ρ/2

dl

∫
|m|<ρ/2

dm Θ

(
|m− l| − 1

√
ρ

)
|F(v) (m− l)|2

∥∥∥∥∫ t

0
dt′e4π2i(l2−m2)t′Uy−t′ e

2πi(m−l)yUyt′χ0

∥∥∥∥2

y

(4.83)

We will estimate each term separately. The first one will be small itself, while the other one
can be estimated by a stationary phase argument. Using ‖F(v)‖∞ ≤ ‖v‖1, we obtain∫
|l|>ρ/2

dl

∫
|m|<ρ/2

dm Θ

(
1
√
ρ
− |m− l|

)
|F(v) (m− l)|2

∥∥∥∥∫ t

0
dt′e4π2i(l2−m2)t′Uy−t′ e

2πi(m−l)yUyt′χ0

∥∥∥∥2

y

≤‖v‖21t2
∫
|l|>ρ/2

dl

∫
|m|<ρ/2

dm Θ

(
1
√
ρ
− |m− l|

)
≤2‖v‖21

ρ
t2 (4.84)

In order to estimate the remaining term, first note that the fast oscillating phase can be
bounded from below. To this end, consider both l and m be located at the gap ρ/2. Since
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|l| − |m| > (ρ)−1/2 and |l| > ρ/2 holds, we can give the following upper bound:

l2 −m2 =|l|2 − |m|2 = (|l| − |m|)(|l|+ |m|)

≥ 1
√
ρ
ρ/2

=

√
ρ

2
(4.85)

Consequently, the phase oscillates at least like
√
ρ/2. One should notice that this estimate

is a direct consequence of the nonrelativistic energy-momentum relation. For a relativistic
system, this estimate no longer holds.
Integrating by parts, the following bound is obtained:

∥∥∥∥∫ t

0
dt′e4π2i(l2−m2)t′Uy−t′ e

2πi(m−l)yUyt′χ0

∥∥∥∥
y

=
1

4π2(l2 −m2)

∥∥∥∥∫ t

0
dt′
(
d

dt′
e4π2i(l2−m2)t′

)
Uy−t′ e

2πi(m−l)yUyt′χ0

∥∥∥∥
y

≤ 1

4π2(l2 −m2)

∥∥∥e4π2i(l2−m2)tUy−t e
2πi(m−l)yUyt χ0 − e2πi(m−l)yχ0

∥∥∥
y

+
1

4π2(l2 −m2)

∥∥∥∥∫ t

0
dt′e4π2i(l2−m2)t′ d

dt′

(
Uy−t′ e

2πi(m−l)yUyt′χ0

)∥∥∥∥
y

≤ 1

4π2√ρ

(
2 +

∫ t

0
dt′
∥∥∥∥ ddt′ (Uy−t′ e2πi(m−l)yUyt′χ0

)∥∥∥∥
y

)
(4.86)

Using Stone’s theorem, we can calculate the last term:

i
d

dt′

(
Uy−t′ e

2πi(m−l)yUyt′ |χ0

))
=∆y

(
Uy−t′ e

2πi(m−l)yUyt′ |χ0

))
+ Uy−t′ e

2πi(m−l)y(−∆y)U
y
t′ |χ0

)
=4π2(m− l)2Uy−t′ e

2πi(m−l)yUyt′ |χ0

)
+ 4π(m− l)Uy−t′ e

2πi(m−l)yUyt′ p̂y|χ0

)
(4.87)

where p̂y := −i∂y. Note in passing that the norm ‖p̂yχ0‖y is finite. As for the potential, we
excluded cases where |χ0

)
is not differentiable at the embedded boundaries of the torus.

Plugging everything together, we get the following estimate :

lim
TD

E2
1 ≤

2‖v‖21
ρ

t2

+
1

16π4ρ

∫
|l|>ρ/2

dl

∫
|m|<ρ/2

dm |F(v) (m− l)|2
(
2 + 4π|m− l|‖p̂yχ0‖y t+ 4π2(m− l)2t

)2
(4.88)

=:
I1 + tI2 + t2I3

ρ
(4.89)
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where

I1 =
1

4π4

∫
|l|>ρ/2

dl

∫
|m|<ρ/2

dm |F(v) (m− l)|2 =
1

4π4
lim
TD

VarvN+1(y) (4.90)

I2 =
1

π4

∫
|l|>ρ/2

dl

∫
|m|<ρ/2

dm |F(v) (m− l)|2
(
π|m− l|‖p̂yχ0‖y + π2(m− l)2

)
(4.91)

I3 =
1

π4

∫
|l|>ρ/2

dl

∫
|m|<ρ/2

dm |F(v) (m− l)|2
(
π|m− l|‖p̂yχ0‖y + π2(m− l)2

)2
+2‖v‖21 (4.92)

I1, I2, I3 are bounded for all ρ, since for smooth, compactly supported potentials the Fourier
transform decays much faster than any polynomial.

Lemma 4.7.2. Let α > 0, β > 1. Then:

sup
ρ>0

(∫
|m|≤ρ/2

dm

∫
|l|>ρ/2

dl|F(v) (m− l) |β|m− l|α
)
<∞ (4.93)

Proof.
Upon splitting the integration into two parts, we obtain:∫

|m|≤ρ/2
dm

∫
|l|>ρ/2

dl|F(v) (m− l) |β|m− l|α

=2

∫ ρ/2

0
dm

∫ ∞
ρ/2

dl|F(v) (m− l) |β|m− l|α

+2

∫ 0

−ρ/2
dm

∫ ∞
ρ/2

dl|F(v) (m− l) |β|m− l|α (4.94)

Consider the first term. It is bounded as the following estimate shows:∫ ρ/2

0
dm

∫ ∞
ρ/2

dl|F(v) (m− l) |β|m− l|α

≤
∫ ρ/2

0
dm

∫ ∞
ρ/2

dl

(
DP

(1 + |m− l|)p

)β
|m− l|α

=

∫ ρ/2

0
dm

∫ ∞
m

dl

(
Dp

(1 + l)p

)β
lα

=

∫ C

0
dm

∫ ∞
m

dl

(
Dp

(1 + l)p

)β
lα +

∫ ρ/2

C
dm

∫ ∞
m

dl

(
Dp

(1 + l)p

)β
lα

≤C
∫ ∞

0
dl

(
Dp

(1 + l)p

)β
lα +

∫ ρ

C
dm

∫ ∞
m

dl

(
Dp

lpβ−α

)
=C

∫ ∞
0

dl

(
Dp

(1 + l)p

)β
lα︸ ︷︷ ︸

<∞

+
1

(1 + α− pβ)(2 + α− pβ)

(
1

Cpβ−α−2
− 1

ρpβ−α−2

)
(4.95)

Both terms are bounded choosing p big enough. As similar estimates shows that the second
term vanishes as ρ→∞.
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4.7.2 Second-order perturbation theory

In order to estimate R, we will split up the proof into a series of small lemmas. While the
computation is a bit lengthy, the underlying idea can be stated easily:
R can be controlled using second-order perturbation theory. Consequently, while before only
one particle could be lifted, now we have to control the transition of two particles. We will
use the results from first-order perturbation theory in order to show that the first transition is
suppressed and will then estimate the subsequent amplitude to be finite again. Explicitly, we
prove the following

Theorem 4.7.2.

lim
TD

R2 ≤ tI4 + t3I5 + t4I6

ρ
(4.96)

where I4, I5, I6 depend on v, on |χ0

)
and stay bounded for all ρ.

Proof.
The structure of the proof is as follows:
As just mentioned, we will copy the proof from first-order perturbation theory. That is, we
will first separate the critical point by splitting up the Fourier transform of the potential into
two contributions.
For the main contribution, by means of the stationary phase lemma, a factor of 1√

ρ will be

obtained. Since the stationary phase lemma requires integration by parts, three terms will
arise. Lemma 4.7.3 will prove the corresponding bound:

R ≤ 1

2π2√ρ

∫ t

0
dt′′
∥∥∥ ∑
|l|>N/2

∑
|m|≤N/2

∣∣∣ 1
L
F(ṽ)

(
m− l
L

)
;σt;t′′: l

L
; l
L

〉〉∥∥∥
+

1

2π2√ρ

∫ t

0
dt′
∥∥∥ ∑
|l|>N/2

∑
|m|≤N/2

∣∣∣ 1
L
F(ṽ)

(
m− l
L

)
;σt′;t′: l

L
; l
L

〉〉∥∥∥
+

1

2π2√ρ

∫ t

0
dt′
∫ t′

0
dt′′
∥∥∥ ∑
|l|>N/2

∑
|m|≤N/2

∣∣∣ 1
L
F(ṽ)

(
m− l
L

)
; σ̃t′;t′′: l

L
; l
L

〉〉∥∥∥
+

∫ t

0
dt′
∫ t′

0
dt′′
∥∥∥ ∑
|l|>N/2

∑
|m|≤N/2

∣∣∣ 1
L
F(w)

(
m− l
L

)
;σt′;t′′: l

L
; l
L

〉〉∥∥∥ (4.97)

The potential

F(ṽ)(k) =

{
F(v)(k) if k ≥ ρ−1/2

0 if k < ρ−1/2
(4.98)

is just the normal potential with the critical point l2 = m2 removed. In analogy

F(w)(k) =

{
F(v)(k) if k ≤ ρ−1/2

0 if k > ρ−1/2
(4.99)

describes the contribution from the gap. We already used these potentials implicitly in the
estimate of E1.
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The exact definition of the vectors used above will be given in lemma 4.7.3. Essentially, they
will arise in second-order perturbation theory and, in analogy to the variance, will sum up all
transitions which are possible if the potential acts two times on the ground state.
Lemma 4.7.4 will show that these vectors can be estimated by a sum of functions which are
relatively easy to handle. Explicitly, in lemma 4.7.4 the following bound will be given:∥∥∥ ∑

|l|>N/2

∑
|m|≤N/2

∣∣∣g(m− l
L

)
;χta;tb;

l
L

;m
L

〉〉∥∥∥ ≤√2M1 + 2M2 +
√
M1 +

√
M3 +

√
M4

(4.100)

The vector |g
(
m−l
L

)
;χta;tb;

l
L

;m
L
〉〉 represents the three different vectors from the estimate above.

The functions Mi will still depend on the density and thus need to be bounded.
This will be done in lemma 4.7.6 and 4.7.7.
For the first three vectors, which sum up all transitions except the ones which happen directly
at the gap, it will be shown in lemma 4.7.6 that

sup
ρ
Mi <∞ (4.101)

Finally, we will need to control the transitions arising directly at the gap. This will be done in
lemma 4.7.7. Due to the smallness of the support of the potential w, it will be possible to
estimate∫ t

0
dt′
∫ t′

0
dt′′
∥∥∥ ∑
|l|>N/2

∑
|m|≤N/2

∣∣∣ 1
L
F(w)

(
m− l
L

)
;σt′;t′′: l

L
; l
L

〉〉∥∥∥ ≤ t2 C√
ρ

(4.102)

Combining the lemmas 4.7.3, 4.7.4, 4.7.6 and 4.7.7 then proves the theorem.
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Let us first separate the critical point l2 = m2. To this end we define

F(v)(k) = F(w)(k) + F(ṽ)(k) (4.103)

where

F(ṽ)(k) =

{
F(v)(k) if k ≥ ρ−1/2

0 if k < ρ−1/2
(4.104)

F(w)(k) =

{
F(v)(k) if k ≤ ρ−1/2

0 if k > ρ−1/2
(4.105)

We want to make a small remark here:
The potentials ṽ and w cannot have compact support in R since the Fourier transform of w
has. However, this fact will not be of any importance. Explicitly, ṽ and w are given by:

w(x) =F−1

(
F(v)(·)Θ

(
1
√
ρ
− | · |

))
(x)

=v ∗ F−1

(
Θ

(
1
√
ρ
− | · |

))
(x) (4.106)

ṽ(x) =v(x)− w(x) (4.107)

Let us now prove the following

Lemma 4.7.3. The following inequality is true:

R ≤ 1

2π2√ρ

∫ t

0
dt′′
∥∥∥ ∑
|l|>N/2

∑
|m|≤N/2

∣∣∣ 1
L
F(ṽ)

(
m− l
L

)
;σt;t′′: l

L
; l
L

〉〉∥∥∥
+

1

2π2√ρ

∫ t

0
dt′
∥∥∥ ∑
|l|>N/2

∑
|m|≤N/2

∣∣∣ 1
L
F(ṽ)

(
m− l
L

)
;σt′;t′: l

L
; l
L

〉〉∥∥∥
+

1

2π2√ρ

∫ t

0
dt′
∫ t′

0
dt′′
∥∥∥ ∑
|l|>N/2

∑
|m|≤N/2

∣∣∣ 1
L
F(ṽ)

(
m− l
L

)
; σ̃t′;t′′: l

L
; l
L

〉〉∥∥∥
+

∫ t

0
dt′
∫ t′

0
dt′′
∥∥∥ ∑
|l|>N/2

∑
|m|≤N/2

∣∣∣ 1
L
F(w)

(
m− l
L

)
;σt′;t′′: l

L
; l
L

〉〉∥∥∥ (4.108)

where:∣∣∣g(m− l
L

)
;χta;tb;

l
L

;m
L

〉〉
:=
(
W (~x; y)−W f

)
g

(
m− l
L

)
â†(ϕl)â(ϕm)|χta;tb;

l
L

;m
L

)
⊗ |Λ〉

(4.109)

|σta;tb;
l
L

;m
L

)
:=|e

4π2i
L2 (l2−m2)(ta−tb)Uytb−ta e

2πi
L

(m−l)yUytaχ0

)
(4.110)

|σ̃ta;tb;
l
L

;m
L

)
:=|e

4π2i
L2 (l2−m2)(ta−tb)Uytb

d

dt′
Uy−tae

2πi
L

(m−l)yUytaχ0

)
(4.111)
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Proof.
In this estimate, the first three terms arise from integration by parts. The last term describes
the transitions at the Fermi surface.
Performing Cook’s method again, we obtain:

R =

∣∣∣∣∫ t

0
dt′〈〈(Ut′ − Uft′ )U−tQψt|

(
W (~x; y)−W f

)
Uft′ψ0〉〉

∣∣∣∣
=

∣∣∣∣∣
∫ t

0
dt′
∫ t′

0
dt′′〈〈Uft′−t′′

(
W (~x; y)−W f

)
Ut′′−tQψt|

(
W (~x; y)−W f

)
Uft′ |ψ0〉〉

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
∫ t

0
dt′ 〈〈

∫ t′

0
dt′′Uf−t′′

(
W (~x; y)−W f

)
Ut′′−tQUtψ0|︸ ︷︷ ︸

=:〈〈ψ̃t′ |

Uf−t′
(
W (~x; y)−W f

)
Uft′ |ψ0〉〉

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ t

0
dt′

∑
|l|>N/2

N/2∑
m=−N/2

1

L
F(v)

(
m− l
L

)
e

4π2i
L2 (l2−m2)t′〈〈ψ̃t′ |â†(ϕl)â(ϕm)Uy−t′ e

2πi
L

(m−l)yUyt′ |ψ0〉〉

∣∣∣∣∣∣
(4.112)

Note, already at this stage, we can identity the structure of the proof. We obtain the vector
Uf−t′

(
W (~x; y)−W f

)
Uft′ |ψ0〉〉, which was also present in first-order perturbation theory. Again,

this term can be used for the stationary phase argument, which yields a factor of 1√
ρ . This

time, however, we need to estimate the norm of a vector where we act two times with the
potential. Note that it is not possible to simply estimate the last line using Cauchy Schwarz.
If we would do so, we could not apply the stationary phase method subsequently. Moreover, it
would be unclear how we should estimate |ψ̃t′〉〉, since for doing so, we would need to have
some information about the real time evolution.
We will now integrate by parts and separate the contribution arising at the gap. Note that
|ψ̃0〉〉 = 0. Therefore:

R

=

∣∣∣∣∣∣
∫ t

0
dt′

∑
|l|>N/2

∑
|m|≤N/2

1

L
F(v)

(
m− l
L

)
e

4π2i
L2 (l2−m2)t′〈〈ψ̃t′ |â†(ϕl)â(ϕm)Uy−t′ e

2πi
L

(m−l)yUyt′ |ψ0〉〉

∣∣∣∣∣∣
≤ 1

4π2

∣∣∣∣∣∣
∫ t

0
dt′

∑
|l|>N/2

∑
|m|≤N/2

1

L
F(ṽ)

(
m− l
L

) d
dt′ e

4π2i
L2 (l2−m2)t′(

l
L

)2 − (mL )2 〈〈ψ̃t′ |â†(ϕl)â(ϕm)Uy−t′ e
2πi
L

(m−l)yUyt′ |ψ0〉〉

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ t

0
dt′

∑
|l|>N/2

∑
|m|≤N/2

1

L
F(w)

(
m− l
L

)
e

4π2i
L2 (l2−m2)t′〈〈ψ̃t′ |â†(ϕl)â(ϕm)Uy−t′ e

2πi
L

(m−l)yUyt′ |ψ0〉〉

∣∣∣∣∣∣
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≤ 1

4π2

∣∣∣∣∣∣
∑
|l|>N/2

∑
|m|≤N/2

1

L
F(ṽ)

(
m− l
L

)
e

4π2i
L2 (l2−m2)t(
l
L

)2 − (mL )2 〈〈ψ̃t|â†(ϕl)â(ϕm)Uy−t e
2πi
L

(m−l)yUyt |ψ0〉〉

∣∣∣∣∣∣︸ ︷︷ ︸
=:R1

+
1

4π2

∣∣∣∣∣∣
∫ t

0
dt′

∑
|l|>N/2

∑
|m|≤N/2

1

L
F(ṽ)

(
m− l
L

)
e

4π2i
L2 (l2−m2)t′(
l
L

)2 − (mL )2 〈〈
d

dt′
ψ̃t′ |â†(ϕl)â(ϕm)Uy−t′ e

2πi
L

(m−l)yUyt′ |ψ0〉〉

∣∣∣∣∣∣︸ ︷︷ ︸
=:R2

+
1

4π2

∣∣∣∣∣∣
∫ t

0
dt′

∑
|l|>N/2

∑
|m|≤N/2

1

L
F(ṽ)

(
m− l
L

)
e

4π2i
L2 (l2−m2)t′(
l
L

)2 − (mL )2 〈〈ψ̃t′ |â†(ϕl)â(ϕm)
d

dt′

(
Uy−t′ e

2πi
L

(m−l)yUyt′
)
|ψ0〉〉

∣∣∣∣∣∣︸ ︷︷ ︸
=:R3

+

∣∣∣∣∣∣
∫ t

0
dt′

∑
|l|>N/2

∑
|m|≤N/2

1

L
F(w)

(
m− l
L

)
e

4π2i
L2 (l2−m2)t′〈〈ψ̃t′ |â†(ϕl)â(ϕm)Uy−t′ e

2πi
L

(m−l)yUyt′ |ψ0〉〉

∣∣∣∣∣∣︸ ︷︷ ︸
=:R4

(4.113)

Let us first bound R1 using Cauchy Schwarz. By this, the perturbation expansion is effectively
truncated at second order. Reinserting the definition of |ψ̃t′〉〉, we obtain:

R1 =
1

4π2

∣∣∣∣∣
∫ t

0
dt′′

∑
|l|>N/2

∑
|m|≤N/2

1

L
F(ṽ)

(
m− l
L

)
e

4π2i
L2 (l2−m2)t(
l
L

)2 − (mL )2
×〈〈Ut′′−tQUtψ0|

(
W (~x; y)−W f

)
Uft′′ â

†(ϕl)â(ϕm)Uy−t e
2πi
L

(m−l)yUyt |ψ0〉〉

∣∣∣∣∣
=

1

4π2

∣∣∣∣∣
∫ t

0
dt′′〈〈Φ−t′′Ut′′−tQUtψ0|

∑
|l|>N/2

∑
|m|≤N/2

e
4π2i
L2 (l2−m2)(t−t′′)(
l
L

)2 − (mL )2
×
(
W (~x; y)−W f

) 1

L
F(ṽ)

(
m− l
L

)
â†(ϕl)â(ϕm)Uyt′′−t e

2πi
L

(m−l)yUyt |ψ0〉〉

∣∣∣∣∣
≤ 1

2π2√ρ

∫ t

0
dt′′
∥∥∥ ∑
|l|>N/2

∑
|m|≤N/2

(
W (~x; y)−W f

)
× 1

L
F(ṽ)

(
m− l
L

)
e

2π2i
L2 (l2−m2)(t−t′′)â†(ϕl)â(ϕm)Uyt′′−t e

2πi
L

(m−l)yUyt ψ0

∥∥∥
=:

1

2π2√ρ

∫ t

0
dt′′
∥∥∥ ∑
|l|>N/2

∑
|m|≤N/2

∣∣∣ 1
L
F(ṽ)

(
m− l
L

)
;σt;t′′: l

L
; l
L

〉〉∥∥∥ (4.114)

In the second line we evaluated the free time evolution acting on the test particle and on the
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perturbed sea. Explicitly, we used that

Uft′′
(
|Uy−t′ e

2πi
L

(m−l)yUyt′χ
y
0

)
⊗ |â†(ϕl)â(ϕm)Λ〉

)

= exp

−it′′

 ∑
|k|≤N/2
k 6=m

(
2π
k

L

)2

+

(
2π

l

L

)2

+ ρF(v) (0)


 |Uyt′′−t′ e 2πi

L
(m−l)yUyt′χ

y
0

)
⊗ |â†(ϕl)â(ϕm)Λ〉

=Φt′′ e
− 4π2i

L2 (l2−m2)t′′ |Uyt′′−t′ e
2πi
L

(m−l)yUyt χ
y
0

)
⊗ |â†(ϕl)â(ϕm)Λ〉 (4.115)

holds, where

Φt′′ = e
−it′′

( ∑
|k|≤N/2

(2π k
L)

2
+ρF(v)(0)

)
(4.116)

is a global phase which was already present in first-order perturbation theory.
Note that we estimated

1(
l
L

)2 − (mL )2 ≤
2
√
ρ

(4.117)

using F(ṽ)
(
m−l
L

)
= 0 if |m−l|L ≤ 1√

ρ .

By the very same steps the three remaining terms can be estimated identically. Explicitly,
for R2 the same bound is obtained upon replacing:

t→t′

t′′ →t′ (4.118)

The third term R3 has two time integrals. Hence, we also integrate over t′ and make the
following replacements in comparison with R1:

t→t′

|e
4π2i
L2 (l2−m2)(t−t′′)Uyt′′−t e

2πi
L

(m−l)yUyt χ0

)
→|e

4π2i
L2 (l2−m2)(t−t′′)Uyt′′

d

dt′
Uy−t′ e

2πi
L

(m−l)yUyt′χ0

)
(4.119)

The fourth term can be estimated the same way as the third term upon replacing:

F(ṽ)

(
m− l
L

)
→F(w)

(
m− l
L

)
|e

4π2i
L2 (l2−m2)(t−t′′)Uyt′′

d

dt′
Uy−t′ e

2πi
L

(m−l)yUyt′χ0

)
→|e

4π2i
L2 (l2−m2)(t−t′′)Uyt′′−t e

2πi
L

(m−l)yUyt χ0

)
(4.120)

Until now, we have separated the gap, integrated by parts and estimated R in second-order
perturbation theory.
The crucial step is the following
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Lemma 4.7.4. Let
∣∣∣g (m−lL

)
;χta;tb;

l
L

;m
L

〉〉
be defined as above. Then

∥∥∥ ∑
|l|>N/2

∑
|m|≤N/2

∣∣∣g(m− l
L

)
;χta;tb;

l
L

;m
L

〉〉∥∥∥ ≤√2M1 + 2M2 +
√
M1 +

√
M3 +

√
M4

(4.121)

where Mi = Mi(η; g; v;N ;L) and η are defined below.

Proof.
This lemma bounds the norms obtained in the previous lemma by various functions which are
easier to handle. This procedure can be seen in analogy to first-order perturbation theory
where we estimated lim

TD
E2

1 by I1+tI2+t2I3
ρ .

Using Stone’s theorem, as in equation (4.87), we can bound

‖χta;tb;
l
L

;m
L
‖y ≤ η

(
m− l
L

)
:=

1 if |χta;tb;
l
L

;m
L

)
= |σta;tb;

l
L

;m
L

)
4π |m−l|L ‖p̂yχ0‖y + 4π2

(
m−l
L

)2
if |χta;tb;

l
L

;m
L

)
= |σ̃ta;tb;

l
L

;m
L

)
(4.122)

So ‖χta;tb;
l
L

;m
L
‖y depends solely on the difference m−l

L , which will be used in the following.
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Let us reinsert the definition of |g
(
m−l
L

)
;χta;tb;

l
L

;m
L
〉〉:

∥∥∥ ∑
|l|>N/2

∑
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L
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)
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)
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)
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∑
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+
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δl2,m1

 ∑
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δ⊥m2,l2 +
∞∑

m2=−∞
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∥∥∥
(4.123)

Here, δ⊥m2,l2
is defined to be 0 if m2 = l2 and 1 otherwise.

The last line was obtained by observing that, after acting with the operator â†(ϕl1)â(ϕm1) on
the ground state, we have the following options:
The annihilation operator â(ϕm2) can either annihilate a particle in the ground state not
equal to ϕm1 , or it can annihilate the excited particle ϕl1 . Afterwards, by means of â†(ϕl2),
we can create either a particle in some excited state or use the existing hole ϕm1 to fill it up
again. Note, by the restriction m2 6= l2, we cannot create a particle in the state ϕm2 . This
line of argumentation treats the operator â†(ϕl2)â(ϕm2) as if it were two operators. We have
emphasized before that this reading is technically not correct if we work on a fixed number
Hilbert space. Yet, it is very helpful to actually think of this operator in this way. Since the
operator acts the very same way on the wavefunction as the corresponding composition of the
creation and annihilation operator in Fock-space, the argumentation just made yields the
correct result.
Using the triangle inequality, we get four different terms, labelled T1 till T4:

∥∥∥ ∑
|l|>N/2

∑
|m|≤N/2

∣∣∣g(m− l
L

)
;χta;tb;

l
L

;m
L

〉〉∥∥∥ ≤ T1 + T2 + T3 + T4 (4.124)

The first term T1 arises from the sum
∑
|l2|>N/2

∑
|m2|≤N/2 δ

⊥
m2,l2

. We drop the restriction

δ⊥m2,l2
, hereby obtaining the following bound:
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L

;
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∥∥∥ (4.125)



4.7. THE PROOF OF THE VALIDITY OF THE MEAN-FIELD PICTURE 49

The second term T2 arises from
∑
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∑∞
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⊥
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∥∥∥ ∑
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The third term T3 arises from the sum
∑∞

l2=−∞ δl2,m1

∑
|m2|≤N/2 δ

⊥
m2,l2

. By dropping the

restriction δ⊥m2,l2
, we obtain the bound:
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The last contribution T4 comes from the sum
∑∞

l2=−∞ δl2,m1

∑∞
m2=−∞ δm2,l1δ

⊥
m2,l2

. The con-
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is satisfied automatically.
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2πi
L

(l1−m1)yχ
ta;tb;

l1
L

;
m1
L

)
⊗ |Λ〉

∥∥∥ (4.128)

We can interpret the different contributions pictorially:
The first step is always the same: The particle ϕm1 is lifted to the excited state ϕl1 . Afterwards
there are four different possibilities:
• The first term describes the transition of the particle ϕm2 to the exited state ϕl2 .
• In T2, the already excited particle ϕl1 ends in the excited state ϕl2 .
• In the third term, the existing hole ϕm1 is occupied by the particle ϕm2 .
• The fourth term describes the reverse process of the first step. The excited particle ϕl1

goes back to where it started from.
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Figure 4.2: All possible transitions in second-order perturbation theory: (i) Two particles ϕm1

and ϕm2 are lifted to the excited states ϕl1 and ϕl2 . (ii) The particle ϕm1 is lifted twice and
ends in some excited state ϕl2 . (iii) The particle ϕm1 is first lifted to the state ϕl1 . Afterwards,
it hops back to where it started. (iv) The particle ϕm1 is first lifted to the state ϕl1 . Then,
another particle ϕl2 jumps into the existing hole ϕm1 .

Each term can be estimated separately, starting with the

First term T1: The estimate of (4.125) requires the most effort. Squaring the norm, we
obtain eight sums in total, labelled by m1,m2,m3,m4 and l1, l2, l3, l4. We will first proof the
following



4.7. THE PROOF OF THE VALIDITY OF THE MEAN-FIELD PICTURE 51

Lemma 4.7.5. Let li > N/2 ∀i = 1, 2, 3, 4 and let mi ≤ N/2 ∀i = 1, 2, 3, 4. Then

〈Λ|â†(ϕm4)â(ϕl4)â†(ϕm3)â(ϕl3)â†(ϕl2)â(ϕm2)â†(ϕl1)â(ϕm1)|Λ〉
=(δm1,m3δm2,m4 + δm1,m4δm2,m3)(δl1,l3δl2,l4 + δl1,l4δl2,l3)

×δ⊥m1,m2
δ⊥l1,l2δ

⊥
m3,m4

δ⊥l3,l4

= (δm1,m3δm2,m4δl1,l3δl2,l4 + δm1,m4δm2,m3δl1,l3δl2,l4)

×δ⊥m1,m2
δ⊥l1,l2δ

⊥
m3,m4

δ⊥l3,l4

+ (δm1,m4δm2,m3δl1,l4δl2,l3 + δm1,m3δm2,m4δl1,l4δl2,l3)

×δ⊥m1,m2
δ⊥l1,l2δ

⊥
m3,m4

δ⊥l3,l4 (4.129)

Proof.
The term δ⊥m1,m2

δ⊥l1,l2δ
⊥
m3,m4

δ⊥l3,l4 comes from the observation that it is not possible to create
or remove more than one particle in the same state. For the other terms, consider the
vector â†(ϕl2)â(ϕm2)â†(ϕl1)â(ϕm1)|Λ〉. Here, two particles below the Fermi edge were lifted
to two excited states. This is due to the fact that |l1|, |l2| > N/2 and |m1|,m2| ≤ N/2 holds.
Consequently, 〈Λ|â†(ϕm4)â(ϕl4)â†(ϕm3)â(ϕl3) has to be a vector where the same particles have
been exchanged, otherwise the scalar product is zero. That leaves the possibilities expressed
above by the Kronecker delta functions.

Note once more that this expression is only valid since the ϕl-operators cannot create or
remove a particle below the Fermi edge.
Squaring the first contribution, we obtain:

T 2
1 =

∥∥∥ ∑
|l1|>N/2

∑
|m1|≤N/2

∑
|l2|>N/2

∑
|m2|≤N/2

1

L
F(v)

(
m2 − l2
L

)
g

(
m1 − l1
L

)
×â†(ϕl2)â(ϕm2)â†(ϕl1)â(ϕm1)|e

2πi
L

(m2−l2)yχ
ta;tb;

l1
L

;
m1
L

)
⊗ |Λ〉

∥∥∥2

=
∑

|l1|>N/2

∑
|m1|≤N/2

∑
|l2|>N/2

∑
|m2|≤N/2

∑
|l3|>N/2

∑
|m3|≤N/2

∑
|l4|>N/2

∑
|m4|≤N/2

×g∗
(
m4 − l4
L

)
1

L
F∗(v)

(
m3 − l3
L

)
1

L
F(v)

(
m2 − l2
L

)
g

(
m1 − l1
L

)
×
(
e

2πi
L

(m3−l3)yχ
ta;tb;

l4
L

;
m4
L

|e
2πi
L

(m2−l2)yχ
ta;tb;

l1
L

;
m1
L

)
×
(
δm1,m3δm2,m4δl1,l3δl2,l4 + δm1,m4δm2,m3δl1,l3δl2,l4

+δm1,m4δm2,m3δl1,l4δl2,l3 + δm1,m3δm2,m4δl1,l4δl2,l3

)
×δ⊥m1,m2

δ⊥l1,l2δ
⊥
m3,m4

δ⊥l3,l4 (4.130)

This yields four different contributions which will again be evaluated separately.
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The first term, coming from δm1,m3δm2,m4δl1,l3δl2,l4 , reads as follows:

∑
|l1|>N/2

∑
|m1|≤N/2

∑
|l2|>N/2,l2 6=l1

∑
|m2|≤N/2,m2 6=m1

g∗
(
m2 − l2
L

)
1

L
F∗(v)

(
m1 − l1
L

)

× 1

L
F(v)

(
m2 − l2
L

)
g

(
m1 − l1
L

)(
e

2πi
L

(m1−l1)yχ
ta;tb;

l2
L

;
m2
L

|e
2πi
L

(m2−l2)yχ
ta;tb;

l1
L

;
m1
L

)
≤

 ∑
|l|>N/2

∑
|m|≤N/2

∣∣∣∣ 1LF(v)

(
m− l
L

)
g∗
(
m− l
L

)∣∣∣∣ ‖χta;tb;
l
L

;m
L
‖y

2

≤

 ∑
|l1|>N/2

∑
|m1|≤N/2

∣∣∣∣ 1LF(v)

(
m1 − l1
L

)∣∣∣∣2
 ∑

|l2|>N/2

∑
|m2|≤N/2

∣∣∣∣g(m2 − l2
L

)∣∣∣∣2 ‖χta;tb;
l2
L

;
m2
L

‖2y


=

 ∑
|l1|>N/2

∑
|m1|≤N/2

∣∣∣∣ 1LF(v)

(
m1 − l1
L

)∣∣∣∣2
 ∑

|l2|>N/2

∑
|m2|≤N/2

∣∣∣∣g(m2 − l2
L

)∣∣∣∣2 η(m2 − l2
L

)
=:M1 (4.131)

The second term, coming from δm1,m4δm2,m3δl1,l3δl2,l4 , reads as follows:

∑
|l1|>N/2

∑
|m1|≤N/2

∑
|l2|>N/2,l2 6=l1

∑
|m2|≤N/2,m2 6=m1

g∗
(
m1 − l2
L

)
1

L
F∗(v)

(
m2 − l1
L

)

× 1

L
F(v)

(
m2 − l2
L

)
g

(
m1 − l1
L

)(
e

2πi
L

(m2−l1)yχ
ta;tb;

l2
L

;
m1
L

|e
2πi
L

(m2−l2)yχ
ta;tb;

l1
L

;
m1
L

)
≤‖Lg (·) η(·)‖∞‖F(v) (·) ‖∞

×

 ∑
|l1|>N/2

∑
|m1|≤N/2

∣∣∣∣ 1Lg
(
m1 − l1
L

)
η

(
m1 − l1
L

)∣∣∣∣
 ∑

|l2|>N/2,l2

∑
|m2|≤N/2,m2

∣∣∣∣ 1

L2
F(v)

(
m2 − l2
L

)∣∣∣∣


=:M2 (4.132)

The third term, coming from δm1,m4δm2,m3δl1,l4δl2,l3 , reads as follows:

∑
|l1|>N/2

∑
|m1|≤N/2

∑
|l2|>N/2,l2 6=l1

∑
|m2|≤N/2,m2 6=m1

∣∣∣∣ 1LF(v)

(
m1 − l1
L

)∣∣∣∣2 ∣∣∣∣g(m2 − l2
L

)∣∣∣∣2
×‖e

2πi
L

(m2−l2)yχ
ta;tb;

l1
L

;
m1
L

‖2y

≤

 ∑
|l1|>N/2

∑
|m1|≤N/2

∣∣∣∣ 1LF(v)

(
m1 − l1
L

)∣∣∣∣2
 ∑

|l2|>N/2

∑
|m2|≤N/2

∣∣∣∣g(m2 − l2
L

)∣∣∣∣2 ‖χta;tb;
l2
L

;
m2
L

‖2y


=M1 (4.133)
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The fourth term, coming from δm1,m3δm2,m4δl1,l4δl2,l3 , reads as follows:

∑
|l1|>N/2

∑
|m1|≤N/2

∑
|l2|>N/2,l2 6=l1

∑
|m2|≤N/2,m2 6=m1

g∗
(
m2 − l1
L

)
1

L
F∗(v)

(
m1 − l2
L

)

× 1

L
F(v)

(
m2 − l2
L

)
g

(
m1 − l1
L

)(
e

2πi
L

(m1−l2)yχ
ta;tb;

l1
L

;
m2
L

|e
2πi
L

(m2−l2)yχ
ta;tb;

l1
L

;
m1
L

)
≤‖Lg (·) η(·)‖∞‖F(v) (·) ‖∞

×

 ∑
|l1|>N/2

∑
|m1|≤N/2

∣∣∣∣ 1Lg
(
m1 − l1
L

)
η

(
m1 − l1
L

)∣∣∣∣
 ∑

|l2|>N/2,l2

∑
|m2|≤N/2,m2

∣∣∣∣ 1

L2
F(v)

(
m2 − l2
L

)∣∣∣∣


=M2 (4.134)

So, in total, the following bound is obtained:

T1 ≤
√

2M1 + 2M2 (4.135)

Second term T2: In this term, the particle ϕm1 gets lifted two times. Note that
â†(ϕl2)â(ϕl1)â†(ϕl1)â(ϕm1)|Λ〉 = â†(ϕl2)â(ϕm1)|Λ〉. This can be proven either by using the
definition of the operators or by keeping in mind that the two operators â†(ϕl1)â(ϕm1) and
â†(ϕl2)â(ϕl1) act the very same way as the corresponding operators in Fock space. This yields:

T 2
2 =

∥∥∥ ∑
|m1|≤N/2

∑
|l2|>N/2

 ∑
|l1|>N/2

1

L
F(v)

(
l1 − l2
L

)
g

(
m1 − l1
L

)
×â†(ϕl2)â(ϕm1)|e

2πi
L

(l1−l2)yχ
ta;tb;

l1
L

;
m1
L

)
⊗ |Λ〉

∥∥∥2

=
∑

|m1|≤N/2

∑
|l2|>N/2

 ∑
|l′1|>N/2

1

L
F∗(v)

(
l′1 − l2
L

)
g∗
(
m1 − l′1
L

)
×

 ∑
|l1|>N/2

1

L
F(v)

(
l1 − l2
L

)
g

(
m1 − l1
L

)(e 2πi
L

(l′1−l2)yχ
ta;tb;

l′1
L

;
m1
L

|e
2πi
L

(l1−l2)yχ
ta;tb;

l1
L

;
m1
L

)

≤
∑

|m1|≤N/2

∑
|l2|>N/2

 ∑
|l1|>N/2

∣∣∣∣ 1LF(v)

(
l1 − l2
L

)
g

(
m1 − l1
L

)∣∣∣∣ ‖χta;tb;
l1
L

;
m1
L

‖y

2

=
∑

|m1|≤N/2

∑
|l2|>N/2

 ∑
|l1|>N/2

∣∣∣∣ 1LF(v)

(
l1 − l2
L

)
g

(
m1 − l1
L

)∣∣∣∣ η(m1 − l1
L

)2

=:M3 (4.136)

So

T2 ≤
√
M3 (4.137)
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Third term T3: In this term, another particle occupies the existing hole ϕm1 . Note that
â†(ϕm1)â(ϕm2)â†(ϕl1)â(ϕm1)|Λ〉 = −â†(ϕl1)â(ϕm2)|Λ〉 holds, so we obtain:

T 2
3 =

∥∥∥ ∑
|l1|>N/2

∑
|m2|≤N/2

 ∑
|m1|≤N/2

1

L
F(v)

(
m2 −m1

L

)
g

(
m1 − l1
L

)
×â†(ϕl1)â(ϕm2)|e

2πi
L

(m2−m1)yχ
ta;tb;

l1
L

;
m1
L

)
⊗ |Λ〉

∥∥∥2

=
∑

|m2|≤N/2

∑
|l1|>N/2

 ∑
|m′1|≤N/2

1

L
F∗(v)

(
m2 −m′1

L

)
g∗
(
m′1 − l1
L

)
×

 ∑
|m1|≤N/2

1

L
F(v)

(
m2 −m1

L

)
g

(
m1 − l1
L

)(e 2πi
L

(m2−m′1)yχ
ta;tb;

l1
L

;
m′1
L

|e
2πi
L

(m2−m1)yχ
ta;tb;

l1
L

;
m1
L

)

≤
∑

|m2|≤N/2

∑
|l1|>N/2

 ∑
|m1|≤N/2

∣∣∣∣ 1LF(v)

(
m2 −m1

L

)
g

(
m1 − l1
L

)∣∣∣∣ ‖χta;tb;
l1
L

;
m1
L

‖y

2

=
∑

|m2|≤N/2

∑
|l1|>N/2

 ∑
|m1|≤N/2

∣∣∣∣ 1LF(v)

(
m2 −m1

L

)
g

(
m1 − l1
L

)∣∣∣∣ η(m1 − l1
L

)2

=:M4 (4.138)

Therefore,

T3 ≤
√
M4 (4.139)

Fourth term T4: In this term, the particle ϕm1 visits the upper spectrum but then
decides to come back from where it started. Note that â†(ϕm1)â(ϕl1)â†(ϕl1)â(ϕm1)|Λ〉 = |Λ〉
holds. Hence:

T 2
4 =

∥∥∥ ∑
|l|>N/2

∑
|m|≤N/2

1

L
F(v)

(
l −m
L

)
g

(
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L

)
×â†(ϕl)â(ϕm)â†(ϕl)â(ϕm)|e

2πi
L

(m−l)yχta;tb;
l
L
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L

)
⊗ |Λ〉

∥∥∥2

=
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|m1|≤N/2

1

L
F∗(v)

(
l1 −m1

L

)
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(
m1 − l1
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)

×
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1

L
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L

)
g

(
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L
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e

2πi
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L

;
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L

)
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2πi
L
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ta;tb;
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L

;
m2
L

)

≤
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|l|>N/2

∑
|m|≤N/2

∣∣∣∣ 1LF(v)

(
l −m
L

)
g

(
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L
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L

;m
L
‖y

2

≤
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(
m1 − l1
L
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 ∑
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∑
|m2|≤N/2

∣∣∣∣g(m2 − l2
L

)∣∣∣∣2 ‖χta;tb;
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L

;
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L

‖2y


=M1 (4.140)
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This gives the bound:

T4 ≤
√
M1 (4.141)

Plugging all estimates together shows the lemma.

This calculation was the most complicated one. Now, we will analyse the functions Mi

and show them to be bounded for ṽ and to decay for w.

Lemma 4.7.6. Let Mi

(
η; 1

LF(ṽ); v;N ;L
)
i = 1, 2, 3, 4 be defined as above.

Then

sup
ρ

(
lim
TD

Mi

(
η;

1

L
F(ṽ); v;N ;L

))
<∞ (4.142)

Proof.
First note that we can replace ṽ by v, that is∣∣∣∣ 1LF(ṽ)

(
m− l
L

)∣∣∣∣ ≤ ∣∣∣∣ 1LF(v)

(
m− l
L

)∣∣∣∣ (4.143)

We will bound each function separately, using the Paley-Wiener theorem again.

Bound for M1:

lim
TD

M1 ≤

(∫
|l1|>ρ/2

dl

∫
|m1|≤ρ/2

dm |F(v) (m1 − l1)|2
)

︸ ︷︷ ︸
=lim

TD
VarvN+1(0)

×

(∫
|l2|>ρ/2

dl

∫
|m2|≤ρ/2

dm |F(v) (m2 − l2)|2 η(m2 − l2)2

)
(4.144)

This term is finite for all ρ by Lemma 4.7.2

Bound for M2:

lim
TD

M2 ≤‖F(v) (·) η(·)‖∞‖F(v) (·) ‖∞

(∫
|l1|>ρ/2

dl

∫
|m1|≤ρ/2

dm |F(v) (m1 − l1) η (m1 − l1)|

)

×

(∫
|l2|>ρ/2

dl

∫
|m2|≤ρ/2

dm |F(v) (m2 − l2)|

)
(4.145)

Using η(k) ≤ 4π‖p̂yχ0‖y|k|+ 4π2k2, we can bound

‖F(v) (·) η(·)‖∞ ≤ sup
k∈R
|F(v)(k)(4π‖p̂yχ0‖y|k|+ 4π2k2)|

≤2‖p̂yχ0‖y
∫
R
dx

∣∣∣∣dv(x)

dx

∣∣∣∣+

∫
R
dx

∣∣∣∣d2v(x)

dx2

∣∣∣∣ <∞ (4.146)

By Lemma 4.7.2 the two integrals are finite for all ρ.
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Bound for M3:

lim
TD

M3 ≤
∫
|m|≤ρ/2

dm

∫
|l|>ρ/2

dl

(∫
|l′|>ρ/2

dl′
∣∣F(v)

(
l′ − l

)
F(v)

(
m− l′

)
η(m− l′)

∣∣)2

≤
∫
|m|≤ρ/2

dm

∫
|l|>ρ/2

dl

(∫
R
dx
∣∣F(v) (x− [m− l])

∣∣∣∣F(v) (x) η(x)
∣∣)2

=

∫
|m|≤ρ/2

dm

∫
|l|>ρ/2

dl
[(∣∣F(v)

∣∣ ∗ ∣∣F(v)η
∣∣) (m− l)

]2
=2

∫ ρ/2

0
dm

∫ ∞
ρ/2

dl
[(∣∣F(v)

∣∣ ∗ ∣∣F(v)η
∣∣) (m− l)

]2
+2

∫ 0

−ρ/2
dm

∫ ∞
ρ/2

dl
[(∣∣F(v)

∣∣ ∗ ∣∣F(v)η
∣∣) (m− l)

]2
(4.147)

These two terms are bounded since the convolution has again rapid decrease. To see this,
suppose first that η = 1. Then, the first term can be estimated as follows:∫ ρ/2

0
dm

∫ ∞
ρ/2

dl
[(∣∣F(v)

∣∣ ∗ ∣∣F(v)
∣∣) (m− l)

]2
=

∫ ρ/2

0
dm

∫ ∞
m

dl
[(∣∣F(v)

∣∣ ∗ ∣∣F(v)
∣∣) (l)

]2
=

∫ ρ/2

0
dm

(
d

dm
m

)∫ ∞
m

dl
[(∣∣F(v)

∣∣ ∗ ∣∣F(v)
∣∣) (l)

]2
=ρ/2

∫ ∞
ρ/2

dl
[(∣∣F(v)

∣∣ ∗ ∣∣F(v)
∣∣) (l)

]2
+

∫ ρ/2

0
dmm

[(∣∣F(v)
∣∣ ∗ ∣∣F(v)

∣∣) (m)
]2

(4.148)

We treat each contribution separately. For the first term we use the estimate∫ ∞
ρ/2

dl
[(∣∣F(v)

∣∣ ∗ ∣∣F(v)
∣∣) (l)

]2
≤

(
sup
l>ρ/2

(∣∣F(v)
∣∣ ∗ ∣∣F(v)

∣∣) (l)

)∫
R
dl
(∣∣F(v)

∣∣ ∗ ∣∣F(v)
∣∣) (l)︸ ︷︷ ︸

<∞

(4.149)
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It remains to bound

sup
l>ρ/2

(∣∣F(v)
∣∣ ∗ ∣∣F(v)

∣∣) (l)

≤ sup
l>ρ/2

(∫
R
dx
∣∣F(v)

∣∣(x− l/2)
∣∣F(v)

∣∣(x+ l/2)

)
≤ sup
l>ρ/2

(∫
R
dx

D2p

(1 + |x− l/2|)2p

D2p

(1 + |x+ l/2|)2p

)
≤ sup
l>ρ/2

(
sup
x′∈R

[
1

(1 + |x′ − l/2|)p
1

(1 + |x′ + l/2|)p

] ∫
R
dx

D2p

(1 + |x− l/2|)p
D2p

(1 + |x+ l/2|)p

)
≤C sup

l>ρ/2
sup
x′∈R

[
1

(1 + |x′ − l/2|)p
1

(1 + |x′ + l/2|)p

]
∼ 1

ρp
(4.150)

Since this bound holds for any p, the first term vanishes as ρ→∞.
The second term in equation (4.148) is also bounded since its kernel is integrable on R.

Now, let η(k) = (4π‖p̂yχ0‖y|k|+ 4π2k2). Note that

F(v) (k)
(
4π‖p̂yχ0‖y|k|+ 4π2k2

)
(4.151)

is again decreasing rapidly in k. Hence, we can repeat the above estimate to conclude
boundedness. The same line of argumentation, which we will not present here, works also for
the contribution

∫ 0
−ρ/2 dm

∫∞
ρ/2 dl

[(∣∣F(v)
∣∣ ∗ ∣∣F(v)η

∣∣) (m− l)
]2

.

Bound for M4: lim
TD

M4 can be bounded exactly the same way:

lim
TD

M4 =

∫
|m|≤ρ/2

dm

∫
|l|>ρ/2

dl

(∫
|m′|<ρ/2

dm′
∣∣F(v)

(
m−m′

)
F(v)

(
m′ − l

)
η(m′ − l)

∣∣)2

≤
∫
|m|≤ρ/2

dm

∫
|l|>ρ/2

dl

(∫
R
dx
∣∣F(v) (x− [m− l])

∣∣∣∣F(v) (x)
∣∣η(x)

)2

=

∫
|m|≤ρ/2

dm

∫
|l|>ρ/2

dl
[(∣∣F(v)

∣∣ ∗ ∣∣F(v)η
∣∣) (m− l)

]2
(4.152)

Finally, we treat the contribution arising from w. Since we could not apply the stationary
phase method, we need to use the smallness of the support of w in order to get a factor of
ρ−1/2. This will be done in the next

Lemma 4.7.7. Let Mi(η; 1
LF(w); v;N ;L) i = 1, 2, 3, 4 be defined as above.

Then

lim
TD

Mi

(
η;

1

L
F(w); v;N ;L

)
.

1

ρ
(4.153)

holds.
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Proof.
We will bound every contribution using the smallness of the support of 1

LF(w)
(
m−l
L

)
. Note,

for the estimates considered here, we need only consider the case

η(k) = 1 (4.154)

Bound for M1: In analogy to the estimate provided in equation (4.84), it is possible to
bound lim

TD
M1 as follows:

lim
TD

M1 ≤ lim
TD

VarvN+1(0)

(∫
|l|>ρ/2

dl

∫
|m|≤ρ/2

dm |F(w) (m− l)|2 η(m− l)2

)

≤ lim
TD

VarvN+1(0)
2‖v‖21
ρ

(4.155)

Bound for M2: Using once more ‖F(w)‖∞‖F(v)‖∞ ≤ ‖v‖21, the following estimate is
true:

lim
TD

M2 ≤‖F(w) (·) ‖∞‖F(v) (·) ‖∞

(∫
|l1|>ρ/2

dl

∫
|m1|≤ρ/2

dm |F(w) (m1 − l1)|

)

×

(∫
|l2|>ρ/2

dl

∫
|m2|≤ρ/2

dm |F(v) (m2 − l2)|

)

≤

(∫
|l2|>ρ/2

dl

∫
|m2|≤ρ/2

dm |F(v) (m2 − l2)|

)
︸ ︷︷ ︸

<∞

2‖v‖31
ρ

(4.156)

Bound for M3: To this end we must estimate

lim
TD

M3 =

∫
|m|≤ρ/2

dm

∫
|l|>ρ/2

dl

(∫
|l′|>ρ/2

dl′
∣∣F(v)

(
l′ − l

) ∣∣∣∣F(w)
(
m− l′

) ∣∣)2

(4.157)

Using

supp(F(w)) ∈
[
− 1
√
ρ

;
1
√
ρ

]
(4.158)

we conclude:

|m| ∈
[
ρ/2− 1

√
ρ
, ρ/2

]
(4.159)

Since also |l′| > ρ holds, we can furthermore restrict

|l′| ∈
[
ρ/2, ρ/2 +

1
√
ρ

]
(4.160)



4.7. THE PROOF OF THE VALIDITY OF THE MEAN-FIELD PICTURE 59

Hence: ∫
|m|≤ρ/2

dm

∫
|l|>ρ/2

dl

(∫
|l′|>ρ/2

dl′
∣∣F(v)

(
l′ − l

) ∣∣∣∣F(w)
(
m− l′

) ∣∣)2

≤2
‖v‖21
ρ

∫
|l|>ρ/2

dl

 sup
|l′|∈[ρ/2,ρ/2+ 1√

ρ
]

∣∣F(v)
(
l′ − l

) ∣∣2

≤4
‖v‖21
ρ

∫ ∞
ρ/2

dl sup
l′∈[ρ/2,ρ/2+ 1√

ρ
]

(
Dp

(1 + |l′ − l|)p

)2

︸ ︷︷ ︸
<∞ ∀ρ

(4.161)

Bound for M4: This term can be bounded in analogy to M3.

lim
TD

M4 =

∫
|m|≤ρ/2

dm

∫
|l|>ρ/2

dl

(∫
|m′|<ρ/2

dm′
∣∣F(v)

(
m−m′

)
F(w)

(
m′ − l

) ∣∣)2

(4.162)

Using

|m′| ∈
[
ρ/2− 1

√
ρ
, ρ/2

]
∧ |l| ∈

[
ρ/2, ρ/2 +

1
√
ρ

]
(4.163)

we obtain: ∫
|m|≤ρ/2

dm

∫
|l|>ρ/2

dl

(∫
|m′|<ρ/2

dm′
∣∣F(v)

(
m−m′

)
F(w)

(
m′ − l

) ∣∣)2

≤2
‖v‖21
ρ

∫
|m|<ρ/2

dm

 sup
|m′|∈[ρ/2− 1√

ρ
,ρ/2]

∣∣F(v)
(
m−m′

) ∣∣2

≤4
‖v‖21
ρ

∫ ρ/2

0
dm sup

m′∈[ρ/2− 1√
ρ
,ρ/2]

(
Dp

(1 + |m−m′|)p

)2

︸ ︷︷ ︸
<∞ ∀ρ

(4.164)
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4.8 Corollaries to the proof

Until now, we have chosen a very simple Hamiltonian in order to focus on the underlying
structure of the proof. One may ask if it is possible to generalise this procedure to more
complicated systems. There are two possible generalisations:
We can add some external potential which acts on the tracer particle and/or on the sea,
or we may consider the mutual interaction between the sea particles. While the first op-
tion is relatively simple to include, the latter requires much more effort. As stated before,
mutual interactions between fermions were for example treated in [Benedikter et al., 2013,
Bardos et al., 2002, Elgart et al., 2004] and required the scaling of the interaction.
Therefore, we want to focus only on the first option, that is, we want to include some external
potential. Physically, this system may describe the composed system coupled to some electric
field and naturally arises in the study of semiconductor physics, where one measures the
conductivity of the carrier electrons. This potential may also arise from the nuclei4 and
consequently would yield to the band structure of solids.
We first include an external potential which only acts upon the tracer particle.

Lemma 4.8.1. Let

H =

N∑
k=0

(−∆xk)−∆y +

N∑
k=0

v(xk − y) + u(y) (4.165)

where u ∈ C∞(T) ∩ C∞0 (R) and let

Hf =

N∑
k=0

(−∆xk)−∆y + u(y) + ρF(v) (0) (4.166)

Then

lim
TD

(
1− 〈〈ψt|ψft 〉〉

)
≤ Bt√

ρ
(4.167)

holds, where Bt only depends on the potential v, on |χ0

)
and grows at most like t2.

Proof.
We can repeat the proof from above with minor modifications. Explicitly, using Stone’s
theorem, equation (4.87) now reads:

i
d

dt′

(
Uy−t′ e

2πi(m−l)yUyt′ |χ0

))
= (∆y − u(y))

(
Uy−t′ e

2πi(m−l)yUyt′ |χ0

))
+ Uy−t′ e

2πi(m−l)y (−∆y + u(y))Uyt′ |χ0

)
=4π2(m− l)2Uy−t′ e

2πi(m−l)yUyt′ |χ0

)
+ 4π(m− l)Uy−t′ e

2πi(m−l)yUyt′(−i∂y)|χ0

)
−u(y)Uy−t′ e

2πi(m−l)yUyt′ |χ0

)
+ Uy−t′ e

2πi(m−l)yu(y)Uyt′ |χ0

)
(4.168)

which can be bounded in norm by:∥∥∥∥i
d

dt′

(
Uy−t′ e

2πi(m−l)yUyt′χ0

)∥∥∥∥
y

≤4π|m− l|‖pyχ0‖y + 4π2(m− l)2 + 2‖u‖op (4.169)

Using this new estimate, the proof from above can be applied.

4Note however that we only consider non-singular, smooth potentials with compact support.
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We can also add some external potential which acts upon the sea.

Lemma 4.8.2. Let

H =

N∑
k=0

(−∆xk)−∆y +

N∑
k=0

(v(xk − y) +A(xk)) + u(y) (4.170)

where A ∈ C∞(T) ∩ C∞0 (R) and let

Hf =
N∑
k=0

(−∆xk)−∆y + u(y) + ρ (F(v) (0) + F(A) (0)) (4.171)

Then

lim
TD

(
1− 〈〈ψt|ψft 〉〉

)
≤ Bt√

ρ
(4.172)

where Bt only depends on the potential v, on |χ0

)
and grows at most like t2.

Proof.
Essentially, this lemma can be proven using the techniques of our main proof. Using Cook’s
lemma, this time the perturbation expansion reads:

〈〈ψt|Q|ψt〉〉 =〈〈ψt|Q(Ut − Uft )|ψ0〉〉

=− i

∫ t

0
dt′〈〈ψt|QUt−t′

(
W (~x; y)−W f

)
Uft′ |ψ0〉〉

=− i

∫ t

0
dt′〈〈U−tQψt|U−t′

(
W (~x; y)−W f

)
Uft′ |ψ0〉〉

=− i〈〈U−tQψt|
∫ t

0
dt′(U−t′ − Uf−t′)

(
W (~x; y)−W f

)
Uft′ |ψ0〉〉

− i〈〈U−tQψt|
∫ t

0
dt′Uf−t′

(
W (~x; y)−W f

)
Uft′ |ψ0〉〉 (4.173)

where now

W (~x; y) =
N∑
k=0

(v(xk − y) +A(xk)) (4.174)

W f =ρ (F(v) (0) + F(A) (0)) (4.175)

We can split this sum up and estimate each contribution separately. While this time we will
get more terms, the idea of the proof remains unchanged.
Explicitly, the first contribution reads:∣∣∣∣〈〈U−tQψt|∫ t

0
dt′Uf−t′

(
W (~x; y)−W f

)
Uft′ |ψ0〉〉

∣∣∣∣
≤

∣∣∣∣∣〈〈U−tQψt|
∫ t

0
dt′Uf−t′

(
N∑
k=0

A(xk)−F(A) (0)

)
Uft′ |ψ0〉〉

∣∣∣∣∣
+

∣∣∣∣∣〈〈U−tQψt|
∫ t

0
dt′Uf−t′

(
N∑
k=0

v(xk − y)−F(v) (0)

)
Uft′ |ψ0〉〉

∣∣∣∣∣ (4.176)



62 CHAPTER 4. THE ONE-DIMENSIONAL SYSTEM

We can repeat the estimate given in section 4.7.1 for each term separately.
The remainder can be split up as follows:∣∣∣∣〈〈U−tQψt|∫ t

0
dt′(U−t′ − Uf−t′)

(
W (~x; y)−W f

)
Uft′ |ψ0〉〉

∣∣∣∣
≤

∣∣∣∣∣〈〈U−tQψt|
∫ t

0
dt′(U−t′ − Uf−t′)

(
N∑
k=0

v(xk − y)−F(v) (0)

)
Uft′ |ψ0〉〉

∣∣∣∣∣
+

∣∣∣∣∣〈〈U−tQψt|
∫ t

0
dt′(U−t′ − Uf−t′)

(
N∑
k=0

A(xk)−F(A) (0)

)
Uft′ |ψ0〉〉

∣∣∣∣∣ (4.177)

Using Cook’s lemma, we can rewrite U−t′ − Uf−t′ , yielding, after performing the triangle
inequality, four terms. Each one can be treated the same way as in section 4.7.2. We will not
perform this analysis in detail, but invite the reader to convince himself of the validity of the
lemma.

Note, in this lemma, for potentials with support much smaller than L, the external fields
only acts upon a very small part of the sea. Me may think of this local interaction to be small
in the sense that it does not perturb the sea much. This lemma does not hold for trapping
potentials, since then the support of the potential would be of same order as the size of the
fermionic system, which is excluded by taking the thermodynamic limit.
We can also improve the bound given by restricting the class of admissible potentials.

Lemma 4.8.3 (Potential with gap). Let v ∈ C∞(T) ∩ C∞0 (R) with F(v)(k) = 0 for |k| ≤
C = O(1). Then, for a system without an external potential 5, the following holds:

lim
TD

(
1− 〈〈ψt|ψft 〉〉

)
≤ Bt

ρ
(4.178)

Proof.
We refer to this potential as a potential with spectral gap since it mimics a spectral gap around
the Fermi edge. If our system is initially in the ground state, then the sea particles sitting
at the Fermi surface can only jump to excited states with momenta |l| ≈ ρ/2 + C 6 . While
there does not exist a real gap in the spectrum of the operator, it nevertheless mimics the
band structure of a semiconductor. The lemma states that most of the deviation from free
evolution comes from the fluctuations directly around the gap where the particles can change
their momentum infinitesimally. When we forbid these transitions, the particles sitting at the
Fermi edge need to overcome the gap of order C.
The proof of this lemma is straightforward. After the thermodynamic limit, we can replace
the bound given in (4.85) by:

l2 −m2 =|l|2 − |m|2

=(|l| − |m|)(|l|+ |m|)
≥Cρ/2 (4.179)

Note furthermore that the potential w we used in the estimate of the remainder is equal to
zero.

5This will be assumed for simplicity. Of course, if also an external potential with gap is present, then the
estimate will be also true.

6Note that |l| ≈ ρ/2 + C holds after taking the thermodynamic limit.
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We would like to remark that it is possible to consider much more general initial states for
the sea. As long as the number of excited states is of order o(L), the estimates given above
can be applied. Moreover, the idea one might come up with that Dirac’s idea works because
of an uniform momentum distribution is not correct. That is, the claim that for every particle
with momentum p there exists another particle with momentum −p and therefore the net
momentum transfer between the tracer particle and the sea cancels out, is wrong. To construct
a counterexample, simply take the (unphysical) initial state where 3/4 of all particles move to
the left and 1/4 of the particles move to the right 7. Still, for such a system, our proof applies.

7Of course, using the plane waves, such that the mean field is constant again.
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4.9 The ultra-relativistic, one-dimensional system

In this section we want to investigate the following one-dimensional system whose time
evolution is generated by the Hamiltonian

Hrel =

N∑
k=0

(−i∂xk)− i∂y +

N∑
k=0

v(xk − y) (4.180)

The question which arises naturally is if the above discussion is also true for this model.
Hrel may be thought to describe ultra relativistic or massless electrons. We choose this
Hamiltonian because it is the simplest one using the linear energy-momentum relation of
relativistic electrons 8, given by:

E(m) =
2π

L
m , m ∈ Z (4.181)

As we have already mentioned, the bound (4.85) uses the nonlinear energy-momentum relation.
It stems from the fact that

1

E(ρ/2 + C)− E(ρ/2)
∼ 1

ρ
(4.182)

holds for the nonrelatvistic energy-momentum relation E(m) ∼ m2. Since

1

E(ρ/2 + C)− E(ρ/2)
= O(1) (4.183)

is true for E(m) ∼ m, we cannot apply the methods from before.
We will investigate this problem in first-order perturbation theory. If E1 does not vanish, the
possibility to prove the mean-field picture by means of a perturbation expansion fails.
Explicitly, (4.82) now reads:

lim
TD

E2
1 =

∫
m<ρ/2

dm

∫
|l|>ρ/2

dl |F(v) (m− l)|2
∥∥∥∥∫ t

0
dt′e2πi(l−m)t′Uy−t′ e

2πi(m−l)yUyt′χ0

∥∥∥∥2

y

(4.184)

where

Uyt′ = e−it′(−i∂y) = e−t
′∂y (4.185)

is simply the shift operator. We replaced the nonrelativistic energy-momentum relation 4π2l2

(which holds after taking the thermodynamic limit) by its relativistic counterpart 2πl.
The norm can be calculated explicitly, using the following identity:

e2πi(m−l)yUyt′χ0(y) = e2πi(m−l)yχ0(y − t′) (4.186)

By inserting 1 = F−1F , we obtain:(
Uy−t′ e

2πi(m−l)yUyt′χ0

)
(y) = F−1

(
Fet′∂yF−1

)
F
(
e2πi(m−l)·χ0(· − t′)

)
(y) (4.187)

8The one-dimensional Dirac Hamiltonian H = −iσ1∂x + σ3m+ v(x)1 would also take the spin into account.
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Using (
Fet′∂yF−1

)
= e−2πikt′ (4.188)

and

F
(
e2πi(m−l)·χ0(· − t′)

)
(k) = e2πikt′ e2πi(m−l)t′F (χ0) (k + [m− l]) (4.189)

yields to: (
Uy−t′ e

2πi(m−l)yUyt′χ0

)
(y) =e2πi(m−l)t′

∫
R
dk e−2πikyF (χ0) (k + [m− l])

=e2πi(m−l)ye2πi(m−l)t′χ0(y) (4.190)

This implies that, up to a phase, the wavefunction remains the same.
The norm is therefore given by:∥∥∥∥∫ t

0
dt′e2πi(l−m)t′Uy−t′ e

2πi(m−l)yUyt′χ0

∥∥∥∥2

y

=

∥∥∥∥∫ t

0
dt′e2πi(l−m)t′e2πi(m−l)t′e2πi(m−l)·χ0(·)

∥∥∥∥2

y

=t2 (4.191)

By this equality we obtain the following, somewhat disappointing result:

lim
TD

E2
1 =

∫
m<ρ/2

dm

∫
|l|>ρ/2

dl |F(v) (m− l)|2
∥∥∥∥∫ t

0
dt′e2πi(m−l)t′Uy−t′ e

2πi(m−l)yUyt′χ0

∥∥∥∥2

y

=t2 lim
TD

VarvN+1(0) (4.192)

This surprising result means that perturbation theory works for the nonrelativistic system,
while for the Hamiltonian discussed here the method fails. This was even true if we would
only consider potentials fulfilling the gap condition. We want to make one side remark at this
point. The slightly modified Hamiltonian

Hrel′ =

N∑
k=0

(−i∂xk) + i∂y +

N∑
k=0

v(xk − y) (4.193)

can be solved exactly. As discussed by [Mattis and Lieb, 1965], the wavefunction

e
i
2

∑N
k=0

∫ xk
−L/2 v(x−y)dx

ψ(x0, x1, ..., xN ; y; t) (4.194)

solves the corresponding Schrödinger equation for Hrel′ if ψ(x0, x1, ..., xN ; y; t) satisfies

i∂tψ(x0, x1, ..., xN ; y; t) =

(
N∑
k=0

(−i∂xk) + i∂y

)
ψ(x0, x1, ..., xN ; y; t) (4.195)

which is just the free Schrödinger equation. We chose this example since it illustrates that a
somewhat different procedure beyond perturbation theory can be a valuable tool. As outlined
in the article mentioned above, this model can be seen as a simple example of an exactly
solvable many-fermion-system. The approach is called ”bosonisation-method”. While this
method is very powerful, it works only for very specific Hamiltonians and cannot be generalised
to arbitrary systems.





Chapter 5

The Three-dimensional System

5.1 Notation

First, we would like to list the notational changes in comparison to the one-dimensional system.
For this chapter the number of particles will be different. Remember that we worked with
N + 1 particles in the one-dimensional setting in order to keep the notation simple. In three
dimensions, we will have either N particles (without spin) or 2N particles (with spin).

p: Vectors in three dimensions will always be denoted by a boldface letter.
T3: We will work from now on on the three-dimensional torus

T3 = [−L/2;L/2]3. The volume of the torus will be denoted by V .
|ϕm〉: The one particle wave functions are now given by:

|ϕp〉 =
1√
V
e

2πi
L

p·x

p =(p1, p2, p3) ∈ Z3

For the Dirac equation, these states will be different. We will list them explicitly in the
corresponding section.

ρ: The particle density ρ is defined as

ρ :=

{
N/V for spinless electrons

2N/V for electrons with spin

pm: As in one dimension, considering the system on a torus, the possible momenta are
quantised. In order to keep the notation handy, we will employ the following definition:
We will label all possible momenta using the countability of Z3. Starting from m = 1,
the momenta will be labelled in increasing order. This means the following:

m1 < m2 ⇒ |pm1
| ≤ |pm2

|

Thus, we first label the momenta closest to the origin an then go outwards. We will
furthermore comment on this definition below.

lim
TD

: Again we want to simplify our calculations by taking the thermodynamic limit. In order

to coincide with the definitions in the literature, the spacing of an elementary cube will

67
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be given by (2π)3

V . For example, we may write

lim
TD

N∑
m=1

1

V
e

2πi
L

pm·(x−y) =

∫
|p|<kF

d3p
1

(2π)3
eip·(x−y)

if the pm lie inside the Fermi sphere. kF will be determined in the corresponding section
and will be a function of ρ.

F(v): The Fourier transform of the potential v ∈ C(T3) is now given by:

F(v) (p) :=
1

(2π)3

∫
R3

d3x v(x)eip·x

This definition is slightly different from the one we used before.
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5.2 The nonrelativistic system

First, we will consider the nonrelativistic system. In contrast to the one-dimensional sys-
tem, there are two slight differences: All integrals are now defined on three-dimensional
space and, in addition, the ground state is obtained filling up all energies and momenta
uniformly. This procedure is well known and yields to the Fermi sphere (see for example
[Maruhn and Suraud, 2010] for a detailed discussion). Explicitly, we will label the momenta
of the occupied states from p1 till pN , such that in the thermodynamic limit all occupied
states have momenta |p| ≤ kF , where kF denotes the Fermi momentum. In order to keep
the notation simple, we will also label all unoccupied momenta, starting from pN+1. In the
thermodynamic limit these states lie outside the Fermi sphere.
In this section, we will only consider spinless fermions. Considering spin, merely some numer-
ical factors would change. In the next section, we will finally consider the Dirac equation.
There, the scalar product of the spinors will yield additional terms, of which we need to keep
track of. This chapter will focus on the fluctuations of the potential. While this quantity alone
is not enough to conclude the mean-field picture, it was of central importance in the proof
before. In the next chapter we will comment on the possibility to repeat the methods used for
the one-dimensional system.
First of all, we will determine the Fermi momentum of our sphere. As already mentioned, our
initial state describes the ground state of N non-interacting electrons 1.
The corresponding N particle state is given by:

|Λ〉 = |ϕp1
∧ ... ∧ ϕpN 〉 (5.1)

The pi lie approximately in a sphere with radius kF which is related to ρ as follows:
The one particle reduced density matrix

γ(1) :=
∑
m≤N

|ϕpm〉〈ϕpm | (5.2)

of our system, given in position representation

γ(1)(x,y) =

N∑
m=1

1

V
e

2πi
L

pm·(x−y) (5.3)

reads in the thermodynamic limit:

lim
TD

γ(1)(x,y) =

∫
|p|<kF

d3p
1

(2π)3
eip·(x−y) (5.4)

The Fermi momentum kF can be determined as follows: Note, by (5.3), γ(1)(x,x) = N
L = ρ

holds. Thus,

ρ = lim
TD

γ(1)(x,x) =

∫
|p|<kF

d3p
1

(2π)3

=k3
F

1

6π2

⇒ kf =
(
6π2ρ

)1/3
(5.5)

1Due to the fact that more than one state has the same absolute value of p, there may exist more than one
ground state. However, any of these will yield the same result.
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Note in passing that, repeating this derivation for d dimensional systems, the Fermi momentum
is always proportional to ρ

1
d .

Using formula (4.30) and our definition of how to label the momenta, the variance reads:

VarvN (0) =

N∑
m=1

∞∑
l=N+1

∣∣〈ϕpl |v(x)|ϕpm〉
∣∣2 (5.6)

We will first consider smooth potentials for which a simple estimate, using the Paley-Wiener
theorem, yields the asymptotic behaviour in ρ. Afterwards, we will consider the particle
fluctuations which correspond to the case v(x) = 1B(x). As in one dimension, the Fourier
transform of the indicator function does not decrease fast enough to yield the same result as
for smooth potentials. Our result will be corrected by the factor ln(ρ), which, however, does
not change the qualitative behaviour:
Also in three dimensions, density fluctuations are suppressed.
To this end remember that for bosonic systems the variance always scales like ρ ∼ k3

F .
Let us first take the thermodynamic limit:

lim
TD

VarvN (0) =

∫
|p1|≤kF

d3p1

∫
|p2|>kF

d3p2 |F(v) (p2 − p1)|2 (5.7)

A heuristic argument gives the correct estimate of (5.7). To this end consider first the points
p1, p2 where |p1 − p2| = O(1) holds. For these points, the Fourier transform F(v) (p2 − p1)
is of order one. Hence, near the Fermi surface, the function

g(p1) :=

∫
|p2|>kF

d3p2 |F(v) (p2 − p1)|2 (5.8)

is of order one for all |p1| ≈ kF . Integrating over a small sphere with radius kF and width
≈ O(1) yields:

lim
TD

VarvN (0) & (kF )2 ∼ ρ2/3 (5.9)

Therefore, the variance grows at least as ρ2/3. On the other hand,
|F(v) (p2 − p1)|2 = O (|p2 − p1|−∞) holds, so points far apart will not contribute to the
asymptotics. This can be shown rigorously by the following

Theorem 5.2.1. Let v ∈ C∞(T3) ∩ C∞0 (R3). Then

lim
TD

VarvN (0) ∼ ρ2/3 (5.10)

Proof.
We will only estimate the variance from above. As we have already argued, the variance
grows at least as ρ2/3 since all points p1 near the Fermi surface, whose area scales like ρ2/3,
contribute to the result.
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We will use the Paley-Wiener theorem to estimate g(p1):

lim
TD

VarvN (0) ≤
∫
|p1|≤kF

d3p1

∫
|p2|>kF

d3p2

∣∣∣∣ Dp

(1 + |p2 − p1|)p

∣∣∣∣2
≤
∫
|p1|≤kF

d3p1

∫
|p2|>kF

d3p2

∣∣∣∣ Dp

(1 + ||p2| − |p1||)p

∣∣∣∣2
=

∫
|p1|≤kF

d3p1

∫
|p2|>kF−|p1|

d3p2

∣∣∣∣ Dp

(1 + |p2|)p

∣∣∣∣2
≤
∫
|p1|≤kF

d3p1

∫
|p2|>kF−|p1|

d3p2

D2
p

(1 + |p2|2)p
(5.11)

Using spherical coordinates for p2, we can write:

lim
TD

VarvN (0) ≤
∫
|p1|≤kF

d3p1

∫ ∞
kF−|p1|

dr r2
4πD2

p

(1 + r2)p
(5.12)

In principle, this integral could be evaluated explicitly for any given p, at the price that the
antiderivative reads lengthy. We will proceed differently by splitting up the domain as follows:

lim
TD

VarvN (0) ≤
∫
kF−C≤|p1|≤kF

d3p1

∫ ∞
kF−|p1|

dr r2
4πD2

p

(1 + r2)p︸ ︷︷ ︸
=:VarI

+

∫
|p1|<kFR−C

d3p1

∫ ∞
kF−|p1|

dr r2
4πD2

p

(1 + r2)p︸ ︷︷ ︸
=:VarII

(5.13)

First, consider VarI:

VarI =

∫
kF−C≤|p1|≤kF

d3p1

∫ ∞
kF−|p1|

dr r2
4πD2

p

(1 + r2)p

≤
∫
kF−C≤|p1|≤kF

d3p1

∫ ∞
0

dr r2
4πD2

p

(1 + r2)p

∼ρ2/3 (5.14)

In the last step we used that, for p ≥ 2,∫ ∞
0

dr r2
D2
p

(1 + r2)p
<∞ (5.15)

holds. Using p1 ∼ kF , we further remark that
∫∞
kF−|p1|

dr r2 D2
p

(1+r2)p
≈
∫∞

0 dr r2 D2
p

(1+r2)p
holds.

That is, the actual value of the integral (before the estimate) is of order one. Henceforth, the
bound just given describes the asymptotic behaviour correctly. This is also a consequence
of our discussion made above; that is, fluctuations around the Fermi surface are always
proportional to ρ2/3.
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For VarII, we can estimate the contribution as follows:

VarII =

∫
|p1|≤kF−C

d3p1

∫ ∞
kF−|p1|

dr r2
4πD2

p

(1 + r2)p

≤
∫
|p1|≤kF−C

d3p1

∫ ∞
kF−|p1|

dr r2
4πD2

p

r2p

=
16π2D2

p

(2p− 3)

∫ kF−C

0
dx x2 1

(kF − x)2p−3

=
16π2D2

p

(2p− 3)

∫ kF

C
dx (x− kF )2 1

x2p−3

=
16π2D2

p

(2p− 3)

∫ kF

C
dx (x5−2p − 2kFx

4−2p + k2
Fx

3−2p)

∼(kF )2 ∼ ρ2/3 (5.16)

which holds for all p > 2. The case p = 2 will be of importance for the indicator function and
is not covered by this estimate. In total, we obtain:

lim
TD

VarvN (0) . ρ2/3 (5.17)

Next, we want to consider the case

v(x) = 1B(x) (5.18)

where B denotes a ball with radius R = O(1) centred around the origin. Now, the variance
reads:

lim
TD

Var1BN (0) =

∫
|p1|<kF

d3p1

∫
|p2|>kF

d3p2

∣∣∣∣∣
∫
|x|<R

d3x
1

(2π)3
eix·(p2−p2)

∣∣∣∣∣
2

=
1

4π4

∫
|p1|≤kF

d3p1

∫
|p2|>kF

d3p2

(
sin(R|p1 − p2|)−R|p1 − p2| cos(R|p1 − p2|)

|p1 − p2|3

)2

(5.19)

The question which arises naturally is whether the asymptotics derived above still holds. The
answer is no, but the correction is only logarithmically and thus the heuristics is not affected
by this.

Lemma 5.2.1. Let v = 1B(x). Then

lim
TD

Var1BN (0) ∼ ρ2/3 ln(ρ) (5.20)

Proof.
Again, we want to split up the domain of integration for p1 into two terms.
Using

g(p1) =
1

4π4

∫
|p2|>kF

d3p2

(
sin(R|p1 − p2|)−R|p1 − p2| cos(R|p1 − p2|)

|p1 − p2|3

)2

(5.21)
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the variance reads:

lim
TD

Var1BN (0) =

∫
|p1|<kF

d3p1 g(p1)

=

∫
kF−C≤|p1|≤kF

d3p1 g(p1)︸ ︷︷ ︸
=:VarI

+

∫
|p1|<kF−C

d3p1 g(p1)︸ ︷︷ ︸
=:VarII

(5.22)

Estimate of VarI: As above, VarI basically measures the surface of the Fermi sphere.
This can be seen explicitly using∫

R3

d3p |F(1B) (p)|2 =
B3

6π2
(5.23)

Hence:

VarI =

∫
kF−C≤|p1|≤kF

d3p1 g(p1)

≤
∫
kF−C≤|p1|≤kF

d3p1

∫
R3

d3p2 |F(1B) (p2 − p1)|2

∼ρ2/3 (5.24)

Note that g(p1) = O(1) holds for |p1| ≈ kF . So, the asymptotic behaviour of VarI is indeed
given by ρ2/3.

Estimate of VarII: We try to give a sharp bound for the remaining integral

VarII =

∫
|p1|≤kF−C

d3p1

∫
|p2|>kF

d3p2 |F(1B) (p2 − p1)|2 (5.25)

For the asymptotic behaviour, only the part which has the slowest decay is important.
Expanding

|F(1B) (p2 − p1)|2 =
1

4π4

(
sin2(R|p2 − p1|)
|p2 − p1|6

− 2R sin(R|p2 − p1|) cos(R|p2 − p1|)
|p2 − p1|5

)
+

1

4π4

(
R2 cos2(R|p2 − p1|)

|p2 − p1|4

)
(5.26)

we keep only the last term. The other two correspond to the estimate (5.16) above with p = 3
(the first term) and p = 2.5 (the second one) and thus grow like ρ2/3. We will show that∫

|p1|≤kFR−C
d3p1

∫
|p2|>kFR

d3p2
cos2(|p1 − p2|)
|p1 − p2|4

∼
∫
|p1|≤kFR−C

d3p1

∫
|p2|>kFR

d3p2
1

|p1 − p2|4
∼ ρ2/3 ln(ρ) (5.27)

is true by bounding this term in both directions. We will abbreviate

Var2 :=
R2

4π4

∫
|p1|≤kF−C

d3p1

∫
|p2|>kF

d3p2
cos2(R|p1 − p2|)
|p1 − p2|4

(5.28)
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First, we will bound Var2 from above using

Var2 ≤
R2

4π4

∫
|p1|≤kF−C

d3p1

∫
|p2|>kF

d3p2
1

|p1 − p2|4
(5.29)

This term can be estimated the same way as in equation (5.16) using p = 2.

Var2 .
∫ kF

C
dx

(kF − x)2

x3−2·2

∼(kF )2 ln(kF )

∼ρ2/3 ln(ρ) (5.30)

Next, we bound Var2 from below. This will be done using the positivity of the integrand.
Fixing p1, we will calculate the part of the p2 integral which yields the biggest contribution.

Since cos2(R|p1−p2|)
|p1−p2|4

is essentially decaying in p1 − p2, we consider the following set which

contains most of the points p2 closest to p1:

Mα
p1

:= {p2 ∈ R3||p2| > kF ; |p2 − p1| ≥
kF − |p1|

cos(α)
; p1 · (p2 − p1) ≥ |p1||p2 − p1| cos(α);α < π/4}

(5.31)

The following figure shows the set which was chosen such that it is possible to introduce
spherical coordinates for p2 − p1:
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Figure 5.1: The set Mα
p1

. The vector p2 − p1 lies inside the shaded area. For this vector it is
possible to introduce spherical coordinates.

Hence, using the positivity of the integrand, we can write:

Var2 ≥
R2

4π4

∫
|p1|≤kF−C

d3p1

∫
|p2|∈Mα

p1

d3p2
cos2(R|p1 − p2|)
|p1 − p2|4

(5.32)

First, we calculate: ∫
|p2|∈Mα

p1

d3p2
cos2(R|p1 − p2|)
|p1 − p2|4

(5.33)

Using spherical coordinates (r; Θ;ϕ) (c.f. the figure above)

r ≥kF − |p1|
cos(α)

0 ≤Θ ≤ α 0 ≤ϕ ≤ 2π (5.34)
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we obtain:∫
|p2|∈Mα

p1

d3p2
cos2(R|p1 − p2|)
|p1 − p2|4

=

∫ α

0
dΘ

∫ 2π

0
dϕ

∫ ∞
kF−|p1|
cos(α)

dr sin(Θ)
cos2(Rr)

r2

=2π(1− arccos(α))

∫ ∞
kF−|p1|
cos(α)

dr

[(
cos2(Rr)

r2
− 1

2r2

)
+

1

2r2

]
=π(1− arccos(α))

cos(α)

kF − |p1|

+2π(1− arccos(α))

∫ ∞
kF−|p1|
cos(α)

dr

(
cos2(Rr)

r2
− 1

2r2

)
(5.35)

Next, we want to control the difference cos2(Rr)
r2

− 1
2r2

. We expect this contribution to be of
subleading order by the same line of argumentation we employed in equation (4.53). First, let
us rewrite: ∫ ∞

z
dr

cos2(Rr)

r2
=
∞∑
k=0

∫ z+(k+1)π/R

z+kπ/R
dr

cos2(Rr)

r2
(5.36)

Using ∫ z+(k+1)π/R

z+kπ/R
dr cos2(Rr) =

π

2R
(5.37)

we can give the following bound:

∞∑
k=0

(
R

z + (k + 1)π

)2 π

2R
≤
∞∑
k=0

∫ z+(k+1)π/R

z+kπ/R
dr

cos2(Rr)

r2
≤
∞∑
k=0

(
R

z + kπ

)2 π

2R
(5.38)

The same estimate holds for
∫∞
z da 1

2a2
:

∞∑
k=0

(
R

z + (k + 1)π

)2 π

2R
≤
∞∑
k=0

∫ z+(k+1)π/R

z+kπ/R
dr

1

2r2
≤
∞∑
k=0

(
R

z + kπ

)2 π

2R
(5.39)

Subtracting these bounds, we conclude 2 :

⇒− 1

z2

Rπ

2
≤
∫ ∞
z

da

(
cos2(Rr)

r2
− 1

2r2

)
≤ 1

z2

Rπ

2
(5.40)

Hence, this term is of order 1
(kF−|p1|)2

an thus of subleading order.

In total, it was shown that:

Var2 &
∫
|p1|≤kFR−r

d3p1 π(1− arccos(α))
cos(α)

kfR− |p1|

∼ρ2/3 ln(ρ) (5.41)

2As expected, a faster oscillating cosine which corresponds to a small parameter R improves this result.
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This calculation confirm the result we found in one dimension. For fermionic systems, the
Pauli exclusion principle yields to an effective repulsion of the electrons (not mediated by some
potential) which arranges the particles in a homogeneous way. Yet, in contrast to d = 1, the
fluctuations grow with the density. Henceforth, it could be that the perturbation expansion we
used before might not work any more. We would like to comment on this in the next chapter
after having calculated the fluctuations arising in the Dirac equation. This will be done now.
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5.3 The Dirac equation

We will now consider relativistic electrons described by the Dirac equation. We will analyse the
idea of Dirac, that is, calculate the density fluctuations of a finite Dirac sea composed of particles
with negative energy. This analysis was already performed in [Colin and Struyve, 2007] using
the second quantized field formalism. As it is common when using this formalism, a cut-off Λ
has to be introduced. The authors themselves note that a rigorous analysis must furthermore
confine the system into a box. While this remark is technically correct, this observation is
nevertheless meant to be a side remark. It is assumed that a more careful analysis will not
change the final result. However, we get a different result which we will explain now.
Remember: For a fermionic system, the density fluctuations are given by:

lim
TD

Varv2N (0) =
∑
l∈Oc

∑
m∈O
|〈ϕm|v(x)|ϕl〉|2 (5.42)

where O is the set of all occupied states and Oc the set of all unoccupied ones (we choose 2N
because of the spin). Thus, considering the Dirac equation on bounded space, the sea will
be a 2N -particle wedge product of one particle states with negative energy. For the estimate
of the variance two different kind of transitions have to be taken into account: A negative
energy particle may fall down the sea to another state with even less energy. Furthermore,
transitions into the positive spectrum are possible, which correspond to the physical effect of
pair creation.
As our analysis will reveal, the cut-off Λ has two effects. First, it will define all occupied
states with negative energy. Hence, Λ is equal to the Fermi momentum kF

3. Yet, using the
cut-off, another, probably unwanted effect arises: Due the structure of the field operators,
the set Oc used in equation (5.42) reads differently. In the field formalism with cutoff Λ, all
states with momenta greater than Λ are not present. Hence, the variance actually calculated
in [Colin and Struyve, 2007] originates from a system where one would start from bounded
space and from a restricted, finite dimensional Hilbert space which contains only states with
momenta smaller than Λ. As a consequence, there is no possibility for the particles to fall
down the sea, or, stated differently, there are no transitions into states with even more negative
energy. Moreover, only transitions to positive energy states with momenta smaller than Λ
are allowed. While the transition to positive energy states with momenta greater than Λ are
highly suppressed and thus are unimportant, the transitions to states with even lower energy
are of the same order as in the nonrelativistic case. Consequently, the calculation performed
in Coin and Struyve implicitly assumes a different system we use. We will comment on this
issue in more detail later.

3Therefore, the fluctuations of a bosonic system, using the field formalism, would scale like Λ3.
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We will now list the spinors and definitions we use for the Dirac equation. These definitions
are taken form [Bjorken and Drell, 1998] and are in accordance with the formulas used in
[Colin and Struyve, 2007]. Of course, different conventions will yield the same final result.
For the reader’s convenience, we will list the spinors explicitly4:

u(p,+) =

√
E(p) +m

2m


1
0
pz

E(p)+m
p+

E(p)+m

 u(p,−) =

√
E(p) +m

2m


0
1
p−

E(p)+m
−pz

E(p)+m



v(p,+) =

√
E(p) +m

2m


p−

E(p)+m
−pz

E(p)+m

0
1

 v(p,−) =

√
E(p) +m

2m


pz

E(p)+m
p+

E(p)+m

1
0

 (5.43)

where

p± = px ± ipy E(p) =
√

p2 +m2 (5.44)

The orthogonality relations are given by:

v†(p, s)v(p, s′) =
E(p)

m
δs,s′ u†(p, s)u(p, s′) =

E(p)

m
δs,s′

v†(−p, s)u(p, s′) =u†(p, s)v(−p, s′) = 0 (5.45)

where s, s′ = ±. A solution to the free Dirac equation can be written as:

ψ(x; t) =

∫
R3

d3p
1

(2π)3/2

√
m

E(p)

∑
±s

[
b(p, s)u(p, s)e−ipµxµ + d∗(p, s)v(p, s)eipµxµ

]
(5.46)

Here, b(p, s) and d∗(p, s) are the Fourier coefficients which satisfy∫
R3

d3p
∑
±s

(
|b(p, s)|2 + |d(p, s)|2

)
= 1 (5.47)

if ψ(x; t) is normalised. Confining the particles on a three-dimensional box with periodic
boundaries, we obtain again the quantised momenta 2π

L pk ,pk ∈ Z3. As before, the letter
k ∈ N labels all possible momenta in increasing order. By means of the normalisation relations,
the basis vectors are given by:

|ϕpos
k,s 〉 =

√
1

V

√
m

E(pk)
u(pk, s)e

2πi
L

pk·x (5.48)

|ϕneg
k,s 〉 =

√
1

V

√
m

E(pk)
v(pk, s)e

− 2πi
L

pk·x (5.49)

The set of these vectors forms an orthonormal system for the Dirac equation on a three-
dimensional torus. Note that confining the system on a torus breaks Lorentz invariance.
However, also the treatment of Colin and Struyve is not Lorentz invariant since they introduce

4We set c=1.
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a cut-off Λ. While it would be desirable to formulate everything in a covariant manner, this
subtlety will not be of our concern here.
We may decompose a solution to the free Dirac equation as follows:

|ψ(t)〉 =
∑
s=±

∞∑
k=1

b(pk, s)e
−iE(pk)t|ϕpos

k,s 〉+
∑
s=±

∞∑
k=1

d∗(pk, s)e
iE(pk)t|ϕneg

k,s 〉 (5.50)

Our initial Dirac sea is modelled by 2N particles filled up until the Fermi edge.

|Λ〉 = |ϕneg
1,+ ∧ ϕ

neg
1,− ∧ ... ∧ ϕ

neg
N,+ ∧ ϕ

neg
N,−〉 (5.51)

As before, all occupied momenta lie inside the Fermi ball with radius proportional to ρ1/3.
Explicitly, we can repeat the calculation from above: The one particle reduced density matrix
is given by:

γ(1) :=
∑
s=±

∑
k≤N
|ϕneg
k,s 〉〈ϕ

neg
k,s | (5.52)

In position representation we obtain:

γ(1)(x,y) =
∑
s=±

∑
k≤N
|ϕneg
k,s 〉〈ϕ

neg
k,s | =

∑
s=±

N∑
k=1

1

V

m

E(pk)
v(pk, s)v

†(pk, s)e
2πi
L

pk·(x−y) (5.53)

which reads in the thermodynamic limit as follows:

lim
TD

γ(1)(x,y) =
∑
s=±

∫
|p|<kF

d3p
1

(2π)3

m

E(p)
v(p, s)v†(p, s)eip·(x−y) (5.54)

The Fermi momentum kF can be determined as follows: Note that

trC4

(
v(p, s)v†(p, s)

)
= v†(p, s)v(p, s) =

E(p)

m
(5.55)

Thus,

trC4γ(1)(x,x) =
2N

V
= ρ (5.56)

holds and, as a consequence,

lim
TD

trC4γ(1)(x,x) =

∫
|p|<kF

d3p
2

(2π)3
=

k3
F

3π2

⇒ kF =
(
3π2ρ

)1/3
(5.57)

This definition of the Fermi momentum is standard in the literature5. Note that if we would
haven taken the thermodynamic limit differently (without the factors of 2π), kF would read
differently. However all integrals would also be defined differently (by some factors of 2π) and,
of course, the final result would be the same.
As already explained, the variance is the sum of two terms; the one coming from all transitions
into the negative spectrum, while the other is the sum of all transitions into the positive
spectrum. We will treat each contribution separately.

5See also [Maruhn and Suraud, 2010].
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Theorem 5.3.1. Let v ∈ C∞(T3) ∩ C∞0 (R3). Then

lim
TD

Varv2N (0) ∼ ρ2/3 (5.58)

holds. Moreover, the contributions which arise only from the transitions into the positive
spectrum scale as ρ1/3.

Proof.
The variance is the sum of the transitions into the negative energy spectrum with energy
smaller than the Fermi energy plus the sum of all transition amplitudes into the positive
spectrum. Explicitly, we write:

lim
TD

Varv2N (y) = lim
TD

Varv2N (0) = Varpos,v
2N (0) + Varneg,v

2N (0) (5.59)

where

Varneg,v
2N (0) :=

∑
s,s′=±

N∑
k=1

∞∑
l=N+1

∣∣∣〈ϕneg
l,s′ |v(x)|ϕneg

k,s 〉
∣∣∣2

=
∑
s,s′=±

N∑
k=1

∞∑
l=N+1

∣∣∣∣∣ m√
E(pl)E(pk)

1

V
v†(pl, s

′)v(pk, s)

∫
R3

d3x v(x)e
2πi
L

x·(pl−pk)

∣∣∣∣∣
2

=
∑
s,s′=±

N∑
k=1

∞∑
l=N+1

(2π)6

∣∣∣∣∣ m√
E(pl)E(pk)

1

V
v†(pl, s

′)v(pk, s)F(v)

(
2π

L
(pl − pk)

)∣∣∣∣∣
2

(5.60)

Taking the thermodynamic limit, we obtain6:

lim
TD

Varneg,v
2N (0) =

∑
s,s′=±

∫
|p1|<kF

d3p1

∫
|p2|>kF

d3p2

∣∣∣∣∣ m√
E(p2)E(p1)

v†(p2, s
′)v(p1, s)F(v) (p2 − p1)

∣∣∣∣∣
2

=
∑
s,s′=±

∫
|p1|<kF

d3p1

∫
|p2|>kF

d3p2
m2

E(p1)E(p2)

×v†(p1, s)v(p2, s
′)v†(p2, s

′)v(p1, s) |F(v) (p2 − p1)|2 (5.61)

In analogy, Varpos,v
2N (0) is given by:

Varpos,v
2N (0) =

∑
s,s′=±

N∑
k=1

∞∑
l=1

∣∣∣〈ϕpos
l,s′ |v(x)|ϕneg

k,s 〉
∣∣∣2

=
∑
s,s′=±

N∑
k=1

∞∑
l=1

∣∣∣∣∣ m√
E(pl)E(pk)

1

V
u†(pl, s

′)v(pk, s)

∫
R3

d3x v(x)e−
2πi
L

x·(pl+pk)

∣∣∣∣∣
2

=
∑
s,s′=±

N∑
k=1

∞∑
l=N+1

(2π)6

∣∣∣∣∣ m√
E(pl)E(pk)

1

V
u†(pl, s

′)v(pk, s)F(v)

(
−2π

L
(pl + pk)

)∣∣∣∣∣
2

(5.62)

6Again, we have to take 2π
L

as the axes division to be in agreement with the derived expression of kF .
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Or, taking the thermodynamic limit:

lim
TD

Varpos,v
2N (0) =

∑
s,s′=±

∣∣∣∣∣ m√
E(p2)E(p1)

u†(p2, s
′)v(p1, s)F(v) (−(p2 + p1))

∣∣∣∣∣
2

=
∑
s,s′=±

∫
|p1|<kF

d3p1

∫
R3

d3p2
m2

E(p1)E(p2)

×v†(p1, s)u(p2, s
′)u†(p2, s

′)v(p1, s) |F(v) (p2 + p1)|2 (5.63)

In order to simplify the expression derived above, we use the following identities (c.f.
[Colin and Struyve, 2007], equation (B.12)):

∑
s=±

ua(p, s)u
†
a′(p, s) =

(
E(p) + α · p + βm

2m

)
aa′∑

s=±
va(p, s)v

†
a′(p, s) =

(
E(p) + α · p− βm

2m

)
aa′

(5.64)

where a, a′ = 1, 2, 3, 4 denote the corresponding entries of the vector or the matrix, respectively.
α and β are the Dirac matrices.
A small calculation yields:

v†(p1, s)u(p2, s
′)u†(p2, s

′)v(p1, s) =
E(p1)E(p2) + p1 · p2 −m2

m2
(5.65)

v†(p1, s)v(p2, s
′)v†(p2, s

′)v(p1, s) =
E(p1)E(p2) + p1 · p2 +m2

m2
(5.66)

So we obtain:

lim
TD

Varneg,v
2N (0) =

∫
|p1|<kF

d3p1

∫
|p2|>kF

d3p2 h
neg(p1,p2) |F(v) (p2 − p1)|2 (5.67)

where

hneg(p1,p2) :=
E(p1)E(p2) + p1 · p2 +m2

E(p1)E(p2)
(5.68)

Similar, the positive energy transitions read:

lim
TD

Varpos,v
2N (0) =

∫
|p1|<kF

d3p1

∫
R3

d3p2 h
pos(p1,p2) |F(v) (p2 + p1)|2 (5.69)

where

hpos(p1,p2) :=
E(p1)E(p2) + p1 · p2 −m2

E(p1)E(p2)
(5.70)
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We may also write up the variance of the density fluctuations v(x) = 1B(x) explicitly:

lim
TD

Varneg,1B
2N (0) =

∑
s,s′=±

∫
|p1|<kF

d3p1

∫
|p2|>kF

d3p2
m2

E(p1)E(p2)

×

∣∣∣∣∣
∫
|x|<R

d3x v†(p2, s
′)v(p1, s)

1

(2π)3
eix·(p2−p1)

∣∣∣∣∣
2

=
∑
s,s′=±

∫
|p1|<kF

d3p1

∫
|p2|>kF

d3p2

∫
|x|<R

d3x1

∫
|x|<R

d3x2
m2

E(p1)E(p2)

×v†(p1, s)v(p2, s
′)v†(p2, s

′)v(p1, s)
1

(2π)6
ei(x1−x2)·(p2−p1)

=
1

4π4

∫
|p1|<kF

d3p1

∫
|p2|>kF

d3p2
E(p1)E(p2) + p1 · p2 +m2

E(p1)E(p2)

×
(

sin(R|p1 − p2|)−R|p1 − p2| cos(R|p1 − p2|)
|p1 − p2|3

)2

(5.71)

and

lim
TD

Varpos,1B
2N (0) =

∑
s,s′=±

∫
|p1|<kF

d3p1

∫
R3

d3p2
m2

E(p1)E(p2)

×

∣∣∣∣∣
∫
|x|<R

d3x u†(p2, s
′)v(p1, s)

1

(2π)3
eix·(p2+p1)

∣∣∣∣∣
2

=
∑
s,s′=±

∫
|p1|<kF

d3p1

∫
R3

d3p2

∫
|x|<R

d3x1

∫
|x|<R

d3x2
m2

E(p1)E(p2)

×v†(p1, s)u(p2, s
′)u†(p2, s

′)v(p1, s)
1

(2π)6
ei(x1−x2)·(p2+p1) (5.72)

=
1

4π4

∫
|p1|≤kF

d3p1

∫
R
d3p2

E(p1)E(p2) + p1 · p2 −m2

E(p1)E(p2)

×
(

sin(R|p1 + p2|)−R|p1 + p2| cos(R|p1 + p2|)
|p1 + p2|3

)2

(5.73)

Colin and Struyve derived expression (5.72), where, as already mentioned, in their paper the
cut-off Λ is equal to our Fermi momentum kF . There is one difference to our expression: The
transitions into the positive spectrum are restricted by |p2| ≤ Λ. For further estimates, this
restriction is however removed, beginning with their equation (B.14), they get the same result
we obtain. Thus, our analysis reveals the main difference in comparison with their result. We
would get the same result if we would initially restrict the possible transitions only to positive
states with momenta smaller than kF , or, after dropping this restriction, only to positive
momenta. We think that our result is more honest about the underlying picture. We have a
finite dimensional sea in mind and want to show that, for high densities, it cannot be detected.
In their model the cut-off is introduced in order to get finite expressions, however, they neglect
lim
TD

Varneg,v
2N (0). We want to remark that they also commit a small error. They claim that(

sin(R|p1 + p2|)−R|p1 + p2| cos(R|p1 + p2|)
|p1 + p2|3

)2

. e−R
2|p1+p2|2 (5.74)
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holds (cf. their equations (B.13) and (B.14)). This wrong estimate is performed without
calculating the explicit Fourier transform of the indicator function, hence they are not
aware of the real behaviour of this function. While their estimate is technically not true,
their final estimate for limTD Varpos,1B

2N (0) is the same. This equivalence is because of the
following: Whether we estimate the Fourier transform of the potential using the Paley-Wiener
theorem, or, as it is done in [Colin and Struyve, 2007], this function is considered to decay
exponentially, in both cases, the same asymptotic behaviour is obtained.

Next, we want to estimate the two types of transitions separately.

Lemma 5.3.1. For the transitions which arise at the negative part of the spectrum, the
following asymptotic behaviour is true:

lim
TD

Varneg,v2N (0) ∼

{
ρ2/3 ln(ρ) for v(x) = 1B(x)

ρ2/3 for v ∈ C∞(T3) ∩ C∞0 (R3)
(5.75)

Proof.
Up to the function hneg(p1,p2), lim

TD
Varneg,v

2N (0) is exactly expression (5.19) we obtained in the

spinless case. Let us therefore deliberate whether this additional function changes our result
from above. For this, we use the following estimates:

0 < hneg(p1,p2) ≤2 (5.76)

For p1 · p2 > 0⇒ 1 ≤ hneg(p1,p2) ≤2 (5.77)

Choosing p2 ∈Mα
p1

, we know that in this set the vectors p1 and p2 are aligned. Hence, we
can use the estimate 1 ≤ hneg(p1,p2) ≤ 2 to conclude that

lim
TD

Varneg,v
2N (0) ∼ ρ2/3 (5.78)

holds for smooth potentials. For the indicator function, this result is again corrected by
ln(ρ).

The interesting case are of course the transitions to the positive spectrum. Remember:
The perturbation expansion for the one-dimensional system relied on the fact that transitions
near the Fermi edge are suppressed due to the high energies involved. This argumentation is
no longer valid here. In principle, a negative energy particle might get excited to end up in
any positive state. Hence, the fluctuations must be suppressed even more for the mean-field
picture to work. Using that

0 ≤ hpos(p1,p2) ≤ 2 (5.79)

holds for all momenta p1,p2, the integrand is positive for all p1 and p2. Colin and Struyve
claim that the integral behaves approximately as kF ∼ ρ1/3. For this to be true, (5.79) must
be very small for the values where the Fourier transform is of order one. Namely, if we would
replace hpos(p1,p2) by 1, the variance would scale like ρ.
Note that |F(v) (p2 + p1)|2 = O(1) only holds if p2 ≈ −p1. So, only transitions to positive
energy states with opposite momenta are possible. This is a consequence of the fact that
negative energy solutions posses their momentum opposed to their velocity, i.e. for a right
moving wave the momentum points to the left. However, the spin factor hpos(p1,p2) = 0 for
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p1 = −p2, so transitions with exactly opposite momentum are not allowed. Consequently,
these two contributions have the opposite behaviour, i.e. the one gets small whenever the
other gets big. Integrating over p1 and p2, the question remains how the two functions behave
for all values we are integrating over. As it will turn out, the two factors yield the overall
behaviour

lim
TD

Varpos,v
2N (0) ∼ kF ∼ ρ1/3 (5.80)

which was also derived by Colin and Struyve. Actually, we will give an upper bound for the
case m = 0 and argue afterwards why the this bound should also be satisfied for m 6= 0.

Lemma 5.3.2. For m = 0 and v ∈ C∞(T3) ∩ C∞0 (R3), the following bound holds:

lim
TD

Varpos,v2N (0) . ρ1/3 (5.81)

Proof.
For m = 0, hpos(p1,p2) simplifies to:

hpos(p1,p2) =
|p1||p2|+ p1 · p2

|p1||p2|
(5.82)

which yields to the following equation:

lim
TD

Varpos,v
2N (0) =

∫
|p1|≤kF

d3p1

∫
R
d3p2(1 + cos(Θ)) |F(v) (p2 + p1)|2 (5.83)

Here, Θ denotes the angle between p1 and p2. Again, one should note that (1 + cos(Θ)) ≈ 0
holds for p1 ≈ −p2. We will choose spherical coordinates (r, φ,Θ) for p2 and will again
estimate the Fourier transform by Paley-Wiener.

lim
TD

Varpos,v
2N (0) ≤

∫
|p1|≤kF

d3p1

∫
R
d3p2(1 + cos(Θ))

∣∣∣∣ Dp

(1 + |p2 + p1|)p

∣∣∣∣2
=2π

∫
|p1|≤kF

d3p1

∫ ∞
0

dr

∫ 1

−1
d cos(Θ) r2(1 + cos(Θ))

×
D2
p[

1 +
√
|p1|2 + r2 + 2|p1|r cos(Θ)

]2p (5.84)

Using the estimate

1[
1 +

√
|p1|2 + r2 + 2|p1|r cos(Θ)

]2p ≤
1

[1 + |p1|2 + r2 + 2|p1|r cos(Θ)]p
(5.85)

we may write:

lim
TD

Varpos,v
2N (0) .

∫
|p1|≤kF

d3p1

∫ ∞
0

dr

∫ 1

−1
d cos(θ) r2(1 + cos(Θ))

× 1

[1 + |p1|2 + r2 + 2|p1|r cos(Θ)]p
(5.86)
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Using that ∫
dx

1

(A+Bx)p
= − 1

p− 1

1

B
(A+Bx)−p+1 (5.87)

and ∫
dx

x

(A+Bx)p
= − 1

p− 1

1

p− 2

1

B2
(A+Bx)−p+2 − 1

p− 1

1

B
x(A+Bx)−p+1 (5.88)

holds for p > 2, we can perform the integration over Θ with

A =1 + |p1|2 + r2

B =2|p1|r

to obtain:

lim
TD

Varpos,v
2N (0) .

∫
|p1|≤kF

d3p1

∫ ∞
0

dr r2

(
−1

p− 1

1

r|p1|
[
1 + (r + |p1|)2

]1−p
− 1

p− 1

1

p− 2

1

(2r|p1|)2

([
1 + (r + |p1|)2

]2−p − [1 + (r − |p1|)2
]2−p))

=
−4π

p− 1

∫ kF

0
dx

∫ ∞
0

dr rx
[
1 + (r + x)2

]1−p
−π 1

p− 1

1

p− 2

∫ kF

0
dx

∫ ∞
0

dr
([

1 + (r + x)2
]2−p − [1 + (r − x)2

]2−p)
(5.89)

Only the last term is of importance for our estimate. The other two are asymptotically
constant:

lim
ρ→∞

∫ kF

0
dx

∫ ∞
0

dr rx
[
1 + (r + x)2

]1−p
=

∫ ∞
0

dx

∫ ∞
0

dr rx
[
1 + (r + x)2

]1−p
<∞ (5.90)

lim
ρ→∞

∫ kF

0
dx

∫ ∞
0

dr
[
1 + (r + x)2

]2−p
=

∫ ∞
0

dx

∫ ∞
0

dr
[
1 + (r + x)2

]2−p
<∞ (5.91)

which holds for p big enough. The important contribution reads:

lim
TD

Varpos,v
2N (0) .

∫ kF

0
dx

∫ ∞
0

dr
[
1 + (r − x)2

]2−p
=

∫ kF

0
dx

∫ ∞
−x

dr
[
1 + r2

]2−p
≤
∫ kF

0
dx

∫
R
dr
[
1 + r2

]2−p ∼ ρ1/3 (5.92)

Note furthermore that
∫∞
−x dr

[
1 + r2

]2−p
= O(1) for all x > 0, which yields the conclusion

that the asymptotics is indeed given by ρ1/3.
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While we have estimated the variance only from above, we expect this bound to hold in general.
The asymptotic behaviour is determined by high momenta |p1| ≈ kF . As we have argued, we
have to choose p2 of the same order but in the opposite direction. Otherwise, the Fourier
transform of the potential is very close to zero. In the regime |p1|, |p2| � m

hpos(p1,p2) ≈ |p1||p2|+ p1 · p2

|p1||p2|
(5.93)

holds to a very high accuracy. Henceforth the estimate above is indeed expected to be true
and measures the growth of the fluctuations coming from the transitions of negative to positive
energy states.

It is quite remarkable that the spin structure, originally derived from relativistic invariance,
helps tremendously to suppress the fluctuations and henceforth supports the mean-field idea,
which describes the behaviour of very many particles. Note that this surprising fact does not
origin from the Pauli principle.
Colin and Struyve obtain this result for m 6= 0 by performing a Taylor expansion of the
spinor factor hpos(p1,p2) and keeping only the leading terms. Our result shows that their
derivation, using the second quantised formalism, yields to the same result as the corresponding
calculation in first quantisation. This behaviour is quite general in QED. There is of course
no mystery involved whatsoever since the Fock space used is equivalent to an infinite copy
of N-particle Hilbert spaces. So, as long as we investigate systems with a fixed particle
number, the results have to coincidence. Yet, our example might weaken the questionable
claim that QED describes the dynamics of quantised fields and it is not possible to give any
other interpretation of it. Of course, for further analysis of the mean-field picture, we need to
treat the system dynamically. This procedure will be sketched now for systems in arbitrary
dimensions.





Chapter 6

The Analysis of General Systems

In this section we want to discuss the possibility to repeat the perturbation expansion for
higher dimensional systems. In contrast to the one-dimensional case, it may not be possible
to apply the method we used before. The main difference we have to deal with is the growth
of the fluctuations. Indeed, for smooth potentials, the variance is always proportional to the
surface of the Fermi sphere, that is

lim
TD

VarvN (0) ∼ kd−1
F ∼ ρ

d−1
d (6.1)

In addition, for the Dirac equation another contribution arises, namely the transitions to
the positive spectrum. Owing these facts, we cannot repeat the estimate given for the one-
dimensional system. There, for a potential with gap (c.f. lemma 4.8.3), the estimate reads
very roughly as follows:

lim
TD

αt ≤

√
lim
TD

VarvN+1(0)

E(ρ/2 + C)− E(ρ/2)︸ ︷︷ ︸
first order

+

√
lim
TD

VarvN+1(0) lim
TD

VarvN+1(0)

E(ρ/2 + C)− E(ρ/2)︸ ︷︷ ︸
second order

(6.2)

Of course, the second order term reads differently, but due to the structure of the functions
Mi used in the estimate, the asymptotics is the same. Since

1

E(ρ/2 + C)− E(ρ/2)
≈ 1

ρ
(6.3)

holds for nonrelativistic Hamiltonians, we obtain an overall decay of ρ−1. We already saw that
this estimate was no longer true for the ultra-relativistic system.
By estimating the first-order term E1 it is possible to infer if the perturbation expansion will
still work. Explicitly, E1 reads now in d dimensions as follows:

lim
TD

E2
1 =

∫
|m|<kF

ddm

∫
|l|>kF

ddl |F(v) (m− l)|2
∥∥∥∥∫ t

0
dt′e4π2i(l2−m2)t′Uy−t′ e

2πi(m−l)·yUyt′χ0

∥∥∥∥2

y

(6.4)

As discussed, the most important contribution arises directly from the gap. Thus, we only
consider the points m, l where |m− l| = O(1) holds. For these points, a decay in ρ is needed
for the mean-field picture to hold. On the other hand, if E1 is small for these points, then we
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can apply the Paley-Wiener theorem to conclude that the remainder also decays.
Let us first consider potentials with a gap. By integration by parts, the stationary phase
argument yields a factor of:

1

l2 −m2
=

1

|l| − |m|
1

|l|+ |m|
∼ 1

C

1

kF
∼ 1

ρ1/d
(6.5)

Note that this term gets squared in the estimate of lim
TD

E2
1 . The variance, as already explained,

yields a contribution ∼ ρ
d−1
d . Therefore, the following estimate can be given:

lim
TD

E2
1 ∼ρ

d−1
d

1

ρ2/d

=ρ
d−3
d (6.6)

Explicitly, we obtain:

d = 1→ lim
TD

E2
1 ∼ ρ−2 (6.7)

d = 2→ lim
TD

E2
1 ∼ ρ−1/2 (6.8)

d = 3→ lim
TD

E2
1 ∼ O(1) (6.9)

We conclude the following:
For a potential with a gap, the perturbation expansion might work in d = 2 and will not work
in d = 3. For d = 2, the proof will certainly be more complicated than the one presented
for d = 1. This is due to the fact that the fluctuations grow like ρ1/2, so we cannot stop our
perturbation expansion at second order, but must consider also higher order terms. Physically,
we might think of graphene as an important example of a two dimensional system.
In d = 3, we might expect that the mean-field model holds if we scale down the potential
by some arbitrary small factor (like ρ−ε). At least, the term from first-order perturbation
theory vanishes then. This result could not be obtained by solely looking at the fluctuations.
Whether this scaling is physical, is of course an interesting question on its own. We will come
back to this in the conclusion.

Next, consider general potentials which do not contain a gap. In order to apply the
stationary phase lemma, we need to separate the critical point. As in d = 1, we need to
perform the splitting such that both terms yield the same asymptotics. To this end write

lim
TD

E2
1 =

∫
|m|<kF

ddm

∫
|l|>kF

ddl
(
Θ
(
|m− l| − ρ−α

)
+ Θ

(
ρ−α − |m− l|

))
× |F(v) (m− l)|2

∥∥∥∥∫ t

0
dt′e4π2i(l2−m2)t′Uy−t′ e

2πi(m−l)·yUyt′χ0

∥∥∥∥2

y

(6.10)

where α will be determined now:
The last term entails the contributions arising from the gap. To estimate this term, consider
first the integration over l. We can essentially restrict the integration over the points where
kF ≤ |l| ≤ kF + ρ−α and |l −m| ≈ ρ−α holds. In this region, the integrand is of order one,
so we must only determine the volume over which is integrated. Consider the integration
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pictorially: Fixing m very close to the Fermi sphere, the l integration takes place in this
vicinity with distance to m of order ρ−α. This integral is of the same order as the volume of a
ball with radius given by ρ−α. Next, the m integration takes place over a spherical area with
radius kF and width ρ−α. That is∫
|m|<kF

ddm

∫
|l|>kF

ddl Θ
(
ρ−α − |m− l|

)
|F(v) (m− l)|2

∥∥∥∥∫ t

0
dt′e4π2i(l2−m2)t′Uy−t′ e

2πi(m−l)·yUyt′χ0

∥∥∥∥2

y

∼kd−1
F ρ−αρ−αd ∼ ρ

d−1
d
−α(d+1) (6.11)

The other contribution is proportional to the variance times the estimate of the phase:∫
|m|<kF

ddm

∫
|l|>kF

ddl Θ
(
|m− l| − ρ−α

)
|F(v) (m− l)|2

∥∥∥∥∫ t

0
dt′e4π2i(l2−m2)t′Uy−t′ e

2πi(m−l)·yUyt′χ0

∥∥∥∥2

y

∼kd−1
F

(
1

|l| − |m|
1

|l|+ |m|

)2

∼ ρ
d−1
d
(
ραk−1

F

)2 ∼ ρ d−3
d

+2α (6.12)

Thus

lim
TD

E2
1 ∼ ρ

d−1
d
−α(d+1) + ρ

d−3
d

+2α (6.13)

Using the optimal value

α =
2

3d+ d2
(6.14)

we obtain:

lim
TD

E2
1 ∼ ρ

d2−5

3d+d2 (6.15)

which means:

d = 1→ lim
TD

E2
1 ∼ ρ−1 (6.16)

d = 2→ lim
TD

E2
1 ∼ ρ−1/10 (6.17)

d = 3→ lim
TD

E2
1 ∼ ρ2/9 (6.18)

Thus, for two dimension, we still expect the mean-field picture to hold. For d = 3, the estimate
of the first-order term does even grow with ρ, so we expect the mean-field picture to be wrong
in this case.

Let us now consider the relativistic case: For fluctuations arising directly at the gap, we
can no longer use the stationary phase method. That is, the perturbation expansion does not
work in this case. For the transitions arising in the Dirac equation to the positive spectrum,
it might be possible to pursue in perturbation theory, although this needs to be checked
explicitly.
The method presented here thus works for nonrelativistic, low dimensional systems, but does
not work for relativistic or high-dimensional ones. It is important to notice that this does not
imply that the mean-field picture is wrong in the latter cases, but hints at the fact that a
more profound analysis is required to decide this.





Chapter 7

Conclusion and Outlook

In this work we have shown that Dirac’s idea of a uniform fermionic sea, which net effect is
zero, can be justified on a rigorous basis, at least for some physical systems. Surprisingly,
while people tried to argue why Dirac’s idea might not be necessary for a second quantised
field theory, the question of physical plausibility was never investigated on a dynamical basis.
Our discussion was based on perturbation theory and a very simple Hamiltonian which only
considers the interaction with one specific particle. The insight of Dirac helped us to actually
prove the emergence of free motion for a nonrelativistic, one-dimensional system. Yet, we
think that a more realistic model is necessary in order to decide for which fermionic systems it
is possible to extract an effective evolution equation for a single particle. More explicitly, one
needs to investigate the following assumptions we made:

Is it possible to model the sea as some non-interacting system?
This assumption is indeed the most severe one we made. For this statement to be true, the
equilibrium or ground state, obtained from some interacting theory, needs to be similar to
the ground state of the non-interacting theory for all relevant time scales. If this is not the
case, then a quite different analysis would be needed to conclude the validity of the mean-field
picture. Of course, an interacting system of mutually interacting fermions with repulsive
potential might even help to use the picture we employed. For such a system, we might expect
that the constituents are even more uniformly distributed. Consequently, this might give a
partial insight to the following question:

Is it possible to introduce some scaling by some physical argument?
As we have seen, for a three-dimensional, nonrelativistic system, such a scaling might enable
us to prove the validity of the mean-field picture. Yet, it is not clear why, in principle, such a
scaling should be possible. If it cannot be justified, then it might nevertheless be possible to
extract some mean-field dynamics out of the fully interacting system. This might be done
using reduced density matrices, where a different treatment beyond perturbation theory might
be needed.
Of course, the most interesting question which could not be answered in this thesis is the
conjecture made by Dirac:
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Is it possible to base QED on the Dirac sea picture?
While we certainly made some progress here, the questions remains highly open. The most
important step, using the methods presented here, would be to consider a model similar to
the one employed by [Colin and Struyve, 2007] and to estimate the first-order perturbation
there. Maybe it is also possible to perform this perturbative analysis for some fully interacting
system. This might yield some affirmative insight, but, as expected, for a decisive answer
there remains much to be done.
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