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Abstract

Via mean field theory, we analyze the time evolution of a system consisting of one, respectively two
distinguishable types of bosons being initially in an almost product state. Assuming that interaction
takes place between all pairs of particles, we prove that the property of an almost product state is
conserved for all finite times. Moreover, it is feasible to stretch this statement to all times under
additional assessments. In the outlook, we give reasons, why this approach does not work for one
species of bosons in two different states.

This thesis is a generalization of the method of counting bad particles which was introduced in
[3].
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Part I

Introduction
We study the time evolution of an N-particle bosonic system in the mean field limit. Initially, we
create an N-particle state in which most of the bosons are supposed to be independently from each
other in the same one-particle state ϕ ∈ L2

(
R3
)
∩ L2s

(
R3
)
, where s ∈ [1,∞). Therefore, we take

for granted that the normalized N-particle state ΨN ∈ L2
(
R3N

)
has the structure of an (almost)

product state. Besides, the particles in our system move in a time dependent external potential and
interact pairwise between each other. Consequently, the corresponding Hamiltonian of the bosonic
system looks like

HN =
N∑
j=1

(−∆j) +

N∑
j=1

At(xj) +
∑

1≤j<k≤N

VN (xj − xk). (1)

We prove under these assumptions, that the N-particle state ΨN keeps its (almost) product structure
in the mean field limit for all finite times, although there is pair interaction and therefore correlation
between the bosons.

In order to verify this assertion, we show ΨN being an (almost) product state is in the mean
field limit equivalent to the convergence to 0 of the number of particles which are not in the state ϕ
in which we want them to be. The goal is to prove that the amount of these so called bad particles
converges for all finite times in the mean field limit to 0. Moreover, the proof includes at the same
time the verification of the Hartree equation which reflects the dynamics of one single particle.

To be continued, we apply this method of counting bad particles to another system which consists
of two distinguishable types of bosons where pair interaction takes place between all particles. We
show that its wave function also conserves the (almost) product structure under these assumptions.

Finally, we give some reasons, why the application of this method to a system consisting of one
type of particles in two different states is really hard work.
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Part II

Time Evolution of Identical Bosons

1 Definitions and Properties

In this section, we prove for all finite times the equivalence of Ψt
N is an almost product state, the

reduced density matrix converges to the pure state ϕt in operator norm and the ratio of bad particles
converges in the mean field limit to 0, i.e.

Ψt
N almost product state ⇔ µΨtN

N→∞−−−−→ |ϕt〉 〈ϕt|
in operator norm

⇔ ωϕ
t N→∞−−−−→ 0. (2)

(i) (ii) (iii)

Later on, we show that (ii) is a consequence of (i), (ii) and (iii) are equivalent and (i) follows from
(iii).

We know that ΨN has to be symmetric under particle exchange since we look at a bosonic
many-particle system. Therefore

Ψt
N (x1, ..., xi, ..., xj , ..., xN ) = Ψt

N (x1, ..., xj , ..., xi, ..., xN ) (3)

holds for every i, j ∈ {1, ..., N}.

1.1 The reduced one-particle density matrix µΨN

Up to now, no theoretical or mathematical physicist is talking about counting bad particles or
treating an almost product state when considering the time evolution of systems in the mean field
limit, which was introduced in [3]. The common physical world uses the reduced one-particle density
matrix.

Definition:
Let ΨN ∈ L2(R3N ) represent a normalized N-particle state. The reduced one-particle densitiy
matrix is defined as:

µΨN (x, y) :=

∫
ΨN (x, x2, ..., xN )Ψ?

N (y, x2, ..., xN )dx2...dxN (4)

In the following, we neglect for convenience the dimension of the integral, i.e. dxk means d3xk.
However, the reduced one-particle density matrix does not describe our system in detail, i.e. we

cannot determine the structure or any other properties of ΨN . The reason for the loss of information
is the integration over N-1 variables. Consequently, one should not refer to the reduced one-particle
density matrix in order to explain the time evolution of the bosonic system, since we want to
determine the structure of the N-particle wave function.

Nevertheless, since physicists like talking about µΨN , we always build bridges from the method
of counting bad particles as well as the N-particle state to the reduced one-particle density matrix.

1.2 The (almost) product state and bad particles

In order to repeat the question from the introduction, we prove that an (almost) product state
conserves its structure although there is pair interaction between the bosons. Because of this, we
firstly have to declare the properties of an almost product state.
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If the N-particle state can be written as product of all one-particle states ϕ

ΨN (x1, ..., xN ) =

N∏
j=1

ϕ(xj) (5)

then for sure the equality

µΨN (x, y) = ϕ(x)ϕ?(y) (6)

holds. We call (5) a product state. Physically, a system in such a state consists of N subsystems
which are totally independent of each other, so the particles do not influence each other. For that
reason, there exists no interaction between these bosons and consequently the particles are not
correlated, i.e. every particle itself lives for its-own.

Moreover, in experimental physics it is not possible to realize N identical one-particle states
called ϕ even if we treat a Bose-Einstein-Condensate. Note, the ratio of bosons of an ideal Bose-Gas
which are in the ground state of an N-particle system is based on the absolute temperature in the
following way

N0

N
= 1−

(
T

TB

) 3
2

(7)

where TB is the bose temperature, i.e. the Bose-Einstein-Condensate appears for T < TB (cf. [1]
headword: Bose-Einstein-Kondensation). Up to now, in experimental physics, we cannot reach the
absolute temperature zero point and consequently there always exist particles which are not in the
ground state. Nevertheless, we assume that this number n is much smaller than the number of all
bosons. Furthermore, we are not considering ideal gases, consequently there are always particles
which are not in the state ϕ in which we want them to be. Therefore, these bosons are called bad
particles or bad bosons. We sum them up to be in the symmetric, orthogonal and normalized state
χ ∈ L2

(
R3n

)
. Here the orthogonality is meant to be

∫
χ? (..., xk, ...)ϕ (xk) dxk = 0. (8)

An N-particle almost product state with n� N bad particles looks like

ΨN =
1√(
N
n

)
χ (x1, ..., xn) ·

N∏
j=n+1

ϕ (xj)


sym.

(9)

which is normalized to one in L2
(
R3N

)
norm. Here the index sym. assures that ΨN is symmetric

and that is the reason, why the bosonic character is conserved. In order to emphasize its meaning,
(9) consists of a sum of all possibilities to distribute n bad particles to N slots representing the N

particles, which are at all
(
N
n

)
summands. The binomial coefficient is defined as

(
N

n

)
:=

N !

(N − n)! · n!
. (10)
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1.3 From an (almost) product state ΨN to the convergence of µΨN

Next, we prove by hand, that for an almost product state, the reduced one-particle density matrix
converges in operator norm in the mean field limit N →∞, i.e.

µΨN (x, y)
N→∞−−−−→ ϕ(x)ϕ?(y) in operator norm (11)

holds true. As a consequence, we compute

µΨN (x1) =
1(
N
n

)
∫ (

χ (x1, ..., xn) ·
N∏

k=n+1

ϕ (xk)

)
sym.

×

(
χ? (x1, ..., xn) ·

N∏
k=n+1

ϕ? (xk)

)
sym.

dx2...dxN

=
1(
N
n

) {(N − 1

n

)
ϕ(x1)ϕ?(x1)

+

(
N − 1

n− 1

)∫
χ (x1, x2, ..., xn)χ? (x1, x2, ..., xn) dx2...dxn

}
=
(

1− n

N

)
ϕ(x1)ϕ?(x1) +

n

N

∫
χ (x1, x2, ..., xn)χ? (x1, x2, ..., xn) dx2...dxn

N→∞−−−−→ ϕ(x1)ϕ?(x1) in operator norm (12)

where we used that only the diagonal terms of the product contribute and the general fact that(
N
n

)
=
(
N−1
n

)
+
(
N−1
n−1

)
holds true. The first summand in (12) represents those diagonal terms in

which x1 is a good particle, whereas the second one stands for those diagonal terms in which x1 is
a bad particle.

Since the reduced one-particle density matrix above already converges in absolute value to the
pure state ϕ, it also converges in operator norm. For clearness, we write it in detail, but for
convenience we replace the integral by R.

∣∣∣∣∣∣(1− n

N

)
|ϕ〉 〈ϕ|+ n

N
R− |ϕ〉 〈ϕ|

∣∣∣∣∣∣
op

=
n

N
||R− |ϕ〉 〈ϕ|||op =

n

N
(13)

The norm is equal to one because when the difference of operators acts on a normalized linear
combination of ϕ and an eigenstate of R with eigenvalue one, we receive again a state which is
normalized to one. Applying now the mean field limit N → ∞ proves the circumstance given
above. In fact, an almost product state consists of correlated particles, however, we can neglect the
correlation in the mean field limit. Consequently, an almost product state has in the mean field
limit the same properties as a product state.

1.4 The counting measure ωϕ

In the following, we introduce a mechanism which allows us to determine the number of bad particles
given an N-particle state ΨN . Therefore, we sandwich the corresponding reduced one-particle matrix
with ϕ, then we use Fubini to interchange the integrals. At the end we receive an expression which
can by introducing a new projector be interpreted as an object counting bad particles.
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〈
ϕ(x)

∣∣µΨN (x, y)
∣∣ϕ(y)

〉
=

∫
x

ϕ?(x)

∫
x2,...,xN

ΨN (x, x2, ..., xN )dx

∫
y

Ψ?
N (y, x2, ..., xN )dx2...dxNϕ(y)dy

=

∫
x2,...,xN

∫
y

Ψ?
N (y, x2, ..., xN )ϕ(y)dy

∫
x

ϕ?(x)ΨN (x, x2, ..., xN )dx · dx2...dxN

= 〈〈ΨN |ϕ〉 〈ϕ|ΨN 〉〉 (14)

We assume ϕ and ΨN are nice functions and therefore we can use Fubini to interchange the integrals.
In addition 〈〈· |· 〉〉 is the scalar product defined in L2

(
R3N × R3N

)
→ C, whereas 〈· | ·〉 is the scalar

product on L2
(
R3 × R3

)
. Let us define the projectors pϕi , q

ϕ
i : L2(R3) → L2(R3) which act on the

particle xi

pϕi := |ϕ(xi)〉 〈ϕ(xi)| = ϕ(xi) 〈ϕ(xi) | ·〉
qϕi := 1− pϕi . (15)

Notice that qϕi and pϕi are orthogonal, i.e. qϕi p
ϕ
i = pϕi q

ϕ
i = 0. As a consequence, (14) can be written

as

〈
ϕ
∣∣µΨN

∣∣ϕ〉 = 〈ϕ(x1) |ΨN (x1, x2, ..., xN )〉〉 〈〈ΨN (x1, x2, ..., xN )|ϕ(x1)〉
= 〈〈ΨN (x1, x2, ..., xN ) |ϕ(x1)〉 〈ϕ(x1)|ΨN (x1, x2, ..., xN )〉〉
= 〈〈ΨN |pϕ1 |ΨN 〉〉
= 1− 〈〈ΨN |qϕ1 |ΨN 〉〉
=: 1− ωϕ. (16)

Due to the symmetry of ΨN concerning particle exchange, we can rewrite ωϕ by replacing qϕ1 by∑N
j=1

1
N q

ϕ
j . Therefore the following equation holds true

ωϕ = 〈〈ΨN |qϕ1 |ΨN 〉〉
= 〈〈ΨN |qϕl |ΨN 〉〉

=

〈〈
ΨN

∣∣∣∣ 1

N
·Nqϕl

∣∣∣∣ΨN

〉〉

=

〈〈
ΨN

∣∣∣∣∣∣ 1

N

N∑
j=1

qϕj

∣∣∣∣∣∣ΨN

〉〉

=
1

N

N∑
j=1

〈〈
ΨN

∣∣qϕj ∣∣ΨN

〉〉
. (17)

On this line, one can see that ωϕ is a counting measure, determining the ratio of particles which
are not in the state ϕ, compared to the whole number of particles. Since we treat a bosonic system,
it gives the ratio of bad particles compared to the number of all bosons and not the bad particles
itself.

The counting measure ωϕ is a tool which determines the distance between an almost product
state and a product state. Furthermore, one can think about a deviation in L2-sense, however,
this is in our consideration too strong. We want to have a statement about how far we are away
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from a product state. In order to illustrate this issue, we compute the difference in L2-norm of an
N-particle product state and an N-particle state with n bad bosons.

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
N∏
j=1

ϕ (xj)−
1√(
N
n

)
χ (x1, ..., xn) ·

N∏
j=n+1

ϕ (xj)


sym.

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

2

=

∫ ∣∣∣∣∣∣∣∣
N∏
j=1

ϕ (xj)−
1√(
N
n

)
(
χ (x1, ..., xn)

N∏
k=n+1

ϕ (xk)

)
sym.

∣∣∣∣∣∣∣∣
2

dx1...dxN

=

∫ 
N∏
j=1

|ϕ (xj)|2 − 2Re

 N∏
j=1

ϕ? (xj)
1√(
N
n

)
(
χ (x1, ..., xn)

N∏
k=n+1

ϕ (xk)

)
sym.



+

∣∣∣∣∣∣∣∣
1√(
N
n

)
(
χ (x1, ..., xn)

N∏
k=n+1

ϕ (xk)

)
sym.

∣∣∣∣∣∣∣∣
2 dx1...dxN

= 2 = constant. (18)

Here, the constant result just reflects that ΨN is not a product state since there is no dependency
on n or N. In contrast, the counting measure characterizes the distance to a product state with a
number and even permits modifications when we apply the mean field limit. Hence, ωϕ is more
significant and softer than the L2-norm. For completeness, we add the computation of the ratio of
bad particles of an almost product state which we described in (9). The steps are similar to the
calculation we do in (12).

ωϕ = 〈〈ΨN |qϕ1 |ΨN 〉〉 = 1− 〈〈ΨN |pϕ1 |ΨN 〉〉

= 1−

(
N−1
n

)
(
N
n

) =
n

N
(19)

In order to emphasize it again, an almost product state has the physical property that most of the
bosons are uncorrelated and therefore are in our consideration in identical one-particle states. The
correlated particles destroy the product structure which leads in L2-norm to the statement, that an
almost product state can never behave like a product state. Whereas, the effect with respect to the
counting measure is in the mean field limit not of great importance, i.e. if we look from a long way
off, the almost product state has the same properties as a product state.

1.5 An alternative counting operator

As a remark, we introduce another notation representing an operator which counts the number of
bad particles and therefore is equivalent to the used qϕ1 . First of all, we define

Pϕn =

 n∏
j=1

qϕj ·
N∏

j=n+1

pϕj


sym.

(20)
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where sym. again stands for symmetric, replacing a sum of
(
N
n

)
terms in order to ensure that every

combination of n bad particles out of the N particles x1, ..., xN appears. In addition, we can show
that Pϕn is a projector. Therefore we compute the product of two different operators.

Pϕn P
ϕ
m =

 n∏
j=1

qϕj ·
N∏

k=n+1

pϕk


sym.

·

 m∏
j=1

qϕj ·
N∏

k=m+1

pϕk


sym.

=

 n∏
j=1

qϕj ·
N∏

k=n+1

pϕk


sym.

δnm = Pϕn δnm (21)

Since only the diagonal terms in the symmetrization survive due to the projection properties of pϕl
and qϕl . Furthermore, the sum of Pϕn over all numbers of bad particles from 0 to N has to be the
identity on L2

(
R3N

)
. In order to show this, we write

N∑
n=0

Pϕn =

N∑
n=0

 n∏
j=0

qj

N∏
k=n+1

pϕk


sym.

=

N−1∑
n=0

 n∏
j=0

qj

N−1∏
k=n+1

pϕk


sym.

(qN + pϕN )

= ... =

N∏
j=1

(
qj + pϕj

)
=

N∏
j=1

1j =
N×
j=1

1j = 1R3N (22)

Here, 1j represents the identity for the j-th particle and 1R3N expresses the identity for the whole

system. Besides,
N×
j=1

1j states the direct product of all one-particle identities. Moreover, Pϕn acting

on an N-particle state gives a one if exactly n particles are bad, else a zero.
By the way, if there are any mixed states which are neither good nor bad, the operator just gives

a product of all the different weights of the bad state.
Moreover we multiply Pϕn with the weight n

N and then sum over all possible numbers of bad
particles, i.e. from 0 to N. Then we gain an operator giving the relative number of bad bosons of
an N-particle state. To conclude, the created operator reads as

n̂ =

N∑
n=0

n

N
Pϕn , (23)

which is sandwiched by an N-particle state the same as

ωϕ = 〈〈ΨN |qϕ1 |ΨN 〉〉 =

〈〈
ΨN

∣∣∣∣∣
N∑
n=0

n

N
Pϕn

∣∣∣∣∣ΨN

〉〉
, (24)

In order to prove this identity (24), we multiply both operators with Pϕk , moreover we use 〈〈Φ |qϕl |Φ〉〉 =
1
N

∑N
j=1

〈〈
Φ
∣∣qϕj ∣∣Φ〉〉, which is only true since we act on symmetric wave functions Φ ∈ L2

(
R3N

)
.

Therefore we have to show that the identity

1

N

N∑
j=1

qϕj P
ϕ
k =

k

N
Pϕk (25)
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holds. The equation above is valid because Pϕk consists of k different qϕl . Therefore the sum gives

k times a 1 since (qϕl )
2

= qϕl and N-k times a 0 since qϕl p
ϕ
l = 0 holds true, due to the projector

properties. Consequently the equality (25) follows. On the righthand side, we receive according to
(21)

N∑
n=0

n

N
Pϕn P

ϕ
k =

k

N
Pϕk . (26)

The sum is killed as a consequence of the projector property of the qϕl and pϕl . Finally, with (23)
we gain an alternative operator which produces the ratio of bad particles.

1.6 Common ground of µΨt
N and ωϕt

All statements given up to this point are valid for all times t. So far, we have neglected the time
dependence in our consideration, in the following, we add the time in our notation. Moreover, the
dynamics of Ψt

N and ϕt are given by the Schrödinger equation and Hartree equation respectively

which we discuss in section 3.1 and 3.2. In order to show the common ground of µΨtN and ωϕ
t

, we
prove the following lemma.

Lemma:
The reduced one-particle density matrix converges in operator norm in the mean field limit to the
pure state given by ϕt for all times t if and only if the counting measure converges to zero at this
point of time.

Proof:
We show this with the following equality

0 =

〈
ϕt
∣∣∣∣(∣∣ϕt〉 〈ϕt∣∣− lim

N→∞
µΨtN

)
op

∣∣∣∣ϕt〉
= 1− lim

N→∞

〈
ϕt
∣∣∣µΨtN

∣∣∣ϕt〉
=
〈〈

Ψt
N

∣∣Ψt
N

〉〉
− lim
N→∞

〈〈
Ψt
N

∣∣ϕt〉〈ϕt ∣∣Ψt
N

〉〉
= lim
N→∞

〈〈
Ψt
N

∣∣∣1− pϕt1

∣∣∣Ψt
N

〉〉
= lim
N→∞

〈〈
Ψt
N

∣∣∣qϕt1

∣∣∣Ψt
N

〉〉
= lim
N→∞

ωϕ
t

= 0 (27)

which can be read in both directions.

Finally, to close the circle, we give a heuristic argument in order to show that

lim
N→∞

ωϕ
t

= lim
N→∞

〈〈
Ψt
N

∣∣∣qϕt1

∣∣∣Ψt
N

〉〉
= 0 (28)

leads to the statement that Ψt
N is an almost product state. For convenience, we write in the

following,

0 ≈
〈〈

Ψt
N

∣∣∣qϕt1

∣∣∣Ψt
N

〉〉
=
〈〈

Ψt
N

∣∣∣Ψt
N − p

ϕt

1 Ψt
N

〉〉
. (29)

Consequently, the expression (28) corresponds to
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pϕ
t

1 Ψt
N ≈ Ψt

N (30)

which is defined as

pϕ
t

1 Ψt
N (x1, ..., xN ) = pϕ

t

k Ψt
N (x1, ..., xk, ..., xN )

= ϕt(xk)

∫
ϕt
?
(xk)Ψt

N (x1, ..., xk, ..., xN ) dxk ≈ Ψt
N (x1, ..., xk, ..., xN ) . (31)

Here, the first equivalence holds true since Ψt
N is symmetric and k ∈ {1, ..., N}. Furthermore, the

projector acts on the N-particle state by replacing the one-particle state of particle xk with ϕt.
Finally, we arrive at an N-particle state which is approximately identical to Ψt

N . Consequently,
most of the particles in this state behave well and are in the one-particle state ϕt which we want.
In other words, a small amount of bosons which can be neglected in the mean field limit, is in some
other state.

Next, we consider the case that there are n� N bad particles in our bosonic system. Without
loss of generality, we assume that these bosons are in some state which is orthogonal to ϕt. Therefore,
we end up with an N-particle state which looks as described in (9) while (8) holds true. Since Ψt

N

is invariant with respect to particle exchange, only n summands out of
(
N
n

)
disappear when pϕ

t

1

acts on Ψt
N . That is the reason why pϕ

t

1 Ψt
N and Ψt

N do not differ from each other in a rough way.
Consequently, (30) holds true for large N.

To sum up, if we take (28) for granted, then Ψt
N can be written as an almost product state.

To conclude, in this part, we declare the connections between an almost product state Ψt
N , the

reduced one-particle density matrix µΨtN and the counting measure ωϕ
t

. The final goal is to prove
that an initial almost product state keeps its structure for all finite times t. The most obvious
way to show this is the analysis of the time evolution of the ratio of bad particles. Assuming that
the number of bad particles is small in the initial state and vanishes in the mean field limit, we
demonstrate in the following that the same holds true for all finite times. Moreover, we use the
equivalences (2) illustrated in this section in order to arrive at the aim described above. To sum up,
we confirm that

Ψ0
N Ψt

N

almost product state almost product state

m m

µΨ0 N→∞−−−−→
∣∣ϕ0
〉 〈
ϕ0
∣∣ µΨt N→∞−−−−→ |ϕt〉 〈ϕt|

m m

ωϕ
0 N→∞−−−−→ 0 ⇔ ωϕ

t N→∞−−−−→ 0

is valid for all finite times. As drawn above, we connect the initial properties with the characteristics
at some finite time t via the ratio of bad particles. Consequently, it is enough to give an upper
bound for the ratio of bad particles which converges in the mean field limit to 0.

With respect to this objective, we take advantage of the Grønwall Lemma which we present in
the following. For reasons of completeness, we also add one of its proofs.
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2 The Grønwall Lemma

Lemma:
Let a(t) and b(t) be non-negative continuous functions defined on an interval [0, T ] with T > 0. Let
f(t) be a non-negative continuous differentiable function on [0, T ] with

f ′(t) ≤ a(t)f(t) + b(t) ∀t ∈ [0, T ] (32)

Then

f(t) ≤ e
t∫
0

a(s)ds

f(0) +

t∫
0

b(s)e
−

s∫
0

a(τ)dτ
ds

 (33)

holds true for all t ∈ [0, T ]

Proof:
Let g(t) ∈ C1 ([0, T ]) be such that

g′(t) = a(t)g(t) + b(t) (34)

This is an ordinary differential equation which can be solved uniquely on [0, T ]. Accordingly, the
solution of this initial value problem reads as

g(t) = e

t∫
0

a(s)ds

g(0) +

t∫
0

b(s)e
−

s∫
0

a(τ)dτ
ds

 . (35)

Moreover, we take for granted that

f(0) ≤ g(0)

we shall show, that f(t) ≤ g(t) (36)

holds true for all t ∈ [0, T ].
Assume for contradiction, there is a t1 ∈ (0, T ) such that f(t1) > g(t1). Since f and g are continuous
functions on [0, T ], the intermediate value theorem assures that there is a t0 ∈ (0, T ) where we define
t0 as t0 := min {t ∈ (0, t1) | g(t) = f(t)}.

Now, we deal with the function

F : [0, T ]→ R
t 7→ F (t) = g(t)− f(t) (37)

We know from above that F (0) ≥ 0 and F (t0) = 0 holds. Because of the mean value theorem for
continuous functions, there exists a t̃ ∈ (0, t0) such that

F ′(t̃) =
F (t0)− F (0)

t0 − 0
= −F (0)

t0
≤ 0 (38)

and therefore
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g′
(
t̃
)
− f ′

(
t̃
)
≤ 0 (39)

Moreover, from the definition and given constraints we can deduce

a
(
t̃
) (
g
(
t̃
)
− f

(
t̃
) )
≤ g′

(
t̃
)
− f ′

(
t̃
)
≤ 0 (40)

and as a consequence we gain

g
(
t̃
)
≤ f

(
t̃
)
. (41)

However, this contradicts to the definition of t0 to be the smallest positive value apart from 0 such
that the functional values of f and g agree with each other. That is the reason, why f(t) ≤ g(t)
holds for all t ∈ [0, T ].
Finally

f(t) ≤ e
t∫
0

a(s)ds

f(0) +

t∫
0

b(s)e
−

s∫
0

a(τ)dτ
ds

 (42)

is bounded from above. In our later description, t is the time parameter which can be stretched
arbitrarily, since T is not a fixed value. Therefore we should ask, under which conditions is the
upper bound in (42) reasonable, especially when T goes to infinity. Since f(t) is a non-negative
function and in order to get a useful limit from above, we have to exclude the fact that it blows up
to infinity. Consequently, we have to demand the functions a(t) and b(t) to be integrable on the
interval [0,∞).

With a view to this lemma, we formulate its property in this way. Under the condition that
any function whose derivative can be estimated with the function itself from above, the Grønwall
Lemma allows us to restrict the function from above via an initial value and any smooth functions.

In the treated case, we use it as follows. If we can show that the time derivative of the ratio
of bad particles ω̇ϕ

t

has an reasonable upper bound depending in an affine way on ωϕ
t

, then as a
consequence of the Grønwall Lemma, we will get a limit from above for ωϕ

t

.

3 The Bosonic System

We are now at the point where we have to describe the bosonic N-particle system in detail.

3.1 The Hamiltonian of the system

It was already mentioned that due to the bosons, the N-particle state ΨN (x1, ..., xN ), normalized
to one, is symmetric under the interchange of particles. Moreover each boson moves with a kinetic
energy in a perhaps time dependent potential At. In addition, we allow pair interaction, whereas we
neglect for simplicity the interaction of three or more particles. Besides, the structure of the result
will not change, if we also accept interaction of higher order. To conclude, the Hamiltonian

HN =

N∑
j=1

(−∆j) +

N∑
j=1

At(xj) +
∑

1≤j<k≤N

VN (xj − xk) (43)

describes the N-particle system, where we set ~2

2m to one.
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We have to consider the real valued interaction VN , i.e. a physical correct choice of the order
due to the number of particles, as well as its domain. Note that the order of the kinetic energy
as well as the order of the potential are fixed to the number of particles N according to expression
(43). We can imagine different possibilities of the sharing out of the energy in the system. If the
kinetic term dominates the energy, we can treat the bosons as free particles moving in a potential.
This means, the particles do not feel each other. However, if the interaction energy is much larger
than the kinetic energy of the bosons, it follows that we can interpret the system containing just
resting particles as a result of the interaction. We want to have a balanced and therefore a physical
interesting system. Here, we mean balanced in the sense of the order of the kinetic term equals the
order of the interaction. As a consequence we need to scale VN with 1

N to reach a final order of N
in the Hamiltonian

VN (x) =
1

N
v(x). (44)

The reason for that is, that
∑

1≤j<k≤N
VN (xj − xk) consists of

(
N
2

)
terms, which is of order N2.

Moreover, another heuristic argument for the scaling factor in (44) is the following. We assume
that the distribution of particles in a volume element in our bosonic system is homogeneous and
proportional to N. Therefore, if the number of particles grows, also the strength of the interaction
increases linear in N in the volume element. In order to keep the strength of the pair interaction
independent from the particle number, we rescale the interaction term with 1

N .
Besides, for some reasons which become clear later, we also take for granted, that the interaction

VN , v ∈ L2r
(
R3N

)
with 1 ≤ r ≤ ∞ arbitrary, coming from an Hölder estimate.

Similarly, the time dependent N-particle state Ψt
N satisfies the Schrödinger equation, with the

Hamiltonian from (43)

i∂tΨ
t
N = HNΨt

N . (45)

In principle, we are done and can stop here, just at this point. The reason for that is, given ΨN at
time t = 0, we can determine Ψt

N via this partial differential equation. Afterwards, we count the
bad particles at time t in Ψt

N by computing

ωϕ
t

=
〈〈

Ψt
N

∣∣∣qϕt1

∣∣∣Ψt
N

〉〉
(46)

and this result is what we want. It sounds easy, however, the computation stretches to infinity,
because we are studying systems with a number of particles in the range of 104 − 107 (cf. [2] p.
812), converging in the mean field limit to infinity.

That is the reason, why we have to follow another strategy. As already mentioned, we want
to make use of the Grønwall lemma. Therefore we have to estimate the absolute value of the time
derivative of ωϕ

t

and hence the derivative of qϕ
t

.

3.2 The Hartree equation of one single boson

First of all, let us have a look on the behavior of one single particle in the mean field of all the N-1
others. Therefore, we make an intuitive ansatz. We can be sure that a particle has kinetic energy,
as well as it moves in the external potential. In addition we also have to take into account the pair
interaction with the remaining other particles, i.e. a test particle moves in a potential caused by
the other bosons. To conclude, our ansatz for the Schrödinger equation of one particle in the mean
field of all the others reads as
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i∂tϕ
t =

(
−∆ +At + (N − 1)W

)
ϕt (47)

which is the macroscopic consideration of our system. We have to think about the interaction term
W based on the pair interaction. We know, if two particles x and y interact with each other, we
get a term VN (x− y) where VN is the same interaction which we already used in (43). However, if
m particles interact with x, we obtain

∑m
j=1 VN (x− yj). Moreover, in the case that more than one

particle is localized near the position yj we have to introduce another function, in other words a
weight Z(yj) giving the number of particles around the place yj . For convenience, we can normalize
the weight to 1. Therefore we receive the formula

m∑
j=1

Z(yj)

N
VN (x− yj). (48)

The discrete function
Z(yj)
N corresponds to the empirical density, expressing the distribution of N

particles in the position space R3 around our test particle x. For large N, especially N going to

infinity, the sum above transforms into an integral and
Z(yj)
N changes into a continuous empirical,

time dependent, density ρt(y). Because of this limit, the interaction term in (47) can be written as

W = V ρ
t

N =

∫
ρt(y)VN (x− y)dy. (49)

Finally, we have to clarify the structure of ρt(y). We show next that

ρt(x) = ρtth(x) =
∣∣ϕt(x)

∣∣2 (50)

where ρtth(x) means the theoretical density in R3. In general, this expression describes a probability
distribution of the places of the particles in R3. Indeed, it is a calculated theoretical characteristic,
which is accompanied by the expectation value and the standard deviation. Let ρt be a probability
distribution, then dp = ρtdV is the probability to find a particle in an explicit, infinitesimal volume
dV at the place x. Let us stretch this statement to k particles out of N are at the position x and

we arrive at the Binomial distribution B(N, k, p) =
(
N
k

)
pkqN−k, where p is the probability that

one particle is at x and q := 1 − p. The expectation value can be computed as Np as well as the
standard deviation σ =

√
Npq, which figures out the average deviation of the expectation value.

For large N, we can be sure according to the law of large numbers that the ascertainable number of
particles being located at the point x, n(x) fulfills

|Np− n(x)| <
√
N. (51)

Relatively, the experimental measurable value n(x)
N has to converge to p because 1√

N
converges to 0

for N going to infinity.

Let us build a bridge form the theoretical probability distribution to the experimental confirmable
empirical distribution. The difference between both

∣∣ρtth − ρtemp∣∣ ∈ O
(√

N
)

(52)

has to be at most of order
√
N as studied above. Since the Hartree equation works in the macroscopic

system, we need a particle distribution which is measurable in the experiment and not theoretically
predicted. Therefore we plug this result into (49) and receive
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V ρ
t

N =

∫
ρtemp(y)VN (x− y)dy +

∫
O
(√

N
)
VN (x− y)dy. (53)

To come to an end, for the reason that we consider the mean field limit and due to the fact that
VN ∈ O

(
1
N

)
holds, the second summand converges like 1√

N
to 0.

In order to go from the probability to the empirical density we have to pay a price, a term of
order 1√

N
which can be neglected for sufficient large N. Finally (47) reads as

i∂tϕ
t = hmfN ϕt

i∂tϕ
t =

(
−∆ +At + (N − 1)

(
VN ∗ |ϕt|2

) )
ϕt (54)

which is called the Hartree equation and where we have to emphasize that |ϕt|2 is an empirical
density if and only if we treat systems with big particle numbers. For that reason, this ansatz of the
one-particle Schrödinger equation just makes sense, if and only if we analyze many particle systems.
Notice, ∗ denotes a convolution and is defined as (f ∗ g)(x) =

∫
f(y)g(x− y)dx.

By the way, it seems surprising that the Hartree equation is nonlinear with respect to the
one-particle state. It is the macroscopic description of one single particle in the bosonic system,
whereas the Schrödinger equation determines the dynamics of the whole system and is indeed linear.
Therefore, one could argue, that there are some inconsistencies.

In order to explain this issue, we have to look at the general picture, i.e. the equality as well as
the initial wave function. For sure, the Schrödinger equation itself is linear, however, we take for
granted that the initial N-particle state has (almost) product structure and is therefore nonlinear
with respect to the one-particle state. Moreover, the Hartree equation is nonlinear in ϕ while its
initial condition is the one-particle state itself.

The point is, we have to prove that this heuristic discussion of the Hartree equation can be done
rigorously, i.e. the considered bosonic system really behaves in that way. In section 3.4.4 we go into
details and show that the interaction term is chosen right.

3.3 Fair comments on the literature

In the literature there is often claimed that the Hartree equation can be derived from varying the
energy 〈〈ΨN |HN |ΨN 〉〉 with respect to a single one-particle function ϕ under the condition that this
state is normalized to one. Computationally, we get the right equation. The interaction term results
with the correct structure as well as the prefactor corresponds to our preliminary consideration.

We present two short and very important reasons, why this computation is right, however, it
does not explain the physics which is behind.
To start with, the computation holds for every particle number N, especially also for less N. As
already mentioned, in the discussion above, in order to make sense, we intend the interaction term
to be weighted with the empirical density - not the probability density. In the deviations in the
literature there is never lost a word on “N going to infinity”, which is an important point to be
taken into account.

To be continued, there is an unknown input, the N-particle state ΨN . In the literature, there is
assumed, that for all times t, ΨN can be expressed by a product state. Why can we take exactly this
structure for granted? Who tells us that this ansatz corresponds to the time evolution and therefore
to the physics in our system? For the sake of simplicity, we can demand such a ΨN , nevertheless,
in order to keep generality there is no argument, why nature should behave like this. It is a crucial
hypothesis to demand that initial states which have product structure remain for all times states
with product form, too. Due to the fact that we have correlation and interactions, it is quite courage
to claim this out of the blue.
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In the following addition, we show that in general we cannot take for granted that an initial
product state of an arbitrary system keeps its structure at least for all finite times t and for all particle
numbers N. For that reason, we consider a three dimensional system consisting of two identical free
bosons which interact via Coulomb interaction and which are located at x1 and x2. Moreover, we
assume that the initial two-particle eigenstate has product structure, i.e. Ψ0 (x1, x2) = ϕ0(x1) ·
ϕ0(x2), where ϕ represents an in L2

(
R3
)
-norm normalized one-particle state. For convenience, we

multiply the Coulomb interaction with a factor of 2. Consequently, if we take for granted that Ψt

keeps its product structure for finite t, the time-dependent Schrödinger equation reads as

(
−∆x1 −∆x2 +

2

|x1 − x2|

)
ϕt(x1)ϕt(x2) = i∂t

(
ϕt(x1)ϕt(x2)

)
, (55)

reordering yields to

[(
−∆x1

+
1

|x1 − x2|

)
ϕt(x1)− iϕ̇t(x1)

]
ϕt(x2) = −

[(
−∆x2

+
1

|x2 − x1|

)
ϕt(x2)− iϕ̇t(x2)

]
ϕt(x1)

(56)

which can also be written as

−ϕ
t(x1)

ϕt(x2)
=

(
−∆x1

+ 1
|x1−x2|

)
ϕt(x1)− iϕ̇t(x1)(

−∆x2
+ 1
|x2−x1|

)
ϕt(x2)− iϕ̇t(x2)

(57)

This expression has to hold true for all x1, x2 ∈ R3 and therefore also for the limit x1 → x2, which
exists, since ϕ(x1) and ϕ(x2) exist. Nevertheless, for small distances the Coulomb interaction term
dominates the right hand side of (57). In this case, we arrive at

−ϕ
t(x1)

ϕt(x2)
=
ϕt(x1)

ϕt(x2)
. (58)

From this result, we infer that ϕt(x1) = 0 ∀x1 ∈ R3 and therefore ϕt ≡ 0. However, this contradicts
to the assumption ||ϕt||2 = 1.

To conclude, provided that the initial state of a system is a product state, the generalization for
small particle numbers to finite times usually fails. Consequently, the wave function of the whole
system cannot be written as a product state.
In fact, there are two things to show, on the one hand the validity of the Hartree equation and on
the other hand the conservation of the product structure of the N-particle state for all times t and
huge N. We will show the former by the by, whereas the latter is really hard work.

In addition, what do we mean by varying 〈〈ΨN |HN |ΨN 〉〉? To be more concrete, let us better

write varying 〈〈
∏N
j=1 ϕj |HN |

∏N
j=1 ϕj〉〉. This means, that we are looking for extreme values of this

scalar product with respect to ϕ. Since our system is stable, we know that the energy has to be
bounded from below, despite, the energy has no upper limit. Indeed, a physical system looks always
for the lowest possible energy state and therefore, we can find a minimum, the ground state energy
of the N particles called EN,G, with the corresponding ground state ϕG. Moreover, we use the mean
field Hamiltonian as defined in (54).
In this way, we just arrive at one equation

hmfN ϕG =
EN,G
N

ϕG (59)



3 THE BOSONIC SYSTEM 16

where
EN,G
N denotes the energy of every single particle, since we consider bosons and ϕG the ground

state. On the one hand, since hmfN is for sure not a projection, it is impossible to infer a unique
operator with the help of one single eigenstate and its corresponding eigenvalue. On the other hand,
we cannot deduce any advantage for the determination of the dynamic of ϕ, unless, we compute
every single eigenstate φ and eigenvalue e of

hmfN φ = eφ. (60)

We are not going to proceed in this way, because we gain afterwards with less effort a more general
result, which also includes this topic.

3.4 The upper bound of the relative number of bad particles

After having explained the physical aspects, we will continue with some calculation intending to use
Grønwall’s Lemma at the end. For the sake of simplicity, we abstain at the moment from detailed
estimates which we use in the following. Here, we just want to present the pursued idea for the
assessments. Nevertheless we add them in section 3.4.5.

3.4.1 The time derivative of ωϕ
t

Now we are studying the behavior of the time derivative of the number of bad particles at any finite
time t. As a consequence of the symmetry of Ψt

N (x1, ..., xN ) due to particle interchange, we are free
to choose one particle, e.g. we take x1. Moreover, we use the Schrödinger equation (45) to express
the time derivative of Ψt

N .

ω̇ϕ
t

=
˙(〈〈

Ψt
N

∣∣∣qϕt1

∣∣∣Ψt
N

〉〉)
=
〈〈

Ψ̇t
N

∣∣∣qϕt1

∣∣∣Ψt
N

〉〉
+
〈〈

Ψt
N

∣∣∣ ˙
qϕ

t

1

∣∣∣Ψt
N

〉〉
+
〈〈

Ψt
N

∣∣∣qϕt1

∣∣∣ Ψ̇t
N

〉〉
= i
〈〈

Ψt
N

∣∣∣HNq
ϕt

1

∣∣∣Ψt
N

〉〉
− i
〈〈

Ψt
N

∣∣∣qϕt1 HN

∣∣∣Ψt
N

〉〉
+
〈〈

Ψt
N

∣∣∣q̇ϕt1

∣∣∣Ψt
N

〉〉
= i
〈〈

Ψt
N

∣∣∣[HN , q
ϕt

1

]∣∣∣Ψt
N

〉〉
+
〈〈

Ψt
N

∣∣∣q̇ϕt1

∣∣∣Ψt
N

〉〉
(61)

Recall, that [A,B] = AB − BA denotes the commutator, moreover, HN is the N-particle Hamilto-
nian. In the following, the Hartree equation takes on the task of the Schrödinger equation in the
computation above.

q̇ϕ
t

l =
˙(

1− pϕtl
)

= −
(∣∣ϕ̇tl〉 〈ϕtl∣∣+

∣∣ϕtl〉 〈ϕ̇tl∣∣)
= i
(
hmfN (xl)

∣∣ϕtl〉 〈ϕtl∣∣− ∣∣ϕtl〉 〈ϕtl∣∣hmfN (xl)
)

= i
(
hmfN (xl) p

ϕt

l − p
ϕt

l h
mf
N (xl)

)
= i
[
hmfN (xl) , p

ϕt

l

]
= −i

[
hmfN (xl) , 1− pϕ

t

l

]
= −i

[
hmfN (xl) , q

ϕt

l

]
(62)

To sum up, we get for the time derivative of ωϕ
t

ω̇ϕ
t

= i
〈〈

Ψt
N

∣∣∣[HN − hmfN (x1) , qϕ
t

1

]∣∣∣Ψt
N

〉〉
(63)

In detail, the projector qϕ
t

1 acts only on functions depending on the variable x1. Therefore with

regard to (62), also hmfN just depends on the x1 particle. In general we receive
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ω̇ϕ
t

= i

〈〈
Ψt
N

∣∣∣∣∣∣
 N∑

k=1

(−∆k) +

N∑
k=1

At(xk) +
∑

1≤k<l≤N

VN (xl − xk)


−
(
−∆1 +At(x1) + (N − 1)

(
VN ∗

∣∣ϕt∣∣2) (x1)
)
, qϕ

t

1

]∣∣∣∣∣∣Ψt
N

〉〉
. (64)

Since for arbitrary projectors T and S and for all 1 ≤ i, j ≤ N with i 6= j

[T (xi), S(xj)] = 0 (65)

holds, only the x1 dependent terms in HN do not commute in (63). Besides, the interaction term
consists of the sum over all other remaining particles x2, ...xN . We apply the argument of symmetry
and arrive at N-1 times the interaction of one arbitrarily labeled particle, say x2 with x1. That is
the reason, why the time derivative of ωϕ

t

simplifies to

ω̇ϕ
t

= i
〈〈

Ψt
N

∣∣[(−∆1 +At(x1) + (N − 1)VN (x1 − x2)
)

−
(
−∆1 +At(x1) + (N − 1)

(
VN ∗

∣∣ϕt∣∣2) (x1)
)
, qϕ

t

1

]∣∣∣Ψt
N

〉〉
= i(N − 1)

〈〈
Ψt
N

∣∣∣[VN (x1 − x2)−
(
VN ∗

∣∣ϕt∣∣2) (x1), qϕ
t

1

]∣∣∣Ψt
N

〉〉
(66)

We recognize that the change in time of the number of bad particles is based on the difference of
the real interaction due to the Hamiltonian HN and the assumed interaction term with respect to
the Hartree equation. To repeat, if we can show, that (66) converges to zero for N going to infinity,
then we can be sure that the interaction term in the Hartree equation (54) is chosen correctly.

3.4.2 Insertion of identities

It seems that we are stuck up a blind alley, because we are not aware of any details of Ψt
N . The

only known property connected with the initial (almost) product state Ψ0
N is that ωϕ

0

converges

for N → ∞ to 0 which is equivalent to µΨ0
N

N→∞−−−−→
∣∣ϕ0
〉 〈
ϕ0
∣∣ in operator norm. Consequently, we

have no idea how Ψt
N acts on the commutator in (66). Besides, we are familiar to the action of pϕ

t

l

and qϕ
t

l to the interaction terms. As a consequence, we insert at the right position further identities

1 = pϕ
t

l + qϕ
t

l which of course do not change the equality (66), but make life easier. By the way, for
the sake of clarity we sum up the difference of the interactions in a function

f(x1, x2) = VN (x1 − x2)−
(
VN ∗

∣∣ϕt∣∣2) (x1). (67)

From the relation (66) we gain

∣∣∣ω̇ϕt ∣∣∣ = (N − 1)
∣∣∣〈〈Ψt

N

∣∣∣f(x1, x2)qϕ
t

1

∣∣∣Ψt
N

〉〉
−
〈〈

Ψt
N

∣∣∣qϕt1 f(x1, x2)
∣∣∣Ψt

N

〉〉∣∣∣
= (N − 1)

∣∣∣〈〈Ψt
N

∣∣∣(pϕt1 + qϕ
t

1 )(pϕ
t

2 + qϕ
t

2 )f(x1, x2)qϕ
t

1 (pϕ
t

2 + qϕ
t

2 )
∣∣∣Ψt

N

〉〉
−
〈〈

Ψt
N

∣∣∣(pϕt2 + qϕ
t

2 )qϕ
t

1 f(x1, x2)(pϕ
t

1 + qϕ
t

1 )(pϕ
t

2 + qϕ
t

2 )
∣∣∣Ψt

N

〉〉∣∣∣ (68)

At first glance, it seems that we created 16 terms from two terms, but looking at it again, most
of the terms cancel out and we keep three different terms with their complex conjugate. In detail,
since we drop the function f in the middle for a moment, we have for the sign
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“+”

(i) pϕ
t

1 pϕ
t

2 qϕ
t

1 pϕ
t

2

(ii) pϕ
t

1 pϕ
t

2 qϕ
t

1 qϕ
t

2

(iii) pϕ
t

1 qϕ
t

2 qϕ
t

1 pϕ
t

2

(iv) pϕ
t

1 qϕ
t

2 qϕ
t

1 qϕ
t

2

(v) qϕ
t

1 pϕ
t

2 qϕ
t

1 pϕ
t

2

(vi) qϕ
t

1 pϕ
t

2 qϕ
t

1 qϕ
t

2

(vii) qϕ
t

1 qϕ
t

2 qϕ
t

1 pϕ
t

2

(viii) qϕ
t

1 qϕ
t

2 qϕ
t

1 qϕ
t

2

“-”

(ix) qϕ
t

1 pϕ
t

2 pϕ
t

1 pϕ
t

2

(x) qϕ
t

1 pϕ
t

2 pϕ
t

1 qϕ
t

2

(xi) qϕ
t

1 pϕ
t

2 qϕ
t

1 pϕ
t

2

(xii) qϕ
t

1 pϕ
t

2 qϕ
t

1 qϕ
t

2

(xiii) qϕ
t

1 qϕ
t

2 pϕ
t

1 pϕ
t

2

(xiv) qϕ
t

1 qϕ
t

2 pϕ
t

1 qϕ
t

2

(xv) qϕ
t

1 qϕ
t

2 qϕ
t

1 pϕ
t

2

(xvi) qϕ
t

1 qϕ
t

2 qϕ
t

1 qϕ
t

2 .

Moreover, (v) and (xi), (vi) and (xii), (vii) and (xv), as well as (viii) and (xvi) cancel each other
out. Let us have a closer look at the lines (iii) and (x). Here, the interaction term of the mean field
Hamiltonian drops out, because it depends only on x1 and therefore commutes with the projectors

pϕ
t

2 and qϕ
t

2 . For that reason, the projectors act on each other which gives 0. So the projectors in
(iii) and (x) act only on V (x1 − x2) which is spherical symmetric. As a consequence, the terms (iii)
and (x) cancel each other due to the symmetry of Ψt

N .

The remaining three terms are

A) pϕ
t

1 pϕ
t

2 f(x1, x2)qϕ
t

1 pϕ
t

2 − q
ϕt

1 pϕ
t

2 f(x1, x2)pϕ
t

1 pϕ
t

2

B) pϕ
t

1 pϕ
t

2 f(x1, x2)qϕ
t

1 qϕ
t

2 − q
ϕt

1 qϕ
t

2 f(x1, x2)pϕ
t

1 pϕ
t

2

C) pϕ
t

1 qϕ
t

2 f(x1, x2)qϕ
t

1 qϕ
t

2 − q
ϕt

1 qϕ
t

2 f(x1, x2)pϕ
t

1 qϕ
t

2

Under the condition that VN is selfadjoint, also f is selfadjoint and in consequence, by acting on
both sides of the terms A), B), C) with Ψt

N , we recognize that the differences above are just the
complex conjugated of a number subtracted from itself. Since |z| = |z?| holds for all z ∈ C and by
using the triangular inequality for the absolute value, (68) simplifies to

∣∣∣ω̇ϕt∣∣∣ ≤ 2(N − 1)
(∣∣∣〈〈Ψt

N

∣∣∣pϕt1 pϕ
t

2 f(x1, x2)qϕ
t

1 pϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣
+
∣∣∣〈〈Ψt

N

∣∣∣pϕt1 pϕ
t

2 f(x1, x2)qϕ
t

1 qϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣
+
∣∣∣〈〈Ψt

N

∣∣∣pϕt1 qϕ
t

2 f(x1, x2)qϕ
t

1 qϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣) (69)

and hence,

∣∣∣ω̇ϕt∣∣∣ ≤ 2(N − 1)
(∣∣∣〈〈Ψt

N

∣∣∣pϕt1 pϕ
t

2

(
VN (x1 − x2)−

(
VN ∗

∣∣ϕt∣∣2) (x1)
)
qϕ

t

1 pϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣
+
∣∣∣〈〈Ψt

N

∣∣∣pϕt1 pϕ
t

2

(
VN (x1 − x2)−

(
VN ∗

∣∣ϕt∣∣2) (x1)
)
qϕ

t

1 qϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣
+
∣∣∣〈〈Ψt

N

∣∣∣pϕt1 qϕ
t

2

(
VN (x1 − x2)−

(
VN ∗

∣∣ϕt∣∣2) (x1)
)
qϕ

t

1 qϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣) (70)
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3.4.3 Estimates

Let us consider the inequality by estimating term by term. Since the prefactor 2(N − 1) does not
influence the computations below, we neglect it at the moment.

Now, we just want to give a general idea of every single assessment for the reason of clearness
and therefore the detailed computations follow in section 3.4.5.

For the first term in (70) we get

∣∣∣〈〈Ψt
N

∣∣∣pϕt1 pϕ
t

2

(
VN (x1 − x2)−

(
VN ∗

∣∣ϕt∣∣2) (x1)
)
qϕ

t

1 pϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣
=
∣∣∣〈〈Ψt

N

∣∣∣pϕt1

(
pϕ

t

2 VN (x1 − x2)pϕ
t

2 − p
ϕt

2

(
VN ∗

∣∣ϕt∣∣2) (x1)pϕ
t

2

)
qϕ

t

1

∣∣∣Ψt
N

〉〉∣∣∣
=
∣∣∣〈〈Ψt

N

∣∣∣pϕt1

(
pϕ

t

2

(
VN ∗

∣∣ϕt∣∣2) (x1)pϕ
t

2 − p
ϕt

2

(
VN ∗

∣∣ϕt∣∣2) (x1)pϕ
t

2

)
qϕ

t

1

∣∣∣Ψt
N

〉〉∣∣∣
= 0, (71)

where we used the identity (85) from below. The first term in (70) is identical to 0 and vanishes
independently of N. Furthermore, in section 3.4.4 we concentrate more on this issue.

In order to show the functioning of the estimates, we go on with the third summand of (70).
At the end, we want to apply Grønwall’s Lemma, therefore we have to proceed in such a way, that

ωϕ
t

=
〈〈

Ψt
N

∣∣∣qϕt∣∣∣Ψt
N

〉〉
=
∣∣∣∣∣∣qϕtΨt

N

∣∣∣∣∣∣2
2

appears in our estimates.

∣∣∣〈〈Ψt
N

∣∣∣pϕt1 qϕ
t

2

(
VN (x1 − x2)−

(
VN ∗

∣∣ϕt∣∣2) (x1)
)
qϕ

t

1 qϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣
≤
∣∣∣∣∣∣qϕt1 qϕ

t

2 Ψt
N

∣∣∣∣∣∣
2

∣∣∣∣∣∣(VN (x1 − x2)−
(
VN ∗

∣∣ϕt∣∣2) (x1)
)
pϕ

t

1 qϕ
t

2 Ψt
N

∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣qϕt1

∣∣∣∣∣∣
op

∣∣∣∣∣∣qϕt2 Ψt
N

∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣pϕt1

(
VN (x1 − x2)−

(
VN ∗

∣∣ϕt∣∣2) (x1)
)2

pϕ
t

1

∣∣∣∣∣∣∣∣ 12
op

∣∣∣∣∣∣qϕt2 Ψt
N

∣∣∣∣∣∣
2

(46)

≤
(89)

2
∣∣∣∣ϕt∣∣∣∣

2s
||VN ||2r ω

ϕt (72)

Last but not least, we concentrate on the second term of the inequality (70)

∣∣∣〈〈Ψt
N

∣∣∣pϕt1 pϕ
t

2

(
VN (x1 − x2)−

(
VN ∗

∣∣ϕt∣∣2) (x1)
)
qϕ

t

1 qϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣ (73)

Note, the part with the convolution depends only on the variable x1. Since we are allowed to
interchange functions based on different variables, it is possible to switch the order in the convolution

term. Consequently pϕ
t

2 acts on qϕ
t

2 which gives 0, because these two projectors are orthogonal to
each other. It remains

∣∣∣〈〈Ψt
N

∣∣∣pϕt1 pϕ
t

2 VN (x1 − x2)qϕ
t

1 qϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣ . (74)

Now, the problem is that both qϕ
t

i , i ∈ {1, 2}, act on the same Ψt
N which gives just a

√
ωϕt .

Nontheless, this condition is not sufficient for the assumptions of the Grønwall Lemma. That is the

reason why we have to interchange one qϕ
t

i with the interaction term. However, in general they

do not commute since VN and qϕ
t

i depend on the same variables. First, we apply Cauchy-Schwarz-

inequality to separate the two qϕ
t

i which leads on the one hand to
√
ωϕt and on the other hand

to a scalar product under the square root. Now, we use the symmetry of Ψt
N which ensures that
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〈〈
Ψt
N

∣∣∣qϕt2

∣∣∣Ψt
N

〉〉
= 1

N−1

∑N
n=2

〈〈
Ψt
N

∣∣∣qϕt2

∣∣∣Ψt
N

〉〉
holds true. Therefore, the diagonal terms of the

scalar product are of order 1
N and the remaining terms are of order 1. However, they produce

another ωϕ
t

, since these qϕ
t

i and VN commute, because they depend on different variables. Finally,

we arrive at a term which is affine with respect to ωϕ
t

and at an error of order 1
N .

∣∣∣〈〈Ψt
N

∣∣∣pϕt1 pϕ
t

2 VN (x1 − x2)qϕ
t

1 qϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣
=

1

N − 1

∣∣∣∣∣
〈〈

Ψt
N

∣∣∣∣∣
N∑
k=2

pϕ
t

1 pϕ
t

k VN (x1 − xk)qϕ
t

1 qϕ
t

k

∣∣∣∣∣Ψt
N

〉〉∣∣∣∣∣
≤ 1

N − 1

∣∣∣∣∣∣qϕt1 Ψt
N

∣∣∣∣∣∣
2

∣∣∣∣∣
∣∣∣∣∣
N∑
k=2

qϕ
t

k VN (x1 − xk) pϕ
t

1 pϕ
t

k Ψt
N

∣∣∣∣∣
∣∣∣∣∣
2

=

{
1

(N − 1)2

(
N∑
k=2

∣∣∣∣∣∣qϕtk VN (x1 − xk) pϕ
t

1 pϕ
t

k Ψt
N

∣∣∣∣∣∣2
2

+

N∑
(k 6=l)=2

∣∣∣∣∣∣VN (x1 − xk) pϕ
t

1 pϕ
t

k q
ϕt

l Ψt
N

∣∣∣∣∣∣
2

∣∣∣∣∣∣VN (x1 − xl) pϕ
t

1 pϕ
t

l q
ϕt

k Ψt
N

∣∣∣∣∣∣
2

ωϕ
t


1
2

(91)

≤
∣∣∣∣ϕt∣∣∣∣

2s
||VN ||2r

√
2

N
+ ωϕt

√
ωϕt

≤
∣∣∣∣ϕt∣∣∣∣

2s
||VN ||2r

(
ωϕ

t

+
1

N

)
(75)

where we used
√
ab ≤ a+b

2 , ∀a, b ≥ 0 in the last step.

To sum up, we get for the time derivative of ωϕ
t

an upper bound.

∣∣∣ω̇ϕt∣∣∣ ≤ 2(N − 1)

{
0 +

∣∣∣∣ϕt∣∣∣∣
2s
||VN ||2r

(
ωϕ

t

+
1

N

)
+ 2

∣∣∣∣ϕt∣∣∣∣
2s
||VN ||2r ω

ϕt
}

= (N − 1)
∣∣∣∣ϕt∣∣∣∣

2s
||VN ||2r

{
6ωϕ

t

+
2

N

}
(76)

In a previous discussion, we fixed the interaction potential VN to be scaled with 1
N , compare (44).

Hence, this yields to

∣∣∣ω̇ϕt∣∣∣ ≤ (N − 1)
∣∣∣∣ϕt∣∣∣∣

2s
||VN ||2r

{
6ωϕ

t

+
2

N

}
≤
∣∣∣∣ϕt∣∣∣∣

2s
||v||2r

{
6ωϕ

t

+
2

N

}
= 6Cϕ

t

ωϕ
t

+
2Cϕ

t

N
(77)

with Cϕ
t

= ||ϕt||2s ||v||2r > 0.

3.4.4 Interpretation of the summands of the estimate

Let us have a closer look at the machinery which we introduced in this section. First of all, there is
the counting operator ωϕ

t

which determines the number of bad particles. We take for granted that
in the initial state, the amount of particles which is not in the given state is small compared to the
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whole number of particles. This feature is in our understanding equivalent to the claim that the
N-particle state is almost a product state. Moreover, the dynamics of the whole system is known
due to the N-particle Schrödinger equation.

In the following, we give a further reason, why the Hartree equation has this form, described in
equation (54).

Let us start with a general interaction term W ∈ L2r
(
R3
)
, moreover, we add kinetic and

potential energy. Therefore we go on with this equality

i∂tϕ
t =

(
−∆x +At(x) + (N − 1)W (x)

)
ϕt (78)

We assume W to be of order 1
N such that the energy is of order 1 with respect to the particle

number. According to the method, we use the time derivative of the counting measure and the
Grønwall Lemma to estimate the counting measure itself from above for various times t. In the
treated version, the derivative looks like

∣∣∣ω̇ϕt∣∣∣ ≤ 2(N − 1)
(∣∣∣〈〈Ψt

N

∣∣∣pϕt1 pϕ
t

2 (VN (x1 − x2)−W (x1)) qϕ
t

1 pϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣
+
∣∣∣〈〈Ψt

N

∣∣∣pϕt1 pϕ
t

2 (VN (x1 − x2)−W (x1)) qϕ
t

1 qϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣
+
∣∣∣〈〈Ψt

N

∣∣∣pϕt1 qϕ
t

2 (VN (x1 − x2)−W (x1)) qϕ
t

1 qϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣) . (79)

The reason for this configuration is the dynamic of the N-particle state Ψt
N and the time evolution

of a single boson. With other words, physics determines exactly this estimate. Now, there are two
possibilities either we can show that there exists at least one W ∈ L2r

(
R3
)

for which (79) converges
or the expression always diverges in the mean field limit N → ∞. Our goal is to prove that the
first happens. Since we apply the Grønwall Lemma at the end, and in order to succeed, we have
to assure that the prefactor of ωϕ

t

is at the most of order 1 with respect to the particle numbers.

Moreover, also the additional term has to vanish in the mean field limit, such that ωϕ
t N→∞−−−−→ 0 if

and only if ωϕ
0 N→∞−−−−→ 0. This is a consequence of (42) under the condition that (32) holds true.

For this reason, we have a clear look at all three summands of (79). To start with the second
one. In our estimate in (75), we demonstrated that

∣∣∣〈〈Ψt
N

∣∣∣pϕt1 pϕ
t

2 (VN (x1 − x2)−W (x1)) qϕ
t

1 qϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣ ≤ ∣∣∣∣ϕt∣∣∣∣
2s
||VN ||2r

(
ωϕ

t

+
1

N

)
(80)

holds. Note, the assessment is independent of W . Besides, the additional factor (N − 1) from (79)
and the rescaling of VN lead to a prefactor of order 1 with respect to the particle number, as well as
1
N converges to 0 in the mean field limit. Consequently this estimate contributes to the convergence

of ωϕ
t

to 0 in the mean field limit if the initial ωϕ
0

does.

In addition, the third term has the upper bound:

∣∣∣〈〈Ψt
N

∣∣∣pϕt1 qϕ
t

2 (VN (x1 − x2)−W (x1)) qϕ
t

1 qϕ
t

2

∣∣∣Ψt
N

〉〉∣∣∣ ≤ ∣∣∣∣ϕt∣∣∣∣
2s

(||VN ||2r + ||W ||2r)ω
ϕt (81)

Since we presume that W ∈ L2r
(
R3
)

is of order 1
N then for sure, (N − 1) times the prefactor in

front of ωϕ
t

takes finite values.

To conclude, the dynamics of Ψt
N and ϕt as well as the supposition that W ∈ L2r

(
R3
)

holds

true, are the reason, why two terms of (79) lead to the convergence of ωϕ
t

to 0 in the mean field
limit.
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Because of this, the expression

〈〈
Ψt
N

∣∣∣pϕt1 qϕ
t

2 (VN (x1 − x2)−W (x1)) qϕ
t

1 qϕ
t

2

∣∣∣Ψt
N

〉〉
(82)

decides whether the introduced method passes or fails. If there exists an W (x1) in such a way, that
this scalar product is negligible in the mean field limit or even vanishes, then due to Grønwall’s
Lemma we can make reasonable statements concerning ωϕ

t

at arbitrary times t.
As already mentioned, physics contributes only in the second and in the third summand of (79),
therefore, we have to ask the question: How can we interpret (82)?

In order to repeat, physics says that the temporal change of the number of bad particles is small.
We infer this from the prefactors of ωϕ

t

in (80) and (81). The only time dependent function is the
one-particle wave function ϕt itself. Since ϕt ∈ L2s

(
R3
)

for any t ∈ [0, T ] and T finite, holds true,
also the norm ||ϕt||2s cannot go to infinity within short time intervals 0 < ∆t � 1. Nevertheless,

the scalar product (82) declares if ωϕ
t

counts the bad particles in the right way.

As a small remark, let us repeat, for the experiment, we prepare a huge number of bosons, each
in the initial state ϕt. Because of the Brownian motion and other side effects, it is not possible
to produce clean N-particle states in which every single boson is in the same state. Consequently,

there is always a small amount of particles which lives in the space span{ϕt}⊥. These are the bad

particles which we want to determine with the counting measure ωϕ
t

.

At the beginning of our experiment, at time t = 0, we assume for the initial state Ψ0
N that

ωϕ
0 ≈ 0 in the mean field limit. Then, after some short time 0 < t � 1 it could be that ωϕ

t

increases, i.e. ωϕ
t ≈ 1 and therefore, also the time derivative would increase drastically. Compared

to (80) and (81) this means that ||ϕt||2s would converge to infinity for 0 < t � 1, but this would

contradict to ϕt ∈ L2s
(
R3
)

for all t ∈ [0, T ]. As a consequence, physics demands that ω̇ϕ
t

is small

and therefore ωϕ
t

remains small. Because of this, (82) would go wrong if it blows up to infinity.
The reason for this disturbed behavior can be interpreted as follows. In spite of counting the bad
particles, the counting measure ωϕ

t

would also declare good particles, i.e. bosons which are in the
state ϕt, as bad particles.

In consequence, we have to look for an W (x1) such that (82) is negligible or even zero. However,
this condition is equivalent to the statement, that we have to find a one-particle state φt ∈ L2s

(
R3
)

which ensures that ωϕ
t

counts the bad particles which we declared as bad particles, i.e. all bosons
which are not in the state ϕt. Therefore, we have to compute

pϕ
t

2 (VN (x1 − x2)−W (x1)) pϕ
t

2 = pϕ
t

2 VN (x1 − x2) pϕ
t

2 − p
ϕt

2 W (x1) pϕ
t

2

= pϕ
t

2

(
VN ∗

∣∣ϕt∣∣2) (x1) pϕ
t

2 − p
ϕt

2 W (x1) pϕ
t

2

= pϕ
t

2

((
VN ∗

∣∣ϕt∣∣2) (x1)−W (x1)
)
pϕ

t

2 . (83)

As a result, the φt we want is identical to ϕt which represents the good states. Moreover, the
interaction term of the Hartree equation has to have the form

W (x1) =
(
VN ∗

∣∣ϕt∣∣2) (x1) . (84)

But this is exactly the formula we already determined in the discussion in section 3.2.

To conclude, the easiest term in the calculation in section 3.4.3 which gives zero takes full
responsibility for the success of this shown method and proves at the same time the correctness of
the Hartree equation (54).
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Finally, the well known Schrödinger equation, as well as the Hartree equation ensure the passing
of the counting method.

3.4.5 Used estimates in detail

In the following, we demonstrate the used estimates of section 3.4.3. Here, ϕtj = ϕt(xj) denotes the

wave function describing the jth particle.
First of all, we show the identity, which ensures that the first summand in (70) is identical to 0.

pϕ
t

2 VN (x1 − x2)pϕ
t

2 = |ϕ(x2)〉
∫
ϕ?(x2)VN (x1 − x2)ϕ(x2)dx2 〈ϕ(x2)|

= pϕ
t

2

(
VN ∗ |ϕ|2

)
(x1)

= pϕ
t

2

(
VN ∗ |ϕ|2

)
(x1)pϕ

t

2 (85)

where we only apply the projector property pϕ
t

2 =
(
pϕ

t

2

)2

.

In the following computations, we need several times the norm of an operator which acts on a
one-particle state φ(x1) ∈ L2(R3).

∣∣∣∣∣∣pϕt1 V 2
N (x1 − x2)pϕ

t

1

∣∣∣∣∣∣
op
≤ sup
x2∈R3

∣∣∣∣∣∣pϕt1 V 2
N (x1 − x2)pϕ

t

1

∣∣∣∣∣∣
op

= sup
x2∈R3

sup
||φ1||2=1

∣∣∣∣∣∣pϕt1 V 2
N (x1 − x2)pϕ

t

1 φ1

∣∣∣∣∣∣
2

= sup
x2∈R3

sup
||φ1||2=1

〈
φ1

∣∣∣pϕt1 V 2
N (x1 − x2)pϕ

t

1 pϕ
t

1 V 2
N (x1 − x2)pϕ

t

1

∣∣∣φ1

〉 1
2

= sup
x2∈R3

sup
||φ1||2=1

( 〈
φ1 | ϕt1

〉 〈
ϕt1
∣∣V 2
N (x1 − x2)

∣∣ϕt1〉 〈ϕt1 | ϕt1〉 〈ϕt1 ∣∣V 2
N (x1 − x2)

∣∣ϕt1〉 〈ϕt1 | φ1

〉 ) 1
2

= sup
x2∈R3

〈
ϕt1
∣∣V 2
N (x1 − x2)

∣∣ϕt1〉 sup
||φ1||2=1

〈
φ1

∣∣∣pϕt1

∣∣∣φ1

〉 1
2

≤ sup
x2∈R3

∣∣∣∣∣∣ϕt2∣∣∣∣∣∣
s

∣∣∣∣V 2
N (· − x2)

∣∣∣∣
r

∣∣∣∣∣∣pϕt1

∣∣∣∣∣∣
op

=
∣∣∣∣ϕt∣∣∣∣2

2s
||VN ||22r . (86)

We take advantage of a Hölder estimate with the condition 1
r + 1

s = 1 and the fact that the initial
V 2
N is just shifted by x2 which does not influence the norm. Moreover, the interaction and for sure

the projector are selfadjoint.
Next we have to subscribe to a slight change of the term above, but with the same structure

∣∣∣∣∣∣∣∣pϕt1

(
VN (x1 − x2)−

(
VN ∗

∣∣ϕt∣∣2) (x1)
)2

pϕ
t

1

∣∣∣∣∣∣∣∣
op

. (87)

The estimate works just like in (86), however, we need to cover
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sup
x2∈R3

〈
ϕt1

∣∣∣∣(VN (x1 − x2)−
(
VN ∗

∣∣ϕt∣∣2) (x1)
)2
∣∣∣∣ϕt1〉

≤ sup
x2∈R3

∣∣〈ϕt1 ∣∣V 2
N (x1 − x2)

∣∣ϕt1〉∣∣+ sup
x2∈R3

∣∣∣∣〈ϕt1 ∣∣∣∣(VN ∗ ∣∣ϕt∣∣2)2

(x1)

∣∣∣∣ϕt1〉∣∣∣∣
+ 2 sup

x2∈R3

∣∣∣〈ϕt1 ∣∣∣VN (x1 − x2)
(
VN ∗

∣∣ϕt∣∣2) (x1)
∣∣∣ϕt1〉∣∣∣

≤ sup
x2∈R3

∣∣∣∣∣∣ϕt2∣∣∣∣∣∣
s

∣∣∣∣V 2
N (· − x2)

∣∣∣∣
r

+
∣∣∣∣∣∣ϕt2∣∣∣∣∣∣

s

∣∣∣∣∣∣∣∣(VN ∗ ∣∣ϕt∣∣2)2

(·)
∣∣∣∣∣∣∣∣
r

+ 2 sup
x2∈R3

∣∣∣∣∣∣ϕt2∣∣∣∣∣∣
s

∣∣∣∣∣∣VN (· − x2)
(
VN ∗

∣∣ϕt∣∣2)∣∣∣∣∣∣
r

≤ ||ϕ||22s ||VN ||
2
2r + ||ϕ||22s

∣∣∣∣∣∣VN ∗ ∣∣ϕt∣∣2∣∣∣∣∣∣2
2r

+ 2
∣∣∣∣ϕt∣∣∣∣2

2s
sup
x2∈R3

||VN (· − x2)||2r
∣∣∣∣∣∣VN ∗ ∣∣ϕt∣∣2∣∣∣∣∣∣

2r

≤
∣∣∣∣ϕt∣∣∣∣2

2s
||VN ||22r +

∣∣∣∣ϕt∣∣∣∣2
2s

(
||VN ||2r

∣∣∣∣∣∣∣∣ϕt∣∣2∣∣∣∣∣∣
1

)2

+ 2
∣∣∣∣ϕt∣∣∣∣2

2s
||VN ||2r ||VN ||2r

∣∣∣∣∣∣∣∣ϕt∣∣2∣∣∣∣∣∣
1

=
∣∣∣∣ϕt∣∣∣∣2

2s
||VN ||22r +

∣∣∣∣ϕt∣∣∣∣2
2s
||VN ||22r

∣∣∣∣ϕt∣∣∣∣4
2

+ 2
∣∣∣∣ϕt∣∣∣∣2

2s
||VN ||22r

∣∣∣∣ϕt∣∣∣∣2
2

= 4
∣∣∣∣ϕt∣∣∣∣2

2s
||VN ||22r . (88)

In the last steps, we profit twice by the Young inequality ||f ∗ g||r ≤ ||f ||p · ||g||q where 1
p + 1

q = 1
r +1

holds. The second inequality sign and the Lr-norm and Ls-norm come from an Hölder estimate
with the condition on r and s, 1

r + 1
s = 1. Hence, we arrive at

∣∣∣∣∣∣∣∣pϕt1

(
VN (x1 − x2)−

(
VN ∗

∣∣ϕt∣∣2) (x1)
)2

pϕ
t

1

∣∣∣∣∣∣∣∣
op

≤ 4
∣∣∣∣ϕt∣∣∣∣2

2s
||VN ||22r (89)

which is needed for the assessment of the third summand in (70).
Moreover, let us consider

∣∣∣∣∣∣VN (x1 − x2) pϕ
t

1 Φ
∣∣∣∣∣∣

2
=
〈〈

Φ
∣∣∣pϕt1 V 2

N (x1 − x2) pϕ
t

1

∣∣∣Φ〉〉 1
2

≤
∣∣∣∣∣∣pϕt1 V 2

N (x1 − x2) pϕ
t

1

∣∣∣∣∣∣ 12
op
||Φ||2

(86)

≤
∣∣∣∣ϕt∣∣∣∣

2s
||VN ||2r ||Φ||2 (90)

which helps to estimate the second term of (70) on which we concentrate now.
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∣∣∣∣∣∣qϕt2 VN (x1 − x2) pϕ
t

1 pϕ
t

2 Ψt
N

∣∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ 1

N − 1

N∑
k=2

qϕ
t

k VN (x1 − xk) pϕ
t

1 pϕ
t

k Ψt
N

∣∣∣∣∣
∣∣∣∣∣
2

=

{
1

(N − 1)2

(
N∑
k=2

∣∣∣∣∣∣qϕtk VN (x1 − xk) pϕ
t

1 pϕ
t

k Ψt
N

∣∣∣∣∣∣2
2

+

N∑
(k 6=l)=2

〈〈
Ψt
N

∣∣∣pϕt1 pϕ
t

k VN (x1 − xk) qϕ
t

k q
ϕt

l VN (x1 − xl) pϕ
t

1 pϕ
t

l

∣∣∣Ψt
N

〉〉
1
2

≤

{
1

(N − 1)2

(
N∑
k=2

∣∣∣∣∣∣qϕtk ∣∣∣∣∣∣2
op

∣∣∣∣∣∣VN (x1 − xk) pϕ
t

1 pϕ
t

k Ψt
N

∣∣∣∣∣∣2
2

+

N∑
(k 6=l)=2

〈〈
Ψt
N

∣∣∣pϕt1 pϕ
t

k q
ϕt

l VN (x1 − xk)VN (x1 − xl) pϕ
t

1 pϕ
t

l q
ϕt

k

∣∣∣Ψt
N

〉〉
1
2

≤

{
1

(N − 1)2

(
N∑
k=2

∣∣∣∣∣∣VN (x1 − xk) pϕ
t

1 pϕ
t

k Ψt
N

∣∣∣∣∣∣2
2

+

N∑
(k 6=l)=2

∣∣∣∣∣∣VN (x1 − xk) pϕ
t

1 pϕ
t

k q
ϕt

l Ψt
N

∣∣∣∣∣∣
2

∣∣∣∣∣∣VN (x1 − xl) pϕ
t

1 pϕ
t

l q
ϕt

k Ψt
N

∣∣∣∣∣∣
2


1
2

(90)

≤

{
1

(N − 1)2

(
N∑
k=2

∣∣∣∣ϕt∣∣∣∣2
2s
||VN ||22r

∣∣∣∣∣∣pϕtk Ψt
N

∣∣∣∣∣∣2
2

+

N∑
(k 6=l)=2

∣∣∣∣ϕt∣∣∣∣2
2s
||VN ||22r

∣∣∣∣∣∣qϕtl Ψt
N

∣∣∣∣∣∣
2

∣∣∣∣∣∣qϕtk Ψt
N

∣∣∣∣∣∣
2


1
2

=
∣∣∣∣ϕt∣∣∣∣

2s
||VN ||2r

{
1

(N − 1)2

(
(N − 1) +

(
(N − 1)2 − (N − 1)

)
ωϕ

t
)} 1

2

=
∣∣∣∣ϕt∣∣∣∣

2s
||VN ||2r

{
1

N − 1
+
N − 2

N − 1
ωϕ

t

} 1
2

≤
∣∣∣∣ϕt∣∣∣∣

2s
||VN ||2r

√
2

N
+ ωϕt (91)

The symbol
N∑

(k 6=l)=2

describes the sum over k and l, both from 2 to N but k and l always differ from

each other.

3.4.6 The convergence behavior of the upper bound

After having estimated
∣∣∣ω̇ϕt∣∣∣, we can compare the estimate to the statement of Grønwall’s Lemma.

Remember, the final result of section 3.4.3 is

∣∣∣ω̇ϕt∣∣∣ ≤ ∣∣∣∣ϕt∣∣∣∣
2s
||v||2r

{
6ωϕ

t

+
2

N

}
= 6Cϕ

t

ωϕ
t

+
2Cϕ

t

N
. (92)
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To conclude, the time dependent number of particles ωϕ
t

has an upper bound

ωϕ
t

≤ e
t∫
0

6||ϕτ ||2s||v||2rdτ
ωϕ0

+

t∫
0

2
∣∣∣∣∣∣ϕt̃∣∣∣∣∣∣

2s
||v||2r

1

N
e
−

t̃∫
0

6||ϕτ ||2s||v||2rdτ
dt̃


= e

t∫
0

6Cϕ
τ
dτ

ωϕ0

+
2

N

t∫
0

Cϕ
t̃

e
−

t̃∫
0

6Cϕ
τ
dτ
dt̃

 (93)

which converges to 0 in the mean field limit. Now, we have to declare, under which conditions the
upper inequality produces useful results. At the beginning, in section 1 was a discussion about the
assumption

µΨ0
N

N→∞−−−−→
∣∣ϕ0
〉 〈
ϕ0
∣∣ in operator norm. (94)

This equals in the language of counting bad particles to

ωϕ
0 N→∞−−−−→ 0. (95)

Besides, we take for granted that v ∈ L2r(R3) and ϕt ∈ L2s(R3), where r and s are connected
via the Hölder condition 1

r + 1
s = 1. By the way, ||v||2r is constant with respect to time t. However,

||ϕt||2s is for sure smaller than infinity, for every t ∈ [0, T ], where T picks up finite or infinite values.

Therefore, we can be sure that ωϕ
t

never runs out to infinity, since Cϕ
t

= ||ϕt||2s ||v||2r is a
constant with respect to the particle number N.

We deal now with
{
ωϕ

t

N

}
N∈N

as a time dependent sequence in R+
0 , where we just add the

concerning particle number in the notation. First of all we consider the finite case T < ∞. Since
ϕt ∈ L2s

(
R3
)

holds for all t ∈ [0, T ] and t is always finite, also the time integration of the constant

Cϕ
t

= ||ϕt||2s ||v||2r gives a finite value. That is the reason, why ωϕ
t

is bounded from above and
cannot blow up to infinity. Furthermore, taking the mean field limit N → ∞ on both sides of

(93), we observe that ωϕ
t N→∞−−−−→ 0 since ωϕ

0 N→∞−−−−→ 0 and the second summand vanishes with
1
N . Moreover the remaining prefactors are in the expression constant with respect to the particle
number and do not influence the mean field limit.

Besides, ωϕ
t

N even converges uniformly in t. In order to show this, we introduce the two time
dependent, finite and positive functions

Γt = e

t∫
0

6||ϕτ ||2s||v||2rdτ
(96)

Λt = 2 ||v||2r

t∫
0

∣∣∣∣∣∣ϕt̃∣∣∣∣∣∣ e− t̃∫
0

6||ϕτ ||2s||v||2rdτ
dt̃. (97)

Since ωϕ
0

N and 1
N converge to 0 for N →∞ there exist for all ε > 0 an Mε ∈ N such that ωϕ

0

N < ε
2Γmax

and Λmax

N < ε
2 hold true for every N > Mε. Here Γmax is defined as the maximum of Γt over all

t ∈ [0, T ] and T <∞, analogously is the definition of Λmax. Consequently

∣∣∣ωϕtN − 0
∣∣∣ = ωϕ

t

N ≤ Γt · ωϕ
0

N +
Λt

N
< ε (98)
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holds true for all N > Mε and for all t ∈ [0, T ] with T <∞. Hence
{
ωϕ

t

N

}
N∈N

converges uniformly

for finite t.

Second, we increase the time interval and set T to infinity. In order to ensure furthermore that

ωϕ
t

N converges to 0 as N goes to infinity for any t ∈ [0,∞) we have to append a new condition.
That is the reason why

∫∞
0
||ϕt||2s dt < ∞ has to hold. As a consequence of this property, the

time dependent functions Λt and Γt are finite for all t ∈ [0,∞) and hence
{
ωϕ

t

N

}
N∈N

also converges

uniformly for any t ∈ R+
0 .

4 Conclusion

To sum up, if the number of bad particles converges to 0 in the mean field limit N going to infinity
at time t=0, then the number of bad particles at any arbitrary time t has the same property.
Equivalently, if the initial reduced one-particle density matrix converges in operator norm to the
pure one-particle state ϕ0

µΨ0
N

N→∞−−−−→
∣∣ϕ0
〉 〈
ϕ0
∣∣ (99)

then also

µΨtN
N→∞−−−−→

∣∣ϕt〉 〈ϕt∣∣ (100)

is valid in operator norm for any time t. Consequently, all initial (almost) product states of a
bosonic N-particle system remain (almost) product states for all times t and large particle numbers
although there is interaction between the particles themselves.

Finally, to conclude, it is neither obvious nor intuitive that the number of bad particles in a
bosonic N-particle system converges to 0 in the mean field limit at any time if it converges to 0
at the beginning, due to the fact that there is interaction and therefore correlation between the
particles.



28

Part III

Time Evolution of a Bosonic System with
Two Different Types
Up to this moment, we considered the time evolution of a bosonic many particle system, e.g. a
Bose-Einstein-Condensate, with one type of particles. In the following, we treat two different kinds
of bosons mixed up in one system. Moreover, as in the issue which we already considered, there
occurs pair interaction between all particles. The goal is to determine the time evolution of the
number of bad particles in the whole system. Beyond, we take for granted that the number of bad
particles in the initial state vanishes in the mean field limit N → ∞ and M → ∞, or vice versa.
This corresponds to the analysis of the temporal behavior of the reduced one-particle density matrix.
With other words, we would like to know if (almost) product states remain (almost) product states
for all finite or infinite times t. For the sake of simplicity, we study the physical behavior under the
assumption that we only allow pair interaction. While interaction of higher order would not change
the general statement of the result. In contrast to the second part, we have now two distinguishable
types of bosons and hence, there is interaction between the bosons of one species as well as the
interaction between the different types.

5 Notation, Definitions and General Discussion

5.1 The Hamiltonian and the general wave function

Let us start with a few comments on the notation and a few definitions. We deal with two different
bosonic particle characters, call them A and B. The number of particles of type A is N, whereas the
number of particles of type B is M. Besides we label the particles of the species A with x1, ..., xN ;
while we prescribe the bosons of type B with xN+1, ..., xN+M . These particles move with a kinetic
energy in perhaps two different, time dependent, potentials At and Bt. There is the interaction
between bosons of the same sort as well as between different types. In order to be as general as
possible, we assume to treat different kinds of interactions, labeled with VA, VB and VAB which only
depend on the distance of the two involved particles.

To conclude, the Hamiltonian of the whole system HAB looks like

HAB =

N∑
n=1

(−∆n) +

N∑
n=1

At (xn) +
∑

1≤j<k≤N

VA (xj − xk)

+

N+M∑
m=N+1

(−∆m) +

N+M∑
m=N+1

At (xm) +
∑

N+1≤j<k≤N+M

VB (xj − xk)

+

N∑
n=1

N+M∑
m=N+1

VAB (xn − xm) (101)

= HA +HB +

N∑
n=1

N+M∑
m=N+1

VAB (xn − xm) .

The Hamiltonians HA and HB are defined as in (43). As before, we have to discuss the order
of the interactions concerning the particle numbers which ensure that we work with a balanced
system. Where balanced is in the sense of neither the kinetic plus potential term nor the interaction
dominates the total energy. We choose to rescale each interaction with the number of particles
which is affected, i.e.
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VA(x) =
1

N
vA(x) (102a)

VB(y) =
1

M
vB(y) (102b)

VAB(z) =
1

N +M
vAB(z). (102c)

Because of this determination we recognize that the first line of (101) is of order N, the second of
order M and the third line is of order N ·M

N+M . If we presume that we deal with particle numbers of
the same quantity, i.e. N ≈ M , then there is a balanced contribution of all terms in (101) to the
energy of the whole system. However, if we take for granted that one type of particles dominates
the whole number then, how it is expected, we can assume, that the system consists only of this
one type of bosons, while we neglect the other type in question of energy.

To continue, the N+M-particle state, called Ψt
AB , is defined on L2

(
R3N × R3M

)
, moreover, we

choose it normalized. Furthermore, the function

Ψt
AB = Ψt

AB (x1, ..., xN , xN+1, ..., xN+M ) (103)

has to be symmetric under particle exchange, on the one hand in the first N variables x1, ..., xN which
represent the particle type A, and on the other hand in the variables xN+1, ..., xN+M standing for
the particles of type B. The reason for that behavior is the bosonic character of the treated particles.
Note, we stress that there is no exchange in-between the different types.

In this circumstance a product state has the form

Ψt
AB =

N∏
j=1

ϕtA(xj)

N+M∏
k=N+1

ϕtB(xk). (104)

Therefore, the calculation of the reduced one-particle density matrix yields to

µΨtAB (xj) = δj∈{1,...,N}
∣∣ϕtA(xj)

〉 〈
ϕtA(xj)

∣∣+ δj∈{N+1,...,N+M}
∣∣ϕtB(xj)

〉 〈
ϕtB(xj)

∣∣ (105)

where δj∈{1,...,N} is the δ-function which gives 1 if j ∈ {1, ..., N} and 0 otherwise. In general, this
notation expresses the fact that we integrate over all N+M particles but not over the particle xj .

Moreover, an almost product state Ψt
AB in this case reads without the normalization constant

as

Ψt
AB =

χtA (x1, ..., xn) ·
N∏

j=n+1

ϕtA (xj)


sym.

·

χtB (xN+1, ..., xN+m) ·
N+M∏

j=N+m+1

ϕtB (xj)


sym.

(106)

where χA contains all n bad particles of type A and is perpendicular in the way we already discussed
in section 1.2. The same holds for the bosons of species B. Therefore, we can split up the N+M-
particle state into the product of two normalized wave functions consisting of only one type, hence

Ψt
AB (x1, ..., xN+M ) = ψtA (x1, ..., xN ) · ψtB (xN+1, ..., xN+M ) (107)

with ψA ∈ L2
(
R3N

)
and ψB ∈ L2

(
R3M

)
as well as ||ψA||2 = 1 = ||ψB ||2 holds true.
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5.2 The Hartree equations of the two different species

Let us have a closer look at the Hartree equations of the normalized one-particle states ϕtA and ϕtB ,
respectively.

i∂tϕ
t
A =

(
−∆ +At + (N − 1)

(
VA ∗

∣∣ϕtA∣∣2)+M
(
VAB ∗

∣∣ϕtB∣∣2))ϕtA (108)

i∂tϕ
t
B =

(
−∆ +Bt + (M − 1)

(
VB ∗

∣∣ϕtB∣∣2)+N
(
VAB ∗

∣∣ϕtA∣∣2))ϕtB (109)

We concentrate now only on equation (108) because the other equality reflects the same properties.
As in section 3.2, the particles of type A move in a potential and interact with the remaining N-1
particles of the same species. However, these bosons are also allowed to interact with all M particles
of type B expressing the last term in (108). We infer the equality, especially the interaction term
of the Hartree equations of (108) and (109) from the previous discussion in section 3.2 and 3.4.4.

Remember that |ϕtA|
2

and |ϕtB |
2

respectively are, like before empirical densities, connected to a large
number of particles of both types A and B.

Moreover, let us consider the orders with respect to the particle numbers of the interactions
between the different species A and B. By the way, the remaining terms in (108) and (109) should
all be of order one since the kinetic energy as well as the potential is of this order. For the last terms,
we receive order M

N+M in (108) and we arrive at N
N+M in (109). Therefore, in the case N ≈M every

term in (108) and (109) is of order one. However, if we assume N �M , then the interaction of an
A-particle with an B-particle can be neglected, because as a boson of type A, most of the particles
around are of the same type. Whereas, a particle of species B interacts with a huge number of
A-particles, for the same reason. As a consequence, we have to take care of this term in (109).

To conclude, this consideration agrees with the intuitive comprehension of interaction concerning
systems of different types and particle numbers. Because of that, the choice of the rescaling of the
potentials in (102) is one reasonable solution.

6 Time Evolution of the Ratio of Bad Particles

In the following, we want to study the time evolution of the number of bad particles in view of the
fact that the system which we treat, consists of two different types of bosons where pair interaction
takes place between all bosons.

6.1 The counting operator

We follow the strategy which we presented in the second part. For that reason, we again estimate
from above the time derivative of the ratio of bad particles which we call now Ω, in order to apply
then Grønwall’s Lemma. Let us continue with the counting operator which determines the ratio of
bad bosons. By the way, as before, we do only care about the amount of bad particles therefore, we
do not distinguish between different species. As a consequence, each bad boson is one of the N+M
particles and for that reason is weighted with 1

N+M .

In order to ascertain the ratio of bad particles, we take advantage of an counting operator
running through all possible combinations of bad particles of type A and B. Consequently, we have

to compute n+m
N+M P

ϕtA
n P

ϕtB
m summed up over the bad particles n and m. Besides P

ϕtB
m is defined as

P
ϕtB
m =

 N+m∏
j=N+1

q
ϕtB
j

N+M∏
j=N+m+1

p
ϕtB
j


sym.

. (110)
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Finally, the ratio of bad particles in an N+M-particle state is labeled with Ω and defined as

Ω (t) =

〈〈
Ψt
AB

∣∣∣∣∣
N∑
n=0

M∑
m=0

n+m

N +M
P
ϕtA
n P

ϕtB
m

∣∣∣∣∣Ψt
AB

〉〉

=

〈〈
Ψt
AB

∣∣∣∣∣
N∑
n=0

n

N +M
P
ϕtA
n

M∑
m=0

P
ϕtB
m

∣∣∣∣∣Ψt
AB

〉〉

+

〈〈
Ψt
AB

∣∣∣∣∣
M∑
m=0

m

N +M
P
ϕtB
m

N∑
n=0

P
ϕtA
n

∣∣∣∣∣Ψt
AB

〉〉

=

〈〈
Ψt
AB

∣∣∣∣∣
N∑
n=0

n

N +M
P
ϕtA
n

∣∣∣∣∣Ψt
AB

〉〉
+

〈〈
Ψt
AB

∣∣∣∣∣
M∑
m=0

m

N +M
P
ϕtB
m

∣∣∣∣∣Ψt
AB

〉〉
= ΩA(t) + ΩB(t). (111)

It is allowed to interchange and reshuffle the sums, even if N,M → ∞ since all summands are

nonnegative and the sums are always finite. The sum
N∑
n=0

P
ϕtA
n is equal to the identity because every

N+M particle state has between 0 and N bad particles of type A. A mathematical proof is given in
equation (22).

For these reasons, the equation (111) holds true and we can continue the computation of Ω (t)
by profiting by the strategy presented in section 3.

6.2 Preparing estimates for Grønwall’s Lemma

In the following, we first concentrate on the estimate of ΩA(t) concerning the type A, afterwards, we
infer from this result the expression ΩB(t) by interchanging A with B and N with M, respectively.

With the help of equation (24) we simplify ΩA(t) to

ΩA(t) =

〈〈
Ψt
AB

∣∣∣∣∣
N∑
n=0

n

N +M
P
ϕtA
n

∣∣∣∣∣Ψt
AB

〉〉
=

N

N +M

〈〈
Ψt
AB

∣∣∣qϕtAl ∣∣∣Ψt
AB

〉〉
=

N

N +M
ωϕ

t
A (112)

where l ∈ {1, ..., N} is arbitrary since we deal with a system of bosons. As seen above, it is possible

to connect ΩA(t) with ωϕ
t
A . The latter just refers to the ratio of bad particles of type A, i.e. every

particle is weighted with 1
N , whereas ΩA(t) includes all N+M particles. The integration over the

variables xN+1, ..., xN+M simplifies to 1 for reasons of normalization. In order to use Grønwall’s
Lemma, we take the derivative of this expression with respect to time t. Besides, this is similar to
equality (46), therefore we get

Ω̇A(t) = i
N

N +M

〈〈
Ψt
AB

∣∣∣[HAB − hA (x1) , q
ϕtA
1

]∣∣∣Ψt
AB

〉〉
. (113)

Here, HAB is the Hamiltonian of the whole system and hA (x1) is the Hamiltonian for the particle x1.
Notice, operators which act on different particles commute, therefore we simplify the commutator
above to
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[
HAB − hA (x1) , q

ϕtA
1

]
=

[
N∑
k=2

VA (x1 − xk) +

N+M∑
m=N+1

VAB (x1 − xm)− (N − 1)
(
VA ∗

∣∣ϕtA∣∣2) (x1)

− M
(
VAB ∗

∣∣ϕtB∣∣2) (x1), q
ϕtA
1

]
=
[
(N − 1)VA (x1 − x2) +M · VAB (x1 − xN+1)− (N − 1)

(
VA ∗

∣∣ϕtA∣∣2) (x1)

− M
(
VAB ∗

∣∣ϕtB∣∣2) (x1), q
ϕtA
1

]
= (N − 1)

[
VA (x1 − x2)−

(
VA ∗

∣∣ϕtA∣∣2) (x1), q
ϕtA
1

]
+M

[
VAB (x1 − xN+1)−

(
VAB ∗

∣∣ϕtB∣∣2) (x1), q
ϕtA
1

]
(114)

where we used again that we treat a bosonic system and for that reason we can combine each sum of
pair interactions in one pair interaction multiplied by the number of summands. As a consequence,
we receive

Ω̇A(t) = i
N

N +M
(N − 1)

〈〈
Ψt
AB

∣∣∣[VA (x1 − x2)−
(
VA ∗

∣∣ϕtA∣∣2) (x1), q
ϕtA
1

]∣∣∣Ψt
AB

〉〉
+ i

N

N +M
·M ·

〈〈
Ψt
AB

∣∣∣[VAB (x1 − xN+1)−
(
VAB ∗

∣∣ϕtB∣∣2) (x1), q
ϕtA
1

]∣∣∣Ψt
AB

〉〉
. (115)

The first term above is up to the prefactor identical to expression (66). The dependence concerning
particle type B integrates out, because of the normalization of ψtB . Consequently, we only have to
care about the second term. However, also in this case we follow the introduced strategy. There-
fore we summarize the difference of the two interactions in the second expression to f (x1, xN+1).
Moreover, since we do not know, how these interactions act on the N+M-particle state, we again
introduce a few identities

〈〈
Ψt
AB

∣∣∣[VAB (x1 − xN+1)−
(
VAB ∗

∣∣ϕtB∣∣2) (x1), q
ϕtA
1

]∣∣∣Ψt
AB

〉〉
=
〈〈

Ψt
AB

∣∣∣f (x1, xN+1) q
ϕtA
1

∣∣∣Ψt
AB

〉〉
−
〈〈

Ψt
AB

∣∣∣qϕtA1 f (x1, xN+1)
∣∣∣Ψt

AB

〉〉
=
〈〈

Ψt
AB

∣∣∣(pϕtA1 + q
ϕtA
1

)(
p
ϕtB
N+1 + q

ϕtB
N+1

)
f (x1, xN+1) q

ϕtA
1

(
p
ϕtB
N+1 + q

ϕtB
N+1

)∣∣∣Ψt
AB

〉〉
−
〈〈

Ψt
AB

∣∣∣qϕtA1

(
p
ϕtB
N+1 + q

ϕtB
N+1

)
f (x1, xN+1)

(
p
ϕtA
1 + q

ϕtA
1

)(
p
ϕtB
N+1 + q

ϕtB
N+1

)∣∣∣Ψt
AB

〉〉
. (116)

The only terms which survive for the same reason as in section 3.4.3 are

A) p
ϕtA
1 p

ϕtB
N+1f(x1, xN+1)q

ϕtA
1 p

ϕtB
N+1 − q

ϕtA
1 p

ϕtB
N+1f(x1, xN+1)p

ϕtA
1 p

ϕtB
N+1

B) p
ϕtA
1 p

ϕtB
N+1f(x1, xN+1)q

ϕtA
1 q

ϕtB
N+1 − q

ϕtA
1 q

ϕtB
N+1f(x1, xN+1)p

ϕtA
1 p

ϕtB
N+1

C) p
ϕtA
1 q

ϕtB
N+1f(x1, xN+1)q

ϕtA
1 q

ϕtB
N+1 − q

ϕtA
1 q

ϕtB
N+1f(x1, xN+1)p

ϕtA
1 q

ϕtB
N+1

Note, each term appears with its complex conjugate and since we are only interested in the absolute
value of ΩA(t), it is enough to study only the first expression of each line.

Nevertheless, in order to keep this section clear and to avoid confusion due to too much cal-
culations, we add the computations in detail in section 6.4 like before. We only want to attach
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importance to the idea of the estimate. As in part II, the numbers r and s are linked via the Hölder
condition 1

r + 1
s = 1.

To start with A)

∣∣∣〈〈Ψt
AB

∣∣∣pϕtA1 p
ϕtB
N+1

(
VAB (x1 − xN+1)−

(
VAB ∗

∣∣ϕtB∣∣2) (x1)
)
q
ϕtA
1 p

ϕtB
N+1

∣∣∣Ψt
AB

〉〉∣∣∣ = 0 (117)

since we know that the identity p
ϕtB
N+1VAB (x1 − xN+1) p

ϕtB
N+1 = p

ϕtB
N+1

(
VAB ∗ |ϕtB |

2
)

(x1)p
ϕtB
N+1 holds

which was already shown in (85).
As in section 3.4.3 we continue with term C)

∣∣∣〈〈Ψt
AB

∣∣∣pϕtA1 q
ϕtB
N+1

(
VAB (x1 − xN+1)−

(
VAB ∗

∣∣ϕtB∣∣2) (x1)
)
q
ϕtA
1 q

ϕtB
N+1

∣∣∣Ψt
AB

〉〉∣∣∣
≤
∣∣∣∣∣∣qϕtA1 q

ϕtB
N+1Ψt

AB

∣∣∣∣∣∣
2

∣∣∣∣∣∣(VAB (x1 − xN+1)−
(
VAB ∗

∣∣ϕtB∣∣2) (x1)
)
p
ϕtA
1 q

ϕtB
N+1Ψt

AB

∣∣∣∣∣∣
2

≤
∣∣∣∣ϕtA∣∣∣∣2s ||VAB ||2r (ωϕtA + ωϕ

t
B

)
. (118)

Last but not least, we concentrate on term B)

∣∣∣〈〈Ψt
AB

∣∣∣pϕtA1 p
ϕtB
N+1

(
VAB (x1 − xN+1)−

(
VAB ∗

∣∣ϕtB∣∣2) (x1)
)
q
ϕtA
1 q

ϕtB
N+1

∣∣∣Ψt
AB

〉〉∣∣∣
=
∣∣∣〈〈Ψt

AB

∣∣∣pϕtA1 p
ϕtB
N+1VAB (x1 − xN+1) q

ϕtA
1 q

ϕtB
N+1

∣∣∣Ψt
AB

〉〉∣∣∣
≤
∣∣∣∣∣∣qϕtA1 VAB (x1 − xN+1) p

ϕtA
1 p

ϕtB
N+1Ψt

AB

∣∣∣∣∣∣
2

∣∣∣∣∣∣qϕtBN+1Ψt
AB

∣∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
k=1

q
ϕtA
k VAB (xk − xN+1) p

ϕtA
k p

ϕtB
N+1Ψt

AB

∣∣∣∣∣
∣∣∣∣∣
2

√
ωϕ

t
B

(128)

≤
∣∣∣∣ϕtA∣∣∣∣2s ||VAB ||2r

√(
1

N
+ ωϕ

t
A

)
ωϕ

t
B

≤ 1

2

∣∣∣∣ϕtA∣∣∣∣2s ||VAB ||2r (ωϕtA + ωϕ
t
B +

1

N

)
. (119)

Again, in the second part p
ϕtB
N+1 commutes with the interaction term of the mean field Hamiltonian

and acts directly on q
ϕtB
N+1 which gives 0. At the end we use

√
ab ≤ a+b

2 ∀a, b ∈ R+.

To sum up, we arrive at

∣∣∣Ω̇A(t)
∣∣∣ =

N

N +M
(N − 1)

〈〈
Ψt
AB

∣∣∣[VA (x1 − x2)−
(
VA ∗

∣∣ϕtA∣∣2) (x1), q
ϕtA
1

]∣∣∣Ψt
AB

〉〉
+

N

N +M
·M ·

〈〈
Ψt
AB

∣∣∣[VAB (x1 − xN+1)−
(
VAB ∗

∣∣ϕtB∣∣2) (x1), q
ϕtA
1

]∣∣∣Ψt
AB

〉〉
≤ N(N − 1)

N +M

∣∣∣∣ϕtA∣∣∣∣2s ||VA||2r (6ωϕ
t
A +

2

N

)
+ 2

N ·M
N +M

(
0 +

1

2

∣∣∣∣ϕtA∣∣∣∣2s ||VAB ||2r (ωϕtA + ωϕ
t
B +

1

N

)
+
∣∣∣∣ϕtA∣∣∣∣2s ||VAB ||2r (ωϕtA + ωϕ

t
B

))
≤ N2

N +M

∣∣∣∣ϕtA∣∣∣∣2s ||VA||2r (6ωϕ
t
A +

2

N

)
+

N ·M
N +M

∣∣∣∣ϕtA∣∣∣∣2s ||VAB ||2r (3ωϕ
t
A + 3ωϕ

t
B +

1

N

)
. (120)
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Since ΩA(t) and ΩB(t) are absolutely identical in the structure, we get the same result for∣∣∣Ω̇B(t)
∣∣∣ by interchanging the types A and B and the particle numbers N and M. To conclude, the

absolute value of the time derivative of the number of bad particles compared to the whole number

of particles
∣∣∣Ω̇(t)

∣∣∣ can be bounded from above

∣∣∣Ω̇(t)
∣∣∣ ≤ N2

N +M

∣∣∣∣ϕtA∣∣∣∣2s ||VA||2r (6ωϕ
t
A +

2

N

)
+

M2

N +M

∣∣∣∣ϕtB∣∣∣∣2s ||VB ||2r (6ωϕ
t
B +

2

M

)
+

N ·M
N +M

∣∣∣∣ϕtA∣∣∣∣2s ||VAB ||2r (3ωϕ
t
A + 3ωϕ

t
B +

1

N

)
+

N ·M
N +M

∣∣∣∣ϕtB∣∣∣∣2s ||VAB ||2r (3ωϕ
t
B + 3ωϕ

t
A +

1

M

)
. (121)

However, that is not the end of the story, in order to use Grønwall’s Lemma, we have to estimate
the derivative of a function with the function itself. For that reason, we have to use some more
algebra and we insert the identities (102a), (102b) and (102c) which show explicitly the dependency
to the particle number of each interaction. It follows

∣∣∣Ω̇(t)
∣∣∣ ≤ N

N +M

∣∣∣∣ϕtA∣∣∣∣2s ||vA||2r (6ωϕ
t
A +

2

N

)
+

M

N +M

∣∣∣∣ϕtB∣∣∣∣2s ||vB ||2r (6ωϕ
t
B +

2

M

)
+

N ·M
(N +M)

2

∣∣∣∣ϕtA∣∣∣∣2s ||vAB ||2r (3ωϕ
t
A + 3ωϕ

t
B +

1

N

)
+

N ·M
(N +M)

2

∣∣∣∣ϕtB∣∣∣∣2s ||vAB ||2r (3ωϕ
t
B + 3ωϕ

t
A +

1

M

)
. (122)

For simplicity, we define

∣∣∣∣ϕt∣∣∣∣
2s

:= max
{∣∣∣∣ϕtA∣∣∣∣2s , ∣∣∣∣ϕtB∣∣∣∣2s} (123)

||v||2r := max {||vA||2r , ||vB ||2r , ||vAB ||2r} (124)

and plug it into the equation above.

∣∣∣Ω̇(t)
∣∣∣ ≤ ∣∣∣∣ϕt∣∣∣∣

2s
||v||2r

{ (
6 + 3

M

N +M

)
N

N +M
ωϕ

t
A

+

(
6 + 3

N

N +M

)
M

N +M
ωϕ

t
B

+
4

N +M
+

1

N +M

}
≤ 9

∣∣∣∣ϕt∣∣∣∣
2s
||v||2r

{
(ΩA(t) + ΩB(t)) +

1

N +M

}
≤ Cϕ

t

Ω(t) +
Cϕ

t

N +M
(125)

with Cϕ
t

:= 9 ||ϕt||2s ||v||2r. In this estimate, we replace the prefactors of ωϕ
t
A and ωϕ

t
B , containing

N and M, with 1, moreover, we apply (112).
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Finally, we can take advantage of the Grønwall Lemma leading to the wanted final result by using
(42)

Ω(t) ≤ e
t∫
0

Cϕ
s
ds

Ω(0) +
1

N +M

t∫
0

Cϕ
s

e
−

s∫
0

Cϕ
τ
dτ
ds

 . (126)

Never mind, in which order we apply the mean field limit, either N → ∞ and then M → ∞ or
the other way round, we will in both cases get the same result: If Ω(0) converges in the mean field
limit to 0 then also Ω(t) goes to 0. As before, the behavior due to the convergence of the sequence

{ΩN+M (t)}N+M∈N depends on the constant Cϕ
t

being independent of the number of particles. It

even converges uniformly in t ∈ [0, T ] if T <∞. If Cϕ
t

has compact support with respect to t and

hence
∫ T

0
||ϕt||2s <∞ the ratio of bad particles converges for all times t ∈ R+

0 to 0 in the mean field
limit. This follows from the same discussion as in section 3.4.6. Finally, these estimates manifest
the Hartree equations which were heuristically derived in section 5.2 for the same arguments given
in 3.4.4.

6.3 Conclusion

To conclude, if we start with a small amount of bad bosons in a system of two different types,
where pair interaction occurs between all pairs of particles, then the fraction of bad particles can
be neglected in the mean field limit for at most all finite times. Neither the interaction between two
particles of the same species, nor the interaction between two different types can drastically increase
the number of bad particles and that is the reason why we can neglect all kinds of correlations.
Consequently (almost) product states keep their structure in the mean field limit for all times t.
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6.4 Used computations

In this section, we list all the missing computations from the last section.

With a view to the determination of
∣∣∣Ω̇(t)

∣∣∣ we start with the following operator norm

∣∣∣∣∣∣∣∣pϕtA1

(
VAB (· − xN+1)−

(
VAB ∗

∣∣ϕtB∣∣2) (·)
)2

p
ϕtA
1

∣∣∣∣∣∣∣∣
op

≤ sup
xN+1∈R3

sup
||φ||2=1

∣∣∣∣∣∣∣∣pϕtA1

(
VAB (· − xN+1)−

(
VAB ∗

∣∣ϕtB∣∣2) (·)
)2

p
ϕtA
1 φ

∣∣∣∣∣∣∣∣
2

= sup
xN+1∈R3

sup
||φ||2=1

∣∣∣∣∣〈φ | ϕtA〉
〈
ϕtA

∣∣∣∣(VAB (· − xN+1)−
(
VAB ∗

∣∣ϕtB∣∣2) (·)
)2
∣∣∣∣ϕtA〉2 〈

ϕtA | φ
〉∣∣∣∣∣

1
2

= sup
xN+1∈R3

sup
||φ||2=1

∣∣∣∣∣∣pϕtA1 φ
∣∣∣∣∣∣

2

〈
ϕtA
∣∣V 2

AB (· − xN+1)

− 2VAB (· − xN+1)
(
VAB ∗

∣∣ϕtB∣∣2) (·)

+
(
VAB ∗

∣∣ϕtB∣∣2)2

(·)
∣∣ϕtA〉

≤
∣∣∣∣∣∣pϕtA1

∣∣∣∣∣∣
op

{
sup

xN+1∈R3

∣∣〈ϕtA ∣∣V 2
AB (· − xN+1)

∣∣ϕtA〉∣∣
+2 sup

xN+1∈R3

∣∣∣〈ϕtA ∣∣∣VAB (· − xN+1)
(
VAB ∗

∣∣ϕtB∣∣2) (·)
∣∣∣ϕtA〉∣∣∣

+ sup
xN+1∈R3

∣∣∣∣〈ϕtA ∣∣∣∣(VAB ∗ ∣∣ϕtB∣∣2)2
∣∣∣∣ϕtA〉∣∣∣∣

}
≤ sup
xN+1∈R3

∣∣∣∣∣∣(ϕtA)2∣∣∣∣∣∣
s

∣∣∣∣V 2
AB (· − xN+1)

∣∣∣∣
r

+ 2 sup
xN+1∈R3

∣∣∣∣∣∣(ϕtA)2∣∣∣∣∣∣
s

∣∣∣∣∣∣VAB (· − xN+1)
(
VAB ∗

∣∣ϕtB∣∣2) (·)
∣∣∣∣∣∣
r

+
∣∣∣∣∣∣(ϕtA)2∣∣∣∣∣∣

s

∣∣∣∣∣∣∣∣(VAB ∗ ∣∣ϕtB∣∣2)2
∣∣∣∣∣∣∣∣
r

≤
∣∣∣∣ϕtA∣∣∣∣22s

{
||VAB ||22r + 2 sup

xN+1∈R3

||VAB (· − xN+1)||2r
∣∣∣∣∣∣VAB ∗ ∣∣ϕtB∣∣2∣∣∣∣∣∣

2r
+
∣∣∣∣∣∣VAB ∗ ∣∣ϕtB∣∣2∣∣∣∣∣∣2

2r

}

≤
∣∣∣∣ϕtA∣∣∣∣22s{||VAB ||22r + 2 ||VAB ||2r ||VAB ||2r

∣∣∣∣∣∣∣∣ϕtB∣∣2∣∣∣∣∣∣
1

+ ||VAB ||22r
∣∣∣∣∣∣∣∣ϕtB∣∣2∣∣∣∣∣∣2

1

}
≤ 4

∣∣∣∣ϕtA∣∣∣∣22s ||VAB ||22r . (127)

Here we used some Hölder estimates and Young’s inequality. In addition, we profited by the nor-
malization of the one-particle state ϕtB .
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Moreover, we continue with the estimate of term B)

∣∣∣〈〈Ψt
AB

∣∣∣pϕtA1 p
ϕtB
N+1

(
VAB (x1 − xN+1)−

(
VAB ∗

∣∣ϕtB∣∣2) (x1)
)
q
ϕtA
1 q

ϕtB
N+1

∣∣∣Ψt
AB

〉〉∣∣∣
=
∣∣∣〈〈Ψt

AB

∣∣∣pϕtA1 p
ϕtB
N+1VAB (x1 − xN+1) q

ϕtA
1 q

ϕtB
N+1

∣∣∣Ψt
AB

〉〉∣∣∣
=

∣∣∣∣∣
〈〈

Ψt
AB

∣∣∣∣∣ 1

N

N∑
k=1

p
ϕtA
k p

ϕtB
N+1VAB (xk − xN+1) q

ϕtA
k q

ϕtB
N+1

∣∣∣∣∣Ψt
AB

〉〉∣∣∣∣∣
≤

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
k=1

q
ϕtA
k VAB (xk − xN+1) p

ϕtA
k p

ϕtB
N+1Ψt

AB

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣∣qϕtBN+1Ψt
AB

∣∣∣∣∣∣
2

=


N∑

(k 6=l)=1

〈〈
Ψt
AB

∣∣∣pϕtAk p
ϕtB
N+1VAB (xk − xN+1) q

ϕtA
k q

ϕtA
l VAB (xl − xN+1) p

ϕtA
l p

ϕtB
N+1

∣∣∣Ψt
AB

〉〉

+

N∑
k=1

∣∣∣∣∣∣qϕtAk VAB (xk − xN+1) p
ϕtA
k p

ϕtB
N+1Ψt

AB

∣∣∣∣∣∣2
2

} 1
2

·
√
ωϕ

t
B

N

≤


N∑

(k 6=l)=1

∣∣∣∣∣∣VAB (xk − xN+1) p
ϕtA
k p

ϕtB
N+1q

ϕtA
l Ψt

AB

∣∣∣∣∣∣
2

∣∣∣∣∣∣VAB (xl − xN+1) p
ϕtA
l p

ϕtB
N+1q

ϕtA
k Ψt

AB

∣∣∣∣∣∣
2

+

N∑
k=1

∣∣∣∣∣∣qϕtAk ∣∣∣∣∣∣
op

∣∣∣∣∣∣VAB (xk − xN+1) p
ϕtA
k p

ϕtB
N+1Ψt

AB

∣∣∣∣∣∣2
2

} 1
2

·
√
ωϕ

t
B

N

(90)

≤ 1

N


N∑

(k 6=l)=1

∣∣∣∣ϕtA∣∣∣∣22s ||VAB ||22r ωϕtA +

N∑
k=1

∣∣∣∣ϕtA∣∣∣∣22s ||VAB ||22r


1
2 √

ωϕ
t
B

=
∣∣∣∣ϕtA∣∣∣∣2s ||VAB ||2r 1

N

{(
N2 −N

)
ωϕ

t
A +N

} 1
2
√
ωϕ

t
B

≤
∣∣∣∣ϕtA∣∣∣∣2s ||VAB ||2r

√
ωϕ

t
A +

1

N

√
ωϕ

t
B

≤ 1

2

∣∣∣∣ϕtA∣∣∣∣2s ||VAB ||2r (ωϕtA + ωϕ
t
B +

1

N

)
(128)

where we used that
√
ab ≤ 1

2 (a+ b) holds true ∀a, b ∈ R+
0 and 1

r + 1
s = 1.

Last but not least, we treat the term C)

∣∣∣〈〈Ψt
AB

∣∣∣pϕtA1 q
ϕtB
N+1

(
VAB (x1 − xN+1)−

(
VAB ∗

∣∣ϕtB∣∣2) (x1)
)
q
ϕtA
1 q

ϕtB
N+1

∣∣∣Ψt
AB

〉〉∣∣∣
≤
∣∣∣∣∣∣qϕtA1 q

ϕtB
N+1Ψt

AB

∣∣∣∣∣∣
2

∣∣∣∣∣∣(VAB (x1 − xN+1)−
(
VAB ∗

∣∣ϕtB∣∣2) (x1)
)
p
ϕtA
1 q

ϕtB
N+1Ψt

AB

∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣qϕtA1

∣∣∣∣∣∣
op

∣∣∣∣∣∣qϕtBN+1Ψt
AB

∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣pϕtA1

(
VAB (· − xN+1)−

(
VAB ∗

∣∣ϕtB∣∣2) (·)
)2

p
ϕtA
1

∣∣∣∣∣∣∣∣ 12
op

∣∣∣∣∣∣qϕtBN+1Ψt
AB

∣∣∣∣∣∣
2

≤ 2
∣∣∣∣ϕtA∣∣∣∣2s ||VAB ||2r ωϕtB . (129)

Here we used the Hölder inequality and the already computed inequality (127).
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Part IV

Outlook

7 Time Evolution of Two Orthogonal States in One Bosonic
System

In the second part, we introduced a method which permits us to determine the behavior of an
N-particle bosonic system with good and bad bosons of one type in which pair interaction takes
place between all particles. Furthermore, the third part concentrates on a mixture of two different
kinds of bosons. In the following, we would like to give an outlook on another possible mixture
of one type of bosons in two different good states. More detailed, for the experiment, we prepare
separately one species of particles in two different eigenstates ϕ and χ which are without loss of
generality perpendicular to each other. Beyond, we assume that the number of bad particles in each
system is small compared to the corresponding particle number. Then, we mix the systems up and
ask again the question: How does the number of bad particles evolve in time, when we allow pair
interaction?

At first glance, this problem seems to be similar to that issue considered in the third part, but
what is new is the fact that we cannot exactly determine which boson is in which state due to the
bosonic character of the particles. Therefore, the wave function of all particles has to be symmetric
under the exchange of bosons in the same state as well as under the exchange of particles in different
states. Moreover, in this case, bad particles are those which are neither in the state ϕ nor in the
state χ.

In this part, we just would like to give an outlook, concerning the described physical problem.
Therefore, we keep the computations short, rather we would like to point out the difficulties which
appear by following the strategy of the counting method. Additionally, we neglect in our notation
the time dependence.

7.1 General description of the bosonic system

Let us introduce some notation. In total, we treat N+M bosons, where N particles are in the
system which we prepared to be in the state ϕ and where M particles are in the other state. The
N+M-particle states have to fulfill

ΨN+M (x1, ..., xi, ..., xj , ..., xN+M ) = ΨN+M (x1, ..., xj , ..., xi, ..., xN+M ) (130)

with 1 ≤ i, j ≤ N+M . In order to emphasize it again, since we treat a bosonic system with only one
type of particles in two different states, we have to take into consideration that the N+M-particle
state is additional symmetric under the exchange of particles in the different states. The hamilton
for the system looks just like in part II

HN+M =

N+M∑
j=1

(−∆j) +

N+M∑
j=1

At(xj) +
∑

1≤j<k≤N

V (xj − xk) (131)

where At is some external potential and VN+M is the spherical symmetric pair interaction. Beyond,
the symmetric and normalized product state in this case reads as

ΨN+M =
1√(
N+M
N

)
 N∏
j=1

ϕ (xj)

N+M∏
k=N+1

χ (xk)


sym.

. (132)
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Notice, the normalized states ϕ and χ are perpendicular to each other and therefore only the
diagonal term contribute to the normalization of ΨN+M . Additionally, the reduced one-particle
density matrix of the N+M-particle state given above, has the following structure

µΨN+M (xj) =
N

N +M
|ϕ(xj)〉 〈ϕ(xj)|+

M

N +M
|χ(xj)〉 〈χ(xj)| . (133)

In comparison to part II, we call ΨN+M a product state of two orthogonal allowed states, because
for M = 0 the expression above equals the reduced one-particle density matrix for only one state,
as it is in (6).

Next comes the deviation of the Hartree equations for the two different states. Here, we use the
Euler-Lagrange formalism to minimize the total energy of the system which is in the product state
(132). Further, we want to stress that the following calculation is correct, however, there are a few
physical aspects which are neglected in this case. More details are mentioned in section 3.3. The
total energy looks like

〈〈ΨN+M |HN+M |ΨN+M 〉〉 =
1(

N+M
N

){N 〈ϕ (x) |(−∆x)|ϕ (x)〉+M 〈χ (x) |(−∆x)|χ (x)〉

+N
〈
ϕ(x)

∣∣At (x)
∣∣ϕ(x)

〉
+M

〈
χ(x)

∣∣At (x)
∣∣χ(x)

〉
+

(
N

2

)
〈ϕ(x)ϕ(y) |V (x− y)|ϕ(x)ϕ(y)〉

+

(
M

2

)
〈χ(x)χ(y) |V (x− y)|χ(x)χ(y)〉

+N ·M 〈ϕ(x)χ(y) |V (x− y)|ϕ(x)χ(y)〉

+N ·M 〈ϕ(x)χ(y) |V (x− y)|χ(x)ϕ(y)〉

}
. (134)

The numerical factors appear due to the bosonic character of the considered system. Moreover, we
assume that ϕ is a function vanishing at infinity and therefore we can write

〈ϕ(x) |−∆x|ϕ(x)〉 =

∫
ϕ? (−∆x)ϕ(x)dx

=

∫
(∇xϕ)

?
(x) (∇xϕ) (x)dx = ||∇ϕ||22 . (135)

The Euler-Lagrange formalism with additional condition that ϕ and χ are normalized to one gives
us a function ϕ , or χ respectively, which minimizes the functional F = F

(
ϕ?, (∇ϕ)

?
, x
)

which is
defined as

∫
F
(
ϕ?, (∇ϕ)

?
, x
)

dx = 〈〈ΨN+M |HN+M |ΨN+M 〉〉

− λ N(
N+M
N

) (||ϕ||22 − 1
)
− τ M(

N+M
M

) (||χ||22 − 1
)
. (136)

We compute the variation with respect to ϕ? because afterwards, we can immediately read off the
Hartree equation for ϕ. Because of the Euler-Lagrange formalism

∇x
(

δF

δ (∇xϕ)
?

)
− δF

δϕ?
= 0 (137)
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is valid. The single expressions read as

∇x
(

δF

δ (∇xϕ)
?

)
=

N(
N+M
N

)∆xϕ(x) (138)

as well as

δF

δϕ?
=

N(
N+M
N

){At(x)ϕ(x) + (N − 1)

∫
ϕ?(y)V (x− y)ϕ(y)dy · ϕ(x)

+M

∫
χ?(y)V (x− y)χ(y)dy · ϕ(x)

+M

∫
χ?(y)V (x− y)ϕ(y)dy · χ(x)− λϕ(x)

}
. (139)

The variation with respect to ϕ? of the summand 〈ϕϕ |V |ϕϕ〉 produces a factor of 2 because there,

we handle with a (ϕ?)
2
.

Note, the Lagrange multiplier λ represents the energy eϕ of one particle in the state ϕ and due
to the Schrödingier equation, we can write

λϕ = eϕϕ = i∂tϕ (140)

Therefore the equation (137) yields to

i∂tϕ(x) =
{
−∆x +At(x) + (N − 1)

(
V ∗ |ϕ|2

)
(x) +M

(
V ∗ |χ|2

)
(x)
}
· ϕ(x)

+M
(
V ∗ (χ?ϕ)

)
(x) · χ(x) (141)

= hϕ(x)ϕ(x) +Ma(x)χ(x) (142)

which is the Hartree equation for a bosonic system with one type of particles but two different

orthogonal states, with a(x) =
(
V ∗ (χ?ϕ)

)
(x). We know already the first summand of the equality

from section 5.2, compare (108), which represents the Hartree equation for two different species of
particles. However, the additional part can be interpreted as a term of exchange. It has its origin
from the property that the N+M-particle state has to be symmetric in all variables. We rewrite it
in a more obvious way

M |χ(x)〉 〈χ(y) |V (x− y)|ϕ(y)〉 (143)

The initial state of our considered particle is ϕ. Because of the interaction, the particle immediately
takes on the χ-properties and ends up in the state χ, i.e. the particle jumps from a state ϕ into
a state χ. The prefactor M denotes the number of possibilities in which the original state ϕ can
transfer to.

For completion, we also add the Hartree equation for the state χ, which follows from (141) by
interchanging χ and ϕ as well as N and M.

i∂tχ(x) =
{
−∆x +At(x) + (M − 1)

(
V ∗ |χ|2

)
(x) +M

(
V ∗ |ϕ|2

)
(x)
}
· χ(x)

+M
(
V ∗ (ϕ?χ)

)
(x) · ϕ(x) (144)

= hχ(x)χ(x) +Na?(x)ϕ(x) (145)
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7.2 Application of the strategy of counting bad particles

Now, we have all tools in order to apply the method of counting bad particles. As already mentioned,
bad particles are those which are neither in the state ϕ nor in the state χ, therefore the projector
is given as

q = 1− pϕ − pχ. (146)

We consider a system with N+M bosons in an arbitrary initial state ΨN+M such that we can
assume that the number of bad particles is small compared to the total number. In the following,
we compute the time derivative of the ratio of bad particles Ω = 〈〈Ψ |q|Ψ〉〉, where we use the
Schrödinger equation i∂tΨN+M = HN+MΨN+M ,

Ω̇ =
˙(

〈〈ΨN+M |q|ΨN+M 〉〉
)

= i 〈〈ΨN+M |[HN+M , q]|ΨN+M 〉〉+ 〈〈ΨN+M |q̇|ΨN+M 〉〉 . (147)

To continue, we calculate ṗϕ as well as ṗχ

ṗϕ = |ϕ̇〉 〈ϕ|+ |ϕ〉 〈ϕ̇|
(142)
= −i

(
hϕ(x) |ϕ〉 〈ϕ|+Ma(x) |χ〉 〈ϕ|

)
+ i
(
|ϕ〉 〈ϕ|hϕ(x) +M |ϕ〉 〈χ| a?(x)

)
= −i [hϕ, pϕ]− iM

(
a(x) |χ〉 〈ϕ| − |ϕ〉 〈χ| a?(x)

)
. (148)

Consequently, it results

ṗχ = −i [hχ, pχ]− iN
(
a?(x) |ϕ〉 〈χ| − |χ〉 〈ϕ| a(x)

)
. (149)

To sum up, the calculation yields to

Ω̇(t) = iN
{〈〈

ΨN+M

∣∣∣[VN+M (x1 − x2)−
(
VN+M ∗ |ϕ|2

)
(x1), q1

]∣∣∣ΨN+M

〉〉
+ 〈〈ΨN+M | (VN+M ∗ (ϕ?χ)) (x1) |χ(x1)〉 〈ϕ(x1)|

− |ϕ(x1〉 〈χ(x1)| (VN+M ∗ (χ?ϕ)) (x1) |ΨN+M 〉〉}

+ iM
{〈〈

ΨN+M

∣∣∣[VN+M (x1 − x2)−
(
VN+M ∗ |χ|2

)
(x1), q1

]∣∣∣ΨN+M

〉〉
+ 〈〈ΨN+M | (VN+M ∗ (χ?ϕ)) (x1) |ϕ(x1)〉 〈χ(x1)|

− |χ(x1〉 〈ϕ(x1)| (VN+M ∗ (ϕ?χ)) (x1) |ΨN+M 〉〉}

+ i
〈〈

ΨN+M

∣∣∣[VN+M (x1 − x2)−
(
VN+M ∗ |ϕ|2

)
(x1), pϕ1

]∣∣∣ΨN+M

〉〉
+ i
〈〈

ΨN+M

∣∣∣[VN+M (x1 − x2)−
(
VN+M ∗ |χ|2

)
(x1), pχ1

]∣∣∣ΨN+M

〉〉
. (150)

In the following, we take the term with the prefactor N into account. As before, we insert again
identities, 1 = qj + pϕj + pχj with j ∈ {1, 2}. Therefore, the commutator reads as

[
(q1 + pϕ1 + pχ1 ) (q2 + pϕ2 + pχ2 )

(
VN+M (x1 − x2)−

(
VN+M ∗ |ϕ|2

)
(x1)

)
, q1 (q2 + pϕ2 + pχ2 )

]
(151)

which yields at all to 2 · 3 · 3 · 3 = 54 terms. Due to the symmetric character of ΨN+M and the
commutator almost half of the summands cancel out. For the appliance of the Grønwall Lemma,
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we need to estimate the remaining terms such that they are affine with respect to Ω. Nevertheless,
there exist terms whose assessment yields only to

√
Ω. We infer from 0 ≤ Ω ≤ 1 which holds true by

definition that
√

Ω ≥ Ω is valid and as a consequence we cannot use Grønwall’s Lemma to create an
upper bound for the ratio of bad particles. Let us have a look at one diverging term which appears

〈〈
ΨN+M

∣∣∣pϕ1 pχ2 (VN+M (x1 − x2)−
(
VN+M ∗ |ϕ|2

)
(x1)

)
q1p

ϕ
2

∣∣∣ΨN+M

〉〉
= 〈〈ΨN+M |pϕ1 p

χ
2VN+M (x1 − x2)q1p

ϕ
2 |ΨN+M 〉〉

≤
√

Ω ||pϕ1 p
χ
2 ΨN+M ||2

〈
ϕ(x1)

∣∣∣|VN+M ∗ (χ?ϕ)|2 (x1)
∣∣∣ϕ(x1)

〉 1
2

≤ ||ϕ||2s ||VN+M ||2r
√

Ω. (152)

Here we used the following estimate

〈
ϕ(x1)

∣∣∣|VN+M ∗ (χ?ϕ)|2 (x1)
∣∣∣ϕ(x1)

〉
≤ ||ϕ||22s ||VN+M ∗ (χ?ϕ)||22r
≤ ||ϕ||22s ||VN+M ||22r ||χ

?ϕ||21
≤ ||ϕ||22s ||VN+M ||22r ||χ||

2
2 ||ϕ||

2
2

= ||ϕ||22s ||VN+M ||22r (153)

with the Hölder condition 1
r + 1

s = 1. To sum up, with the prefactor N and the order 1
N+M of the

potential we rest at

〈〈
ΨN+M

∣∣∣pϕ1 pχ2 (VN+M (x1 − x2)−
(
VN+M ∗ |ϕ|2

)
(x1)

)
q1p

ϕ
2

∣∣∣ΨN+M

〉〉
≤ ||ϕ||2s ||v||2r

N

N +M

√
Ω. (154)

It is not possible to do further estimates from above such that this formula becomes proportional
to Ω and the mean field limit N →∞ and afterwards M →∞ converges. Thus, we cannot predict
the behavior of this expression in the mean field limit. Consequently, we fail to determine the time
evolution of Ω, when we follow the strategy of part II.

Furthermore, we would like to give a heuristic argument why the
√

Ω-dependency leads to an
ordinary differential equation whose solution does not converge to 0 in the mean field limit. In
consequence, under these assumptions we cannot take for granted that product states keep their
characteristics in such a bosonic system.

Moreover, the time derivative of the ratio of bad particles is expected to have the structure

∣∣∣Ω̇(t)
∣∣∣ ≤ a(t)

√
Ω + b(t)Ω + O

(
1

N
,

1

M
,

1

N +M

)
(155)

Since 0 ≤ Ω ≤ 1 is valid, also Ω ≤
√

Ω holds true. Besides, we neglect the additional terms of order
1
N ,

1
M and 1

N+M . Further, the time dependent functions abbreviated with a(t) and b(t) are positive

and finite for all times, because they replace products of norms, e.g. ||ϕ||22s ||v||
2
2r. Additionally,

they are of order 1 with respect to the number of particles such that they converge for sure in the
mean field limit N →∞ and M →∞ or vice versa. Therefore, we can compute

∣∣∣Ω̇(t)
∣∣∣ ≤ (a(t) + b(t)

)√
Ω (156)
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where the general solution can be estimated from above via

|Ω(t)| = Ω(t) ≤
(

1

2

∫ t

0

(a(τ) + b(τ)) dτ +
√

Ω(0)

)2

. (157)

The proof for this is equivalent to the proof we gave for the Grønwall Lemma in chapter 2.
If we apply the mean field limit on (157), only Ω(0) converges to 0 according to the assumption,

the integral remains untouched. Due to the fact that a and b are positive functions, the upper bound
of Ω(t) increases generally in time.

To conclude, estimates, which give a
√

Ω-dependency destroy the convergence of the upper bound
to 0 and therefore we arrive at three possible solutions. Either we can find a lower bound of Ω(t)
which also predicts that Ω(t) increases with growing time, or the heuristic estimate above is not
strict enough, or the method of counting bad particles fails in this case. The former leads to the
result that the structure of the state Ψt

N+M would be destroyed and for that reason we cannot infer
from

µΨN+M (xj)
N,M→∞−−−−−−→ N

N +M
|ϕ(xj)〉 〈ϕ(xj)|+

M

N +M
|χ(xj)〉 〈χ(xj)| (158)

that this holds for all times. As a consequence, we cannot deduce the time evolution of (almost)
product states.

7.3 Introduction of quasi-particles

In order to get a solution for this problem, one could try to introduce quasi-particles consisting of
two bosons, one in state ϕ and the other in state χ. Consequently, one has to take for granted that
the particle numbers of the different states N and M are equal. Moreover it should be clarified how
the product state as well as the Hartree equation looks like in this case. Finally, one has to identify
bad particles and estimate the time derivative of the ratio of bad particles from above, in order to
apply the Grønwall Lemma.

We assume that the quasi-particles are in a superposition of the two normalized states ϕ and
χ. Now, we have to ask the question, how to define the projector q and consequently the counting
measure. In the following, we deal with two possibilities. On the one hand, we declare all bosons
as bad particles which are not exactly in the superposition 1√

2
(ϕ+ χ). While, on the other hand,

we treat those particles as bad particles which are neither in the state ϕ nor in the state χ nor in
any superposition of both of them. This consideration yields to the two different starting points

qϕ+χ := 1− pϕ+χ = 1− 1

2
|ϕ+ χ〉 〈ϕ+ χ| = 1− 1

2

(
|ϕ〉 〈ϕ|+ |ϕ〉 〈χ|+ |χ〉 〈ϕ|+ |χ〉 〈χ|

)
(159)

qϕ,χ := 1− pϕ − pχ = 1− |ϕ〉 〈ϕ| − |χ〉 〈χ| . (160)

First of all, we take the definition (159) into account. The Hartree equation looks like

i∂t (ϕ(x) + χ(x)) =
{
−∆x +A(x) + (N − 1)

(
VN ∗ |ϕ+ χ|2

)
(x)
}

(ϕ(x) + χ(x)) . (161)

Notice, in this case, we cannot determine the dynamics of one single state.
However, we already discussed this circumstance in detail in part II. Here, in this description,

we have to replace the former ϕ by the superposition 1√
2

(ϕ+ χ) and the strategy of counting bad

particles works perfectly. It ends up with the result that (almost) product states remain (almost)
product states, as we have shown.
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Nevertheless, the model which we use here is too easy, since we just concentrate on the superpo-
sition 1√

2
(ϕ+ χ). In other words, we join two particles in the state ϕ and χ together to make one

new boson in the superposition and the strategy goes through. Therefore, the simplification of our
original bosonic system consisting of two distinguishable states ϕ and χ is too strong.

What about superpositions with different weights of the state ϕ and χ? In order to see what
happens, we compute

〈
αϕ+ βχ

∣∣qϕ+χ
∣∣αϕ+ βχ

〉
=

1

2
(1− 2 · Re [α?β]) (162)

where α, β ∈ C with the condition |α|2 + |β|2 = 1 and where Re[z] denotes the real part of z ∈ C.
Therefore all bosons in states with different weights are counted as bad particles. Especially, the
pure one-particle states ϕ as well as χ are declared as bad particles. To sum up, the qϕ+χ as defined
in (159) contradicts to our original model, where a bad particle is a boson which is neither in the
state ϕ nor in the state χ.

We go on with the other definition of qϕ,χ in (160). Here, all quasi-particles which are in some
superposition of ϕ and χ are good particles. In order to stay more heuristic, we go back to calculation
(152). There, we consider one term which appears in the calculation of the time derivative of the
ratio of bad particles, if we choose the projector as in (160). The mean field interaction always drops
out because of the orthogonality of ϕ and χ and we receive an upper bound being proportional to√

Ω. As we already discussed above, this dependency leads to a diverging ratio of bad particles.
Hence, we get no result to the given problem.

To conclude, the introduction of quasi-particles is justified and leads to a discussion concerning
the definition of the counting operator and the counting measure.
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Part V

Conclusion
In general, we considered bosonic systems where spherical symmetric pair interaction occurs between
all pairs of particles. Assuming that the reduced one-particle density matrix of the initial state which
describes the whole system, takes on product structure in the mean field limit, we show that this
also holds true for arbitrary times t.

At the beginning, we connected the convergence of the reduced one-particle density matrix in
operator norm with the number of bad particles. Here, we assured that the reduced one-particle
density matrix converges in the mean field limit to a one-particle state if and only if the number of
bad bosons compared to the particle number goes to 0. Moreover, this is equivalent to the almost
product structure of the initial state of the system. In order to emphasize it, in our consideration
an almost product state behaves in the mean field limit as a product state. This does not work in
L2-sense, since in that case, the notion of distance is too strong.

In part II, we worked on a system with one type of particles which move in some external
potential. Since we would like to consider physical interesting systems, we have to rescale the pair
interaction with one over the particle number, such that the energy is equally distributed on kinetic
and potential energy as well as on the pair interaction. From the well known Schrödinger equation
for the whole system, we derive the Hartree equation, which describes the dynamics of a one-particle
state in the mean field of the remaining particles. According to the name, we deduced the mean field
interaction of one single boson by the interaction with the distributed particles around. Note that
we need the empirical distribution which can be measured and which illustrates the real experiment.
Nevertheless, the law of large numbers as well as the rescaling of the pair interaction affirm that the
theoretical distribution equals the empirical distribution for large particle numbers.

Afterwards, we estimated the time derivative of the ratio of bad particles from above in order
to use Grønwall’s Lemma at the end. This lemma tells us that, if one can give an upper bound of
the derivative of a function which is affine to the function itself, then one can bound this function
from above.

There is one problem, when we estimate the time derivative of the ratio of bad particles, the
state of the whole system is unknown. Notwithstanding, we are familiar to its dynamics due to the
Schrödinger equation and the behavior of the reduced one-particle density matrix at the beginning.
Following the computation, we arrive at the commutator of the difference of the Hamiltonians
of the whole system and the one-particle state and the projector counting bad particles. Here,
we insert a few identities consisting of the projectors which project in the direction of the state
which appears in the mean field limit of the reduced one-particle density matrix and its orthogonal
counterpart. Consequently, we receive an amount of summands. Due to the symmetric character
and the commutator, many terms cancel out. Three terms and their complex conjugate survive
which can be estimated from above, such that they satisfy the condition for the Grønwall Lemma.
Applying this lemma leads to an upper bound for the ratio of bad particles which vanishes in the
mean field limit for finite times t. This is equivalent to the convergence of the reduced one-particle
density matrix to a pure state at arbitrary finite times.

To conclude, although there is correlation between the particles in a system due to pair
interaction, an (almost) non correlated state at the beginning keeps its structure in the mean field
limit at least for finite times t.

In part III, we treated a system consisting of two different types of bosons, where pair interaction
takes place between all bosons. Additionally to the Hartree equation in part II, we get a further
interaction term, which describes the interaction with bosons of the other species. Similarly, we
arrive at the result that (almost) product states remain (almost) product states in the mean field
limit even if there is interaction and therefore the bosons influence each other.
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Last but not least, we give a short outlook to a system with one type of bosons which are in two
different states. In contrast to part III, there is a further term in the Hartree equation representing
the exchange of particles into the other state. Here, our solution would be that the reduced one-
particle density matrix does not converge in the mean field limit to a pure state. It is not known,
if the method fails, or nature just behaves like this.

To conclude, we proved that initial (almost) product states keep their properties at any time in
a system consisting of one or two different types of bosons with large particle numbers, where pair
interaction occurs between all pairs of bosons.
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