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Overview:
This is a review focusing on some recent work on the phenomenon of pair cre-
ation in external fields. Both the mathematical treatment and the experimental
verification of this effect are discussed. The emphasis lies on the description of
planned experiments using lasers.

The review consists of three parts:

First: Introduction to pair creation
In the first part two things are done:
First, the general ideas about the phenomenon of pair creation in external fields
are presented. In particular the questions What is meant when one says ”Pair
Creation”? and What does it mean that the field is external? are answered and
simple examples of pair creation based on “early calculations“ are given.
Second, the adiabatic hypothesis is stated and it is explained how one can for-
mulate a theorem (the adiabatic theorem) out of it.
The purpose of the first part is to give a better understanding of what this
review is about, to mention what it is not about and to clarify the most impor-
tant concepts which are needed. Not all of this part is mathematically rigorous.
Rather intuitive formulations which are commonly used in the physics literature
are (partly) used and non rigorous calculations are reviewed.

Second: Pair creation as an adiabatic phenomenon
The second part deals with the rigorous mathematical treatment both of the
adiabatic theorem and of pair creation in external electromagnetic classical back-
grounds.1 The concept of the adiabatic limit is explained and the general ideas
of the proofs of the important theorems are discussed.
The main points of this second part are first the explanation why pair creation in
the way it is discussed is an adiabatic phenomenon in the sense of the adiabatic
theorem2 and second the discussion of the existence of adiabatic pair creation.

Third: Adiabatic Pair Creation in laserfields
The third part is the main part of this review. Adiabatic pair creation in laser-
fields is discussed there. The arguments on which the predictions of this phe-
nomenon are usually based are reviewed and it is argued that some of these are
highly questionable.
Finally, two questions are discussed. First, how can the insights of the math-
ematical treatment be used for a better argumentation? Second, how do these
points change the predictions for the planned experiments?

1In particular it is argued why such a mathematical treatment is necessary at all in order
to get reasonable physical results.

2Note that there is also pair creation which is not adiabatic. However, “non-adiabatic pair
creation“ is not the topic of this review.
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Notation:
All scalar products are denoted by <,> (norms by ||.||). Only when it is not clear
from the context which scalar product (norm) is meant this is explicitly stated.
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1 Introduction to pair creation

1.1 Pair creation in external fields

1.1.1 About particle creation

Particle creation is roughly speaking the effect that particles are created out of
fields.3

In this explication a problem arises immidiatly. To understand this it is impor-
tant to point out that there are differences between the concept of a field and the
concept of a particle. Two obvious ones are: First, the number of degrees of free-
dom is different: Whereas the degrees of freedom of a physical system described
with the concept of particles are always countable, the degrees of freedom of a
physical system described with the concept of fields form a continuum. Second,
there are concepts which can be used for describing properties of particles but
which are not applicable for fields and vice versa. These differences show that
the concepts of particles and fields are a priori not consubstantial4. Naivly one
can conclude that a field (or part of a field) can never simply change to be a par-
ticle, so particle creation is impossible. If particle creation nevertheless happens
the main question is: How can a particle come out of a field (although the two
concepts are not consubstantial)? This is one kind of manifestation of a problem
which has been called the problem of matter.5

Nowadays particle creation can be described consistently in many parts of physics.6

The occurance of particle creation in the physical literature can basically be sep-
arated into four groups: First, particle creation is considered in the evolution of
the universe where it happens due to the time dependence of the background.
Second, particle creation occurs in black hole evaporation due to the existence
of the black hole horizon as well as in other astrophysical situations. Third, in

3Strictly speaking this is wrong. The reason (that the particles are not created out of fields
but in some sense with the help of fields out of the vacuum) is explained in 1.1.2.

4german: wesensgleich
5see e.g. [1], p. 183. Usually what e.g. Weyl calls in [1] “problem of matter“ is slightly

different than here in the context of particle creation: In [1] the problem is formulated in a
context where it is assumed that the only way particles can arise is out of fields because it is
assumed that a particle is just the manifestation of a very specific field configuration. In this
sense the concept of a field is assumed to be more fundamental than the concept of a particle.
So if a theory of particles under this assumption exists, the question how the concepts of particle
and field transform into each other (in other words: how the special field configurations can
arise) occurs. This is then called “the problem of matter“. The way the problem of matter
is formulated here in the context of particle creation does not assume that particles are just
specific field configurations. This would already be part of the answer to the problem (and i.e.
it turned out that it is part of one answer (1.1.2)). With this in mind the basic question itself
“How can particles arise out of fields?“ is the same in the context of [1] and here in the context
of particle creation.

6Models solving the problem of matter (i.e. answering the question how particles can come
out of a field) are discussed in 1.1.2.
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models of heavy ions particle creation is present and fourth, particle creation is
considered in strong time dependent external electromagnetic fields.
This review only deals with the fourth point. However, one should note that some
of the insight which will be needed in 2.2 has been developed in the discussion
of particle creation in fields of heavy ions (for a detailed review see e.g. [2]).

1.1.2 Models of pair creation

Historically consistent models of particle creation solving the problem of matter
in the way it was formulated in 1.1.1 were succesfully introduced in the discussion
of quantum theory.
One model allowing for particle creation is the so called Dirac sea model which was
introduced in order to interpret some physical phenomena which are predicted
by the Dirac equation.7 The Dirac sea model is quite similar to the model of
a decaying atom. The creation of particles out of fields is reinterpreted as kind
of decay process. It is argued that (since there is just the field, i.p. nothing to
decay into particles) if created particles (as decay products) exist, they must come
from the vacuum. That is the essential point of the Dirac sea picture. A specific
structure of the vacuum is introduced: The vacuum should be thought of as
something consisting of infinitly many (bound) particles (that is like the bound
state of the decaying atom), sometimes called the Dirac sea. Now a present
field can use its energy to do work and to take one or more particles out of
the vacuum. This process is called particle creation in the Dirac sea picture.
The missing particle(s) in the vacuum is (are) interpreted as so called hole(s) or
antiparticle(s). That is why one usually does not speak of particle creation but
of pair creation. It is very important that in this picture particles are not created
out of fields but fields are used to create pairs of particles out of the vacuum. So
in fact there is no conversion of two nonconsubstantial concepts into each other.
One immidiate question is: Why do not all particles fall into the vacuum (”pair
annihilation”) if the energy is lower there? It turned out that this will not be
possible if the particles fulfill the Pauli principle. So it is because of the Pauli
principle why (fermionic) relativistic matter can be stable.
There is one further important point: Even if no pairs are created charged par-
ticles can produce electric forces which polarize the vacuum (i.e. the Dirac sea).
This phenomenon is well known as vacuum polarization.

Now it is formulated more quantitatively how the structure of the vacuum arises:
The free Dirac equation reads8

i
∂

∂t
Ψ(t, x) = H0Ψ(t, x) (1)

7see e.g. [7]
8Units s.t. i.p. c = 1 and ~ = 1 will be used from now on.
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where t ∈ R is the time variable, x ∈ R3 the space variable and H0 the free Dirac
operator (essentially self-adjoint on C∞0 (R3\{0})9)

H0 = −i
3∑
i=1

αi
∂

∂xi
+ βm (2)

with αi (i ∈ {1, 2, 3}) and β the usual hermitian matrices in C4 (see e.g. [3]).
One important point is that Ψ is here interpreted as a one particle wavefunction
in the Hilbertspace L2(R3)⊗ C4 where each “component wavefunction“ satisfies
the (one particle) Klein Gordon equation. Thus the given free Dirac equation is
also called the free one particle Dirac equation and the constant m in the free
Dirac operator is the mass of the described particle.
The Dirac sea picture is represented in the spectrum σ of H0 which is purely
absolutely continuous10:

σ(H0) = (−∞,−m] ∪ [m,∞) (3)

Here (−∞,−m] represents the vacuum (with negative energy)11 which is disjoint
from [m,∞), the other part of the spectrum (with positive energy). Now the
creation of one pair can be formulated like this: Take a field and use it to lift
one state of the negative part of the spectrum into the positive part. That this
is indeed predicted to be possible by the one particle Dirac equation, i.e. that a
solution of the one particle Dirac equation describing such a situation exists, will
be reviewed in 2.2.3.
But how to formulate the creation of many pairs? One possibility to implement
many particle systems in quantum mechanics is the concept of second quantiza-
tion, i.e. one constructs the Fock space for the many particle system. Although
one may argue that also for many particles the Dirac sea picture can be a useful
intuition the second quantized formalism in the way it is usually used12 is con-
ceptually different, i.e. the notion of the Dirac sea is replaced by another notion
of vacuum. What this means and how this works in detail for fermions is shortly
outlined:13

Let H be the Hilbertspace of the (one particle) Dirac equation. In the free case
H can be split into two orthogonal spectral subspaces of the free Dirac operator
(H+ and H−)14:

H = H+ ⊕H− (4)

9On its domain H1(R3)⊗ C4 H0 is self-adjoint (see e.g. [3], Theorem 1.1).
10see e.g. [3], Theorem 1.1
11More precisely: The vacuum is the state in which all states which exist in this part of the

spectrum are occupied and all other states are not occupied.
This also means that antiparticles in the Dirac sea picture have negative (kinetic) energy.

12in particular with normal ordered creation and annihilation operators
13For reference and more details see e.g. [3], Chapter 10.
14This can be violated for Dirac operators minimally coupled to external fields (see 1.1.3)

when the external field is time dependent. For a detailed discussion of this point see e.g. [3],
Chapter 10.
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Define the Hilbertspaces for the particle and the antiparticle: F+ := H+ and
F− := CH− where C is the charge conjugation operator.15 Define the n-particle

(n-antiparticle) Hilbertspace as antisymmetrized version of F (n)
+ := ⊗ni=1F+ (F (n)

− :=
⊗ni=1F−). Now the Fock space F which is used to describe an arbitrary number
of particles and antiparticles is defined as

F := ⊕∞l,m=0

(
Fa(l)

+ ⊗Fa(m)
−

)
(5)

Here a stands for the antisymmetrized version. Elements in F are sequences of
functions ((Ψ)l,m)l,m∈N where for fixed l,m Ψl,m depends on (xp1, ...x

p
l , x

ap
1 , ..., x

ap
m )

where xp ∈ R3 denotes a coordinate for a particle and xap ∈ R3 one for an an-
tiparticle. In particular the vacuum (the concept which replaces the Dirac sea)
here is a “physical state without anything“ (i.p. without particles) and is given
by the Fock space element (eiW , 0, 0, 0, ...) where W ∈ R.16 By defining the usual
creation and annihilation operators both for particles (a and a+) and for antipar-
ticles (b and b+) both satisfying anticommutation relations (because of the Pauli
principle) in a normal ordered way, it is possible to use F to implement pair
creation and annihilation processes in many particle systems s. t. both particles
and antiparticles have positive (kinetic) energy.17 By defining a field operator Ψ
as a linear combination of a and b+, Ψ exactly acts as operator which creates
a pair in an analogous sense of the Dirac sea picture by mapping the subspace
Fa(l)

+ ⊗ Fa(m)
− of F into the other subspace Fa(l−1)

+ ⊗ Fa(m+1)
− for some l,m ∈ N.

For pair creation in the sense it was explained above (i.e. for pair creation out
of the vacuum) one always starts with the vacuum, so the number of particles
and the number of antiparticles always coincide. Mathematically pair creation in
Fock space is usually formulated as a scattering process (see 1.1.4).

If one consults todays physics literature one sees that the Dirac sea model is
not very modern and instead the described formalism of second quantization is
usually used. Schwinger once said: ”The picture of an infinite sea of negative
energy electrons is now best regarded as a historical curiosity, and forgotten.” (J.
Schwinger, [4], 1973). It is considered as more natural to look at the vacuum as
the “physical state without anything“ (i.p. without particles). In order to take
care of this one should just use the second quantized formalism mentioned above

15In particular: F+ and F− are both subspaces of L2(R3)⊗ C4.
16Note that the definition of the vacuum as “physical state without anything“ implies that the

creation an annihilation operators which have to be introduced are normal ordered. This normal
ordering i.p. leads to a non vanishing vacuum energy which one may put into correspondence
with the energy of the Dirac sea. This shows that the notion of the vacuum still is a subtle one.

17This means i. p. that the eigenvalues of the Dirac operator become bounded from below.
This is due to the introduction of two different sets of creation and annihilation operators in a
normal ordered way which is just possible because one deals with fermions. For more details
see e.g. [2], Chapter 3.

8



just refering to many particle systems.18

Nevertheless since there is a formalism which can often be used to bring results
based on the “one particle“ Dirac equation in second quantized form (see e.g. [3],
Chapter 10) the one particle Dirac equation is still useful but may be interpreted
in another way.

Nowadays phycisists usually use models of quantum field theory “reinterpreting“ the
one particle Dirac equation. The Dirac equation is interpreted as a classical field
equation, i.p. it has nothing to do with quantum mechanics. The function Ψ(x, t)
occuring in the Dirac equation represents a classical field.19 In particular nature
is described without using the concept of a particle at all20.21 This is why the
question how two nonconsubstantial concepts transform into each other does not
arise. Actually the term particle creation (or pair creation) is misleading because
there are no particles in this theory.
Here “pair creation“ is roughly described like follows: It is assumed that to get an
appropriate description of nature the classical fields (i.p. the classical Dirac field
described by the Dirac equation) have to be quantized.22 The “wavefunction“ in
the quantized theory naturally is a functional because it is an object depending on

18This is due to the fact that in the Fock space formalism the vacuum is indeed a “physical
state without anything“ (see above). I.p. the negative energy states of the Dirac sea model
correspond to antiparticles (here particles with opposite charge) with positive energy which
contradicts the Dirac sea model. For more details see [3], Chapter 10.

19The symbol Ψ is now misleading because this symbol is conventionally used for wavefunc-
tions whereas in this point of view the field Ψ is not a wavefunction.

20What is meant with particles like “photons“ in this viewpoint is shortly explained below.
21In particular m in the Dirac operator is not the mass of a particle but a (meaningless)

constant.
22Formally quantizing a system here basically means the following: Take a classical theory,

write down its Hamiltonean form. Write down the Hamilton equations of motion. Declare the
state variables to be linear operators (e.g. in a field algebra) on an appropriate seperable Hilbert
space and postulate the usual commutation or anticommutation relations for the canonically
conjugated operators. (By declaring the quantities to be operators the Hamilton equations of
motion e.g. of classical mechanics become the Heisenberg equations of motion.)

In this formal procedure many difficulties arise. The most important one is that it is unclear
(or at least highly discussed) if and how this procedure changes the “correspondence of the
theory to reality“. Other difficulties are of mathematical nature: How to define an appropriate
Hilbert space? How to choose the domains of the operators? How to order the operators which
may not commute? How to implement the classical time evolution in a unitary way? and so on.
The simplest example to see that the mathematics is much more involved in a theory quantized
in such a way (leading to almost all of the mathematical questions) is a classical system with one
particle. Here after quantizing the system i.p. the commutation relation [r, p] = i is postulated
for the operators r and p = −i∇x. Taking formally the trace on both sides of the commutation
relation shows that one has to deal with infinite dimensions (where not all operators are of
trace class) in the quantized form of the theory.

It is important to note two further things: First, all this does not mean that every classical
theory can be quantized and Second, not every quantum theory arises from quantizing a classical
theory.
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the state variables representing the physical degrees of freedom of the system (to
be understood as the degrees of freedom in configuration space) which in the case
of fields form a continuum, so the state variables are fields. This wavefunctional
cannot vanish identically without violating the (anti)commutation relations pos-
tulated in the quantization process. That is why even in the ground state the
energy of the quantized field does not vanish identically. This energy can be used
to create so called “virtuell pairs“. (These pairs basically correspond to the vac-
uum polarization of the Dirac sea picture.) Now external fields23 can lose energy,
i.e. do work, to move the virtuell particles away from each other such that they
become real. (At least an amount of energy E = 2m is needed.) Thus, a (real)
pair is created.
For a complete understanding of this quantumfieldtheoretical viewpoint basically
four questions remained:24 First, what does one mean when one says “particle“ in
this model which just uses the field concept to describe nature? Second, Why
can’t the wave functional and the energy of the ground state vanish identically?
Third, Why does one need antiparticles and what is their meaning when there
is nothing like a Dirac sea? and Fourth, What is a virtuell pair and how can it
become real?
The first question is roughly answered as follows: The mode expansion of the
field Ψ solving the Dirac equation reads

Ψ(x) =
1

(2π)
3
2

∫
d3p
(
u(p)eipxa(p) + v(p)e−ipxb+(p)

)
(6)

where u, v are the usual Dirac spinors. When quantizing the field a and b+

become operators, so by formal analogy with the second quantized formalism
discussed above one may interpret this framework as a framework describing a
system of many particles. (In this context it is said that particles are “excitations
of fields“.) That is why one sometimes speaks of particles even in this model,
a model without particles. In terms of these “particles“ pair creation can be
formulated as a scattering process (see 1.1.4) which is formally equivalent to the
formulation of pair creation in the Fock space of the many particle system (after
second quantization) as a scattering process which was mentioned above.
The other three questions are not answered here. However, the answers can be
found in the literature of quantum field theory (some good explanations can be
found in [5]). Mathematical difficulties are also not mentioned here.

To summarize, there are different models and formalisms describing pair creation:
The one particle Dirac equation, the second quantized formalism and models

23What is meant with “external fields“ is shortly explained in 1.1.3.
24Note that some of these questions already arise in the discussion of the phenomenon of

pair creation in a many particle framework using Fock space formalism with normal ordered
creation and annihilation operators (see above).
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of quantum field theory. The main difference is that the models are based on
different concepts of vacuum and different fundamental objects (i.e. a given model
is about particles, about fields or about both concepts). So the mathematical
quantities are interpreted in different ways.25

It is important to note that all of these models solve the problem of matter in
the way it was formulated in 1.1.1. But it is not discussed in this review which
model should be prefered and i.p. why quantum field theory today is seen as the
“correct“ model describing pair creation by most phycisists. In particular the
concept of a particle is used without further specifying what is meant.26

The only distinction which is made is the distinction between pair creation de-
scribed by the one particle Dirac equation in the sense of the Dirac sea picture
and pair creation described by a formalism in terms of second quantization. How
to describe pair creation in these formalisms in detail is discussed in 1.1.4.

1.1.3 External classical fields and the concept of minimal coupling

Pair creation is usually formulated as a phenomenon occuring in strong external
fields. This basically means that the backreaction of the created pairs on the
external field is neglected when formalizing the phenomenon. On top of that
it is assumed that the external field can be described classically, i.e. that no
quantum description is needed. That is why the external (classical) field is also
referred to as classical background. The external field considered in this review is
the classical Maxwell field described by the 4-potential Aµ. Note that one deals
in this notation with equivalence classes of fields where one equivalence class
corresponds to a physical field. Thus for calculations it may be useful to choose
a representative (to “fix a gauge“).
The important question now is: How to incorporate the classical field in a quan-
tum formalism? This is usually done by the prescription of minimal coupling.
For Maxwell fields one uses the prescription

pµ −→ pµ − eAµ (7)

In particular the Dirac equation minimally coupled to an external Maxwell field
reads

i
∂

∂t
Ψ(t, x) = HΨ(t, x) (8)

25One main difference here is the role of the wavefunction. Whereas for example in the
one particle Dirac equation the wavefunction (“describing“ particles) is the function Ψ(x, t)
appearing in the Dirac equation in “standard quantum field theory“ the wave function
(“describing“ fields) is a functional.

26In this context many more questions arise (i.p. if quantum field theory really is a theory
about fields or rather a theory of many particles as discussed in terms of second quantization).
It is not part of this review to try to give answers to these questions.
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where

H :=

(
−i

3∑
i=1

αi
∂

∂xi
+ βm− eA01 + e

3∑
i=1

αiA
i

)
(9)

The use of the 4-potential Aµ (the “Aµ-field“) in the prescription of minimal cou-
pling (instead of the local E- and B-fields) has far reaching consequences. One
standard example showing this is the Aharonov-Bohm effect. To what conse-
quences the use of the Aµ-field leads here is roughly outlined: When investigat-
ing the Aharonov-Bohm effect one considers a situation with such a (very long)
solonoid that a constant magnetic field is present inside the solonoid whereas
outside the solonoid no electromagnetic field F µν is present. So by local obser-
vations (outside the solonoid) the magnetic flux present in the solonoid is not
observable. However, if one uses the Schrödinger equation minimally coupled to
the present electromagnetic field, i.e. if one uses the potential Aµ which is pure
gauge outside of the solonoid (i.e. Aµ is such that it does not “produce“ any
electromagnetic field outside the solonoid) in the way it was described above for
the Dirac equation the theory predicts that one can detect the flux by global ob-
servations. This is meant in the following sense. Choosing a gauge s.t. Aµ ∝ ∂µθ
outside the solonoid (i.e. Aµ is proportional to a total derivative leading to
F µν = 0) by Stokes theorem

∫
Aµdx

µ (the integral is taken along a path enclos-
ing the solonoid) is a nonvanishing quantity which is independent from the chosen
contour27. Practically this means that taking a particle around the solonoid (i.p.
in such a way that it never touches the magnetic field) leads to an observable
effect (a phase shift in the action) which is independent of the path the particle
took. In this way the measurable effect is a global effect.28

A similar point will be the most important part when criticizing the “usual argu-
mentation“ which is given when considering pair creation in external laserfields
in 3.2.

Further, three important mathematical questions concerning the prescription of
minimal coupling arise here:
First, Under which conditions on A is H self-adjoint on a suitable domain?29

Second, How does the existence of A change the spectrum of the Dirac operator?
(i.e. what is the spectrum of H?) Third, Is it still possible to go to the many

27More precisely: It just depends on how often the chosen contour encloses the solonoid.
28Indeed this means that (in contrast to classical Maxwell theory) the physically redundant

variable parametrizing the elements of the equivalence classes which describe a physical field
cannot be eleminated without giving up the local nature of the theory. In other words, in order
to be able to describe global effects one has to introduce an additional variable leading to a
gauge theory.

29This is important when one assumes Ψ in the one particle Dirac equation to be a wave
function which can be interpreted in a probabilistic way. Then due to “conservation of probabil-
ity“ w.r.t. time and due to Stone’s theorem ([26], Theorem VIII.8) any infinitesimal generator
of a time translation must be self-adjoint.
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particle framework using second quantization i.p. in such a way that one has a
unitary time evolution there?
A sufficient condition answering the first question for constant external fields
(constant w.r.t. time) is given by the Rellich-Kato theorem ([27], Theorem X.12)
and some simple Corollaries ([3], Theorem 4.2, Theorem 4.3). The second ques-
tion will be shortly discussed in 2.2 and a necessary and sufficient condition an-
swering the third question is given by the Shale-Stinespring criterion ([3], Chapter
10). However if the external field is time dependent some conceptional difficulties
arise, i.p. it is well known that the notion of vacuum generically depends on time
in such situations.30

1.1.4 How to formulate the phenomenon of pair creation mathemat-
ically

There are different approaches which can be used when formulating the process
of pair creation mathematically for a given external field. Some of them are
reviewed here.
One way using the intuition of the Dirac sea model is to find (or to show the
existence of) solutions of the minimally coupled one particle Dirac equation in
such a way that for some time t0 one has a state with energy in the negative part
of the spectrum of the free Dirac operator and for some time t1 > t0 the state is
in the positive part of the spectrum (and stays there for all times t > t1), i.e. for
t < t0:

< Ψ, P−Ψ >= 1 (10)

and for t > t1:
< Ψ, P+Ψ >= 1 (11)

where P− and P+ are the projectors corresponding to the two disconnected parts
of the spectrum of the free Dirac operator.31 For the Dirac sea picture this means
that one pair is created because one particle is lifted by the external field from the
Dirac sea to the positive energy spectrum (and stays there).32 Note that i.p. in
the second quantized formalism (without the Dirac sea) there is no interpretation
of such a solution of the Dirac equation in terms of a particle. However, if one is
able to “generalize“ the result to hold also in second quantized form33 the solution
makes sense even as a many particle process (see 1.1.2).
Another way to formulate the process of pair creation is to directly (i.e. without
considering the one particle Dirac equation) consider pair creation as a scattering

30Pair creation in the way it will be formulated in 1.1.4 as a scattering process can be seen
as a consequence of this fact.

31More precisely: The described situation corresponds to “pair creation with probability
one“.

32see 1.1.2
33How such a “generalization“ can work in a mathematical rigorous way can be found in [3],

Chapter 10.
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process of many particles using the Fock space formalism. It is to show that the
absolute value of the so called vacuum persistence amplitude

| < 0out, 0in > | (12)

is smaller than one.34 Here the concept of “in-“ and “out-states“ is used (to
be understood in the Heisenberg picture).35 This is equivalent to the vacuum
matrix element of the scattering operator. It can be roughly interpreted as fol-
lows: | < 0out, 0in > | < 1 means that the vacuum in the in-region and the
vacuum in the out-region are different (because some scattering processes hap-
pen during the time evolution), i.e. when the vacuum of the in-region evolves
with time it evolves in such a way that when evolved to the out-region it con-
tains particles.36 Quantitatively this is sometimes shown as follows: By setting
| < 0out, 0in > | = eiW with W ∈ C (sometimes called the vacuum action37) one
gets | < 0out, 0in > |2 = e2Im(W ), so (for nonvanishing W ) Im (W ) is a quantity
representing the probability of pair creation. An explicit calculation to see how
this can work is outlined in 1.1.6.

A mathematical question which arises when formulating the phenomenon of pair
creation as a scattering problem in Fock space is the question if the scattering
operator is implementable in Fock space at all. (More details and answers to
this question can for example be found in [6].) However, in the physics literature
which is reviewed in 1.1 this is not discussed.

1.1.5 Some “early calculations“ based on the Dirac sea picture

Historically a first formal example indicating that pair creation may really happen
in an idealised situation described by the one particle Dirac equation was given
by Klein in [8] and interpreted in terms of the Dirac sea picture as pair creation
process for example by Hund in [17].

34Note that for any reasonable physical theory | < 0out, 0in > | ≤ 1 holds.
35For reference see e.g. [5].
For a concrete formulation in Fock space it is important that one usually uses the free Fock

space to implement the scattering process.
A realistic situation is to define the in-vacuum as the groundstate at a time where no field

is present, then to turn on the field adiabatically, switch it off again at a later time and define
the out-vacuum as the groundstate at a time after the field has switched off.

36For this intuition the Schrödinger picture is useful.
In Fock space formalism this can be easily understood: Since for different times the Dirac

operator (minimally coupled to an external field) may be “separated“ in different spectral
subspaces, for different times different Fock spaces are needed. Thus the vacua of the different
Fock spaces may not coincide (i.e. what the vacuum at a given point of time is depends on the
time dependent background) leading to a vacuum persistence amplitude smaller than one.

37It is well known that W is a lorentzinvariant.
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The approach which is used here is to directly find a solution of the one particle
Dirac equation. To show how this works the original discussion by Klein will be
sketched. For simplicity just one space dimension is considered.38

The example deals with an electrostatic potential (constant w.r.t. time) which is
constant in space (gauged to 0) for all x < x0 for some x0 ∈ R (w.l.o.g. x0 = 0)
and jumps at x0 to another constant value C > 0. So the potential reads in a
specific gauge:

Aµ(x) = Cδ0µθ(x) (13)

which leads by minimal coupling to the Dirac equation

i
∂

∂t
Ψ(x, t) =

(
−iα ∂

∂x
+ βm+ eCθ(x)

)
Ψ(x, t) (14)

Klein found a solution of this equation in a similar way than it is done for the
Schrödinger equation for one particle in many introductory textbooks on quantum
mechanics. For this consider first the regions x < 0 (“region I“) and x > 0
(“region II“) seperatly and make the following ansatz for a wave coming from the
left:

ΨI(x) = AIe
i(pIx−Et) + A′Ie

i(−pIx−Et) (15)

ΨII(x) = AIIe
i(pIIx−Et) (16)

where AI , A
′
I and AII have four components. AI is given whereas A′I and AII

have to be determined. By continuity of the solution at x = 0:

AI + AI ‘ = AII (17)

Plugging the ansatz into the Dirac equation gives:

EAIe
i(pIx−Et)+EAI ‘e

i(−pIx−Et) = AI (αpI + βm) ei(pIx−Et)+AI ‘ (−αpI + β) ei(−pIx−Et)

(18)
EAII = AIIαpII + βmAII + eCAII (19)

These equations couple the components of AI , the components of AI ‘ and the
components of AII such that four degrees of freedom (AI is known) are left. They
can be determined by solving the equations AI + AI ‘ = AII . The solutions are
derived in [8].
Now the main argument to show why negative energy states occur goes like
follows: Assuming that AI , AI ‘ and AII do not vanish39 gives (by comparing
coefficients in the above equations, squaring the resulting equations using the
anticommutation relations for the matrices and by absorbing e in C):

E2 = p2
I +m2 (20)

38The whole argumentation can be easily generalized to three dimensions. The detailed
analysis in three dimensions can for example be found in Klein’s original work [8].

39that such solutions are possible is derived in [8]
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(E − C)2 = p2
II +m2 (21)

Hence, for C = E +m and C = E −m: pII = 0, for C < E −m: pII is real and
the kinetic energy E − C is positive, for E −m < C < E + m: pII is imaginary
(so ΨII is damped for x > 0) and for C > E + m: pII is real and the kinetic
energy is negative. This means: For C > E +m pair creation in the sense it was
formulated in 1.1.4 for the Dirac sea picture occurs (a detailed analysis in [8]
shows that the probability for such a transition is indeed > 0).40

A bit more complicated situations have been discussed by Sauter in [9] and [12].
In particular he showed that for a potential of the form

Aµ(x) = δ0µ (Cθ(x) +Bxθ(−x)θ(x− x0)) (22)

where x0 < 0 and B, C are constants the transition probability is relevant only
for BλC of order m where λC is the compton wavelength. This result (earlier
conjectured by Bohr) is important because it shows that an observable rate of
pair creation can just occur in electrostatic fields which “jump very quickly“.41

Many similar calculations were done (i.p. for particles satisfying the Klein Gordon
equation by Hund ([17])) and interpreted as pair creation. What (almost) all of
these “early calculations“ have in common is first, that the considered external
field is constant in time but not constant in space and second, that some matter
has to be there to move towards the potential.42

1.1.6 The Schwinger effect

In the “early days of QED“ the phenomena of vacuum polarization and pair
creation in external electromagnetic fields which are constant in space and time

40Now one can ask if this process of pair creation does also make sense as a process of many
particles, i.e. if one can “generalize“ the result to hold true in Fock space. This question
is not simple to answer. Although in the physics literature it is usually argued that such a
“generalization“ is indeed possible (see e.g. [13]), mathematically some difficulties concerning
the question which was asked at the end of 1.1.4 arise (see e.g. [3], notes for Chapter 10): “One
would expect that the Klein paradox has a resolution in quantum electrodynamics. However,
the external field theory described here is not the appropriate framework for the description of
this problem because it turns out that the scattering operator for a high potential step (> 2mc2)
cannot be implemented in Fock space [10]. It seems as if in a complete treatment of the Klein
paradox the interaction of electrons and positrons should not be neglected, but I am not aware
of any mathematically rigorous solution to this problem.“[3]

41Indeed it is sometimes argued that because such “quick jumps“ never happen in reality the
situation has nothing to do with pair creation in reality.

42Hund ([17]) also discusses pair creation without “matter coming in“ and notes that here
the second quantized formalism is crucial.
Another important calculation (because more realistic than the other calculations which were
mentioned) is the treatment by Beck, Steinwedel and Süssmann (see [11]) where a situation
with a potential V of the form V (x) = −C for |x| < A and V (x) = 0 for |x| > A for some
A,C ∈ R is discussed (without explicitly using the Dirac sea picture).
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were in particular investigated by Dirac ([14]), Heisenberg ([15]), Heisenberg and
Euler ([16]) and later by Schwinger ([18], [19]). Schwinger gave an explicit, man-
ifestly gauge invariant and exact calculation for the probability of pair creation.
That is why the phenomenon of pair creation in constant external electromag-
netic fields is often called the Schwinger effect. The calculation (sometimes called
the “proper time method“) used to calculate the imaginary part of the vacuum
action Im (W ) is outlined here.43

The starting point is to consider the vacuum persistence amplitude (see 1.1.4).
Using the S-operator this amplitude can be written as44

< 0out, 0in >=< 0, S0 >=< 0, T e−ie
∫
d4xj(x)A(x)0 > (23)

Here T is the time ordering operator. So with the notation of 1.1.4 and <> the
vacuum expectation value:

2W = −e
∫
d4x < j(x) > A(x) (24)

where in QED

jµ(x) = −1

2
γµ
[
Ψ(x), Ψ̄(x)

]
(25)

and the quantized Dirac fields Ψ defined by the Dirac equation minimally coupled
to the external potential satisfy the equal time anticommutation relations

{Ψ(x, t),Ψ+(y, t)} = δ(3)(x− y) (26)

with x, y ∈ R3 and t ∈ R.
Now the original treatment of Schwinger starts with the Greens function (or
propagator) formalism. As usual the Greens function G can be expressed as
(with x, y ∈ R4)

G(x, y) = i < T Ψ(x)Ψ̄(y) > (27)

Noting that
1

2

[
Ψ(x), Ψ̄(x)

]
= T

(
Ψ(x)Ψ̄(y)

)
|y→x (28)

where y → x is to be taken after time ordering is applied yields for the vacuum
polarization desity < jµ(x) >

< jµ(x) >= ieTr (γµG(x, x)) (29)

Here Tr refers to spin space. Schwinger uses this expression to derive a “manifestly
gauge invariant calculation“ of W . For this purpose he introduces a manifestly

43A more detailed discussion can be found both in the original work by Schwinger ([18], [19])
and in [20], 10.5.

44In his original work ([18]) Schwinger did neither explicitly use the vacuum persistence
amplitude nor the concept of the S-matrix. The use of the S-matrix he introduced in [19].
Many of the following considerations like [36] are based on [18] and [19].
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gauge invariant representation of the vacuum action, i.e. using the given expres-
sions for the vacuum polarization density and for the Greens function one can
show (see [18] or [20]) that W can be written as

W =

∫
d4x

i

2

∫ ∞
0

ds
1

s
e−im

2sTr < x, U(s)x > (30)

where a factor of convergence (eiε) is implicit and U is given by

U(s) = exp
(
i(γµ(pµ − eAµ))2s

)
=: exp(−iHs) (31)

Thus it is enough to calculate the amplitude

< x,U(s)y >=:< x(s), y(0) > (32)

This notation suggests to interpret exp(−iHs) as a propagator propagating the
states in time. So by analogy one can use the Heisenberg equations of motion for a
particle to solve the problem (that is why the method by Schwinger is sometimes
called the “proper time method“):

dxµ
dt

= −i [xµ, H] = 2 (γµ(pµ − eAµ)) (33)

d (γµ(pµ − eAµ))

dt
= 2eFµν (γα(pαν − eAαν))− ieFµν,ν +

1

2
eσλνFλν,µ (34)

where Fµν = Aν,µ − Aµ,ν and σµν = i
2
γ[µγν].

The solution can be used to determine H and thus < x(s), y(0) > from which W
can be calculated.
For a constant uniform electric field Schwinger calculates this explicitly which
gives for the imaginary part of the vacuum action (see [18]) with α the Sommerfeld
constant:

Im (W ) =

∫
d4x

α2E2

2π2

∞∑
n=0

1

n2
e−

nπm2

eE (35)

Using Fredholm theory this result also follows from another expression which
Schwinger used in [19].45 For Im (W ) =

∫
w(x)d4x where w(x) is the probability

of pair creation per unit volume and unit time the following expression is derived
there

w(x) = Tr < x, ln
(
1− Tρ(+)T̄ ρ(−)

)
x > (36)

Here for fermions

ρ(±) = 2π(P +m)θ (±P0) δ(P 2 −m2) (37)

45For more details consider [19] or the book written by Itzykson and Zuber ([21]). This
expression is mentioned here because some later calculations like [36] are based on it (see
3.1.1).

18



are the operators describing the density of states and T , T̄ are the scattering
operators satisfying

T = eA+ eA
1

P −m+ iε
T (38)

T̄ = eA+ eA
1

P −m− iε
T̄ (39)

From here the same expression for Im(W ) as given above is calculated for a con-
stant uniform external electric field.

The result for Im (W ) for constant external electric fields shows two important
points: First, for E → 0 it vanishes in all orders (in E). So pair creation in
constant electric fields cannot be treated perturbatively. Second, restating c an
~ to get a significant rate of pair production the field E has to exceed the critical
value

Ecr =
m2c3π

e~
(40)

otherwise the effect is exponentually supressed. Such a high field strength has
never been achieved in experiments, i.e. so far there is no empirical verification
of the Schwinger effect.
Further, two things are important: First, Schwinger also gave an explicit integral
expression for the vacuum action for arbitrary constant external electromagnetic
fields.46 This expression i.p. shows that if the gauge invariant quantities FµνF

µν

and Fµν ˜F µν for a constant external field vanish, no pair creation occurs in this
field. Second, it is important to point out that the Schwinger calculation is done
for an idealized situation where i.p. the electric field is constant in time, i.e. it acts
for an infinite time. From the calculation it is not clear whether the result also
holds true for more realistic configurations where i.p. the field is (adiabatically)
turned on and turned off at some time. Dealing with pair creation in more
realistic ways is part of the rest of this review. For this purpose the adiabatic
theorem is considered first.

1.2 Adiabatic phenomena and introduction to the adia-
batic theorem

1.2.1 The adiabatic hypothesis

The first idea that adiabatic processes (i.e. processes in which the change of a
system happens very slow in a sense to be specified) in quantum mechanics sat-
isfy the so called adiabatic hypothesis was formulated by Ehrenfest ([22]) in the

46The corresponding Lagrangian is the well known Euler-Heisenberg effective Lagrangian (it
was already calculated in [16] by Euler and Heisenberg for almost constant external electro-
magnetic fields).
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context of “old quantum mechanics“47. This hypothesis claims that by adiabati-
cally changing a system the quantum numbers of a given motion do not change
- they are invariant, quantum jumps do not occur.
This idea arose due to the observation that there are adiabatic processes which
can be derived classically and which precisely hold true although the laws which
are used in the corresponding part of physics are of quantum form. One example
is Wiens law.48 If this holds in general for all adiabatic processes this means that
adiabatic processes are not influenced by quantum effects or vice versa that adia-
batic processes do not cause any “quantummechanical change“. This is precisely
the adiabatic hypothesis.

1.2.2 The adiabatic theorem

The main step from the “old“ adiabatic hypothesis to the adiabatic theorem
is the use of wave mechanics and the probabilistic interpretation of the wave
function (see [23]). In the formalism of wavemechanics the adiabatic theorem
in the formulation presented in [23] and [24] claims that the probability for a
quantum jump is zero when the system is changed adiabatically by an external
perturbation. A general treatment of this theorem was first given by Born and
Fock in [24] for a system described by the Schrödinger equation. This treatment
uses the useful concept of two different time scales: A “fast time scale“ denoted
by s and a “slow time scale“ denoted by t where

t = εs (41)

with ε small (0 < ε << 1) the so called adiabatic parameter. This specifies
what is meant with “slow change“ of the system: Whenever there are processes
happening on two time scales t and s related by t = εs one speaks of “adiabatic
processes“ and one can apply the adiabatic theorem.
For proving the adiabatic theorem one then has to show that on very slow time
scales the transition probability for the system (i.e. the probability to change the
bound state during the adiabatic perturbation or in other words the probability
for a quantum jump) is neglectable.49 Born and Fock proved this for the Hamilton
point spectrum of a system described by the Schrödinger equation.50

47I.e. in mechanics where i.p. possible motions are characterized by postulating various
quantization conditions.

48see e.g. [22]
49For doing mathematical proofs one introduces the “adiabatic limit“. This will be done in

2.1.1. Nevertheless for understanding the basic meaning of the theorem this is not important
because in realistic physical situations an “infinite slow time scale“ is not possible.

50The main idea of the proof is: Given the Schrödinger equation where the Hamilton operator
depends on the small time scale t one can consider three systems of functions: The eigenfunc-
tions of the Hamiltonean at one given time t0 (w.l.o.g. t0 = 0) (Ψn)nN, the eigenfunctions of
the Hamilton operator at arbitrary time (Φn)n∈N and the functions solving the Schrödinger
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2 Pair creation as an adiabatic phenomenon

2.1 Rigorous treatment of the adiabatic theorem

2.1.1 The adiabatic limit

As mentioned in 1.2.2 the adiabatic theorem deals with physical situations where
two time scales t and s related by t = εs can be separated in the way it was
presented in 1.2.2. The adiabatic theorem roughly claims that the smaller ε is
the smaller the probability for a quantum jump during time evolution is (see
1.2.2). To make a precise mathematical statement one introduces the adiabatic
limit. That means that one claims that in the limit ε → 0 the probability for a
quantum jump vanishes.
Conceptually this limit is very important, i.p. in the case of adiabatic pair
creation (see 2.2.3). For this it is important to note the obvious mathemati-
cal fact that in general when dealing with the concept of limit the “adiabatic
case“ (limε→0) and the “static case“ (ε = 0) are completely different things.
Whereas “ε = 0“ represents a static situation “limε→0“ is the mathematical pre-
cise formulation for an time varying situation which is “infinitesimally slow“.
This means i.p. that if a static physical situation differs from the situation where
an arbitrary small external perturbation (w.r.t. time) acts (i.e. if there is a
“jump“ in the physical behaviour w.r.t. time51), “the case ε = 0“ models the
static situation and “the case limε→0“ the perturbed situation.

2.1.2 The adiabatic theorem

Here a precise mathematical formulation of a modern version of the adiabatic
theorem as well as some ideas of its proof are given. The difference between
“adiabatic theorems with gap“ and “without gap“ is explained. It is refered to
[25] where i.p. more details and examples can be found.52

A first class of adiabatic theorems consists of some kind of generalizations of the
theorem proven by Born and Fock (see 1.2.2) in the sense that they are not
restricted to the point spectrum but still deal with spectra separated by a gap

equation (ηn)n∈N which coincide with (Ψn)n∈N at t = 0. By conservation of probability and
orthorgonality of the functions the three families are related to each other by unitary operators.
Now the probability for a given quantum jump is given by the square of the corresponding ma-
trix element of the unitary operator connecting the systems (Φn)n∈N and (ηn)n∈N. The proof
shows that these vanish in adiabatic processes when connecting states with different quantum
numbers.

The exact proof by Born and Fock as well as some restrictions and assumptions which have
te be made can be found in [24].

51in other words that the behaviour is not continuous
52Note that in [25] it is i.p. distinguished between “time adiabatic theorems“ and “space

adiabatic theorems“. Here just “time adiabatic theorems“ are considered.
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(to be specified).53 It is because of the last point why they are sometimes called
adiabatic theorems with gap condition. To make this precise the following defini-
tion is given:

Definition:
Let σ(t) be the spectrum of H(t) (e.g. the Dirac operator or the Hamilton
operator) and let σ̃(t) be a subset of σ(t). σ̃(t) is called (locally) isolated by
a gap iff there exist two functions f1 and f2 bounded and continuous s.t. the
following two conditions hold

σ̃(t) ⊂ [f1(t), f2(t)] (42)

inft∈R (dist ([f1(t), f2(t)], σ(t)\σ̃(t))) > 0 (43)

Using this definition the relevant version of the adiabatic theorem with gap can
be formulated:

Theorem:
Let U ε be the solution of the initial value problem54

iε
d

dt
U ε(t, t0) = H(t)U ε(t, t0) (44)

U ε(t0, t0) = 1 (45)

and P̃ (t) the projector corresponding to σ̃(t) where σ̃(t) is assumed to be isolated
by a gap. Then55

limε→0||
(
1− P̃ (t)

)
U ε(t, t0)P̃ (t0)|| = 0 (46)

The proof of this theorem can e.g. be found in [25]. Here just the main idea
is given and it is mentioned at which point the gap condition is needed in the
proof56.

53The notion of “no quantum jump happens during time evolution“ is generalized to a so
called “adiabatic decoupling of spectral subspaces“ (see [25]).

For the historical development of the adiabatic theorem references can also be found in [25].
54Rigorous statements e.g. on the existence of the solution can be found in [27].
55For the proof H ∈ C2

b (R,Lsa(H)) is also needed.
56There are two points where the gap condition is needed. One point has to do with the

regularity of the projector P̃ (t). This point is not considered here. A detailed analysis can be
found in [25].
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The main idea of the proof is to find a mechanism which allows you “to inter-
change U ε and P̃ keeping the error of order ε“.57 This is done by defining another
time evolution (represented by another propagator, called the “adiabatic propa-
gator“) which can be interchanged with P̃ (t). That time evolution has to be such
that the difference between the propagator U ε and the adiabatic propagator is of
order ε. To prove that the difference between U ε and the adiabatic propagator is
indeed of order ε it can be shown that the difference can be written as an integral
over a function which oscillates with a frequency proportional to ε−1. In order to
show this the gap condition is needed.

A second class of adiabatic theorems are adiabatic theorems without gap condi-
tion. For these theorems a spectral gap is not necessary. The corresponding
proofs require a more careful analysis than presented in the idea above (see [25]).

For pair creation considered as adiabatic phenomenon (see 2.2.2) both classes
of adiabatic theorems are needed. In this discussion in 2.2.3 i.p. a sketch of a
proof of an “adiabatic lemma without gap“ is given when sketching the proof of
the first part of the main theorem there.

2.2 Rigorous treatment of pair creation

The calculations reviewed so far (1.1.5, 1.1.6) have been given using physical
formalisms without refering to mathematical rigour. However, mainly in the
discussion of pair creation in constant external fields produced by heavy ions it
has been realized that mathematical insight is essential for understanding the
phenomenon of pair creation in realistic situations. Why this is the case can be
understood easily. As already mentioned in 1.1.4 one way to show that pair
creation occurs with probability one is (by using the one particle Dirac equation)
to show that < Ψ, P−Ψ >= 1 for some time t < t0 and < Ψ, P+Ψ >= 1 for
some time t > t1 where t1 > t0 (and then to generalize the result in such a way
that it holds true in the second quantized formalism). If one wants to apply this
procedure to situations with realistic external potentials (i. p. with more realistic
potentials than the ones considered in 1.1.5) knowledge about the spectrum of the
Dirac operator minimally coupled to that potential is needed.58 I.p. knowledge
about the behaviour of the bound states possibly occuring in the spectrum and
depending on the external potential will turn out to be essential. (That bound
states may indeed occur is a fact which is commonly used in the physics of heavy
ions (see e.g. [2]).) This will be argued in more details in 2.2.2 and 2.2.3.
Before, in 2.2.1, a mathematical proof is given which shows (using second quan-

57A simple argument showing that P̃ and U ε cannot simply “be interchanged“ can be found
in [25].

58I.e. one has to answer the second question which was aked at the end of 1.1.3.
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tization) that pair creation in constant external fields Aµ does not occur (under
specific technical assumptions). This can be taken as a further motivation to
study more realistic situations. Note that this result should not be confused with
the Schwinger result (1.1.6). In 1.1.6 the E-field was assumed to be constant
whereas here the Aµ-field is constant.
In general it is important to note that in contrast to the work considered so far
the rigorous considerations in 2.2 deal with the Aµ-field. No arguments using
local E- and B-fields are used.

2.2.1 Nonexistence of pair creation in static fields

In the literature on mathematical physics one can find rigourous arguments show-
ing that pair creation (considered as a scattering process in the second quantized
formalism) in external time independent fields Aµ(x) does not occur (see e.g. [28]
and references therein). A theorem claiming this is formulated in [28]59:

Theorem:
Let P+, P− the spectral projectors of the free Dirac operator. Let V be time
independent and bounded with relative bound less than one.60 Assuming that a
unitary single particle scattering operator S(V ) : L2(R3) ⊗ C4 −→ L2(R3) ⊗ C4

exists the following holds:
(i) S(V) commutes with the free time evolution, i.p. P+S(V )P− = 0 and P−S(V )P+ =
0.
(ii) The unitary operator S(V ) : F −→ F describing the scattering theory in the
free Fock space F61 is uniquely determined by S(V ) up to a phase which can be
chosen in such a way that

< 0,S(V )0 >= 0 (47)

if AA∗ has 1 as one of its eigenvalues and otherwise

< 0,S(V )0 >= det(1 +BAA∗B∗)−
1
2 (48)

where A := P+S(V )P−, B := (P+S(V )P+)−1.

That the vacuum persistence amplitude for static external fields is indeed equal
to one is a simple consequence of this theorem: By (i) A = 0 and thus by (ii)

< 0,S0 >= (det(1))−
1
2 = 1.

59For the proof it is refered to some earlier work (see [28]).
60In some sense this assumption means that V is small w.r.t. the free Dirac operator (see

[27], X.2). It is needed in order to make shure that H0 + V is selfadjoint on the domain of H0

by the Rellich-Kato theorem. For the purpose of pair creation the relevant potential V is given
by V (x) = −eφ(x) + eαA(x).

61How to come from S to S (i.e. how to implement the scattering operator in Fock space) is
e.g. discussed in [3], Chapter 10 and in [6]. For the existence one needs that P+S(V )P− and
P−S(V )P+ are Hilbert Schmidt. (This answers the question raised at the end of 1.1.4.)
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Does this mean that (under the conditions of the theorem) pair creation in reality
is not possible in such “static situations“? It turns out that this is not quite
correct. It just means that one has to formulate the problem more carefully.
This is meant in the following sense: The result is not stable, i.e. for a slowly
changing strong field “pair creation happens (even) in the adiabatic limit“. This
will be made precise in 2.2.2 and 2.2.3. Thus the theorem which is valid for an
idealized situation (for static external fields) is not useful for making predictions
about experiments because there perfect static Aµ-fields (i.p. fields which have
the same value for an infinite time) are not realizable.
However, there is still something one can learn from the rigorous treatment,
namely that in contrast to the Schwinger result (1.1.6) there is nothing like a
critical field strength which is needed in order to create an observable amount of
pairs. Indeed the theorem holds for arbitrary strong fields, thus the claim of the
theorem holds true independently of the strength of the external field. This may
be taken as a hint that the actual physical effect of pair creation (also) in more
realistic situations does not (only) depend on the strength of the external field if
the external field is more complicated than the one considered by Schwinger.62

2.2.2 Pair creation as an adiabatic phenomenon and the adiabatic
switching formalism

As mentioned in 2.2.1, since pair creation does not occur in static external Aµ-
fields it is a natural question to ask whether this result is stable, i.e. if pair cre-
ation occurs in external fields which are almost constant w.r.t. time. The main
intuition about how pair creation could happen in such external fields which are
almost constant w.r.t. time, i.e. in external fields which change adiabatically, can
be formulated in terms of the Dirac sea picture (1.1.2) and the adiabatic hypoth-
esis (1.2.1): If one takes into account that by an external field the spectrum of
the corresponding Dirac operator (in particular) consists of the disjoint absolutely
continuous parts of the spectrum of the free Dirac operator (−∞,−m] ∪ [m,∞)
and possibly of bound states lying between these disjoint parts one could imagine
the following situation. By varying the external field adiabatically in time it could
be possible that one bound state energy level moves from the lower continuum of
the spectrum to the upper continuum. By the adiabatic hypothesis an electron
from the Dirac sea will follow this energy level moving to a state of the upper
continuum. (Thus a pair will be created.) A (time dependent) bound state of
the Dirac operator which can realize such a situation is called a gap bridge. Here

62It is part of the rest of this review to point out that the different treatments (using either
the Aµ-field in the consideration as it is done here in 2.2 or the local external electromagnetic
fields as e.g. done by Schwinger) have to be separated. Indeed, the main point in this review will
be the argumentation that for more realistic situations than the one considered by Schwinger it
is crucial that one sudies the phenomenon of pair creation using the external Aµ-field instead
of arguing with local E- and B-fields (see 3.2).
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it is essential that the external field is not constant w.r.t. time. However if the
effect is true also in the adiabatic limit (2.1.1)63, then for all practical purpose
(i.e. for situations which are realizable in real experiments) one can speak of pair
creation occuring in constant external Aµ-fields. The main new insight would
(just) be that modelling the problem (from the very beginning) as a problem in
constant external fields does not work (because “the description is not contin-
uous“). Instead one has to consider the problem as a problem in an adiabatic
formalism.
Note that a quantitative mathematical formulation of this intuition of pair cre-
ation might be difficult i.p. because the behaviour of the spectrum of the Dirac
operator minimally coupled to a given (time dependent) external electromag-
netic field w.r.t. time is not easy to handle. However such a treatment has been
given recently ([29], [30]). Before reviewing this, the formalism which is used is
described more carefully.64

For modelling this adiabatic phenomenon the first step is to introduce two time
scales into the problem (see 1.1.2). So let s be the fast and t be the slow time
scale with t = εs. The minimal coupled one particle Dirac equation then reads:

iε
∂Ψε

∂t
= HΨε (49)

where Ψε means that Ψ is considered on the slow time scale. Under suitable
conditions65 for H there exists a unitary operator U ε(t, t0) describing the time
evolution of the system and satisfying

iε∂tU
ε(t, t0) = HU ε(t, t0) (50)

U ε(t0, t0) = 1 (51)

Now it is useful to give a few commonly used definitions (see e.g. [28], [30]) to
introduce the adiabatic switching formalism.

Definition:
(i) A function φ : R −→ R, φ ∈ C1 is called a switching factor if φ′ is bounded,
φ(0) = 1, φ′(0) > 0 and φ(t) = 0 for t < ti, t > tf for some ti, tf ∈ R with ti < 0
and tf > 0.66

63That means (when taking into account 2.2.1) that the behaviour for ε −→ 0 (adiabatic
limit) and the behaviour for ε = 0 (static case) are different. I.e. the adiabatic and the static
result do not coincide because the behaviour is not continuous. This shows the importance of
the concept of the adiabatic limit (2.1.1).

64This formalism has been introduced by G. Nenciu in [28].
65see e.g. [3]
66The special point in time t = 0 is chosen because below it is assumed that the external

field becomes overcritical (a notion to be explained) at t = 0.
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(ii) A time independent external potential A is called undercritical if φ(t)A67 is
such that all bound states of the spectrum of the corresponding Dirac opera-
tor stay below the upper continuum part of the spectrum for all t ∈ R (to be
understood in the adiabatic limit).
(iii) A time independet external potential A is called overcritical if φ(t)A is such
that for at least one bound state the eigenenergycurve (as a curve w.r.t time)
crosses the upper continuum (to be understood in the adiabatic limit).

With the intuition given at the beginning of this section and the adiabatic theo-
rem in mind the condition for the existence of pair creation is now easy to state:
Pair creation exists in the adiabatic limit in a given external Aµ-field iff for some
time s the external potential becomes overcritical.68 A proof showing that this
intuition is indeed correct is reviewed in 2.2.3.
Note again that in this treatment one i.p. neglects effects of vacuum polarization
on the external fields, i.e. one uses external field approximation (see 1.1.3).

2.2.3 Existence of adiabatic pair creation in the Dirac sea picture

Now (in 2.2.3) the main steps showing that the proof of adiabatic pair creation
in the sense it was formulated in 2.2.2 really exists are reviewed. The proof
which is due to [30] and [29] uses the adiabatic switching formalism. The main
part is the proof of the following theorem where it is assumed that the external
time dependent Aµ-field can be written as φ(t)A where A is time independent
and φ is a switching factor, i.p. φ(0) = 1 (see 2.2.2).69

Theorem:
Let t = 0 be the time when the external Aµ-field becomes overcritical. Let Φφ(t0)

be a bound state of H for some t0 < 0. Let Ψε(t) be the solution of the Dirac
equation with Ψε(t0) = Φφ(t0). Then for all η ∈ L2 and for all t > 0

limε→0 < Ψε(t), η >= 0 (52)

In [30] the proof of this theorem is done in two parts: First, it is shown that
a bound state with energy in the intervall [−m,m] moves to the upper spectral
continuum for some time (when the field becomes overcritical) in an adiabatic

67For an actual external time dependent field A it is assumed that it can be factorized like
this, i.e. that A(t) = φ(t)Ã with Ã time independent and φ a switching factor.

68Becoming overcritical at t = 0 means that t = 0 is the time where one bound state energy
of an overcritical external field crosses the upper continuum of the spectrum.

69Some technical assumptions (see [30], Condition 2.2) have to be used.
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process.70 Second, it is shown that the state stays in the upper continuum when
the field becomes undercritical again. From these two parts the claim of the the-
orem follows. The main steps of the proof are sketched:

First part of the proof
Denote the eigenspace of the eigenenergy Eφ of the Dirac operator minimally
coupled to the external field φ(t)A (where Eφ ∈ [−m,m]) by Nφ and the cor-
responding projector by PNφ . Denote the Dirac operator corresponding to the
external field φ(t)A by Hφ.

As a first step it is proven that the eigenspaces Nφ converge to N1 when the field
becomes overcritical, i.e. Lemma 6.1 of [30]:

Lemma:
(i) For any sequence (Φφ)φ, Φφ ∈ Nφ, ||Φφ|| = 1

limφ→1||PN1Φφ|| = 1 (53)

(ii) dimN1 = dimNφ for all φ close enough to one, i.e. there exists a φB s.t.
dimN1 = dimNφ for all φ ∈ [φB, 1).

For the proof of this lemma an operator

Rφ : (N1\Φ1)⊥ −→ N⊥1 (54)

where Φ1 is a normalized state in N1 s.t. for some Φφ Φφ ∈ (N\Φ1)⊥ holds71 is
defined as

Rφη =
1

H1 − Eφ
PN⊥(Aη) (55)

Using simple arguments it is shown in [30] that

< Φφ,Φ1 > Φ1 = (1− (1− φ)Rφ) Φφ (56)

It is proven that for some C <∞

||Rφ||op2 < C(1− φ)−
13
16 (57)

Using this bound it is shown that (1− (1− φ)Rφ) is invertible with inverse

(1− (1− φ)Rφ)−1 =
∞∑
j=0

(1− φ)jRj
φ (58)

70The essence of the proof of this first part is a proof of an adiabatic lemma without gap (as
mentioned in 2.1.2). For this purpose a preliminary lemma for sequences which are needed to
prove the adiabatic lemma is proven first (using an operator Rφ), see below

71The existence of such a Φ1 is shown in [30]. Note that Φ1 depends on Φφ.
In particular it follows from Φφ ∈ (N\Φ1)⊥ that Eφ is in the resolvent set of H1 and that

therefore the following expression is well defined.
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From this together with < Φφ,Φ1 > Φ1 = (1− (1− φ)Rφ) Φφ it is easy to see

that with ζφ :=
Φφ

<Φφ,Φ>

limφ→1||PN⊥ζφ|| = limφ→1||
∞∑
j=0

(1− φ)j Rj
φΦ1|| = 0 (59)

Using Schwarz inequality and the fact that Φφ and Φ1 are normalized gives

limφ→1||PN⊥Φφ|| = 0 (60)

which proves (i) of the Lemma. The proof of (ii) can be done by contradiction
(see [30]).

In a second step an adiabatic lemma without gap (lemma 7.1. in [30]) is proven.
For this purpose it is first shown that for every bound state Φ1 ∈ N1 there exists
a sequence (Φφ)φ ∈ Nφ (which i.p. has the property of the lemma above) which
can be used to prove the adiabatic lemma. This basically works like follows.
The sequence Φφ :=

ζφ
||ζφ||

has the following two properties (see lemma 6.4 of [30]):

< ζφ,Φ1 >= 1 (61)

ζφ ∈ (N1\Φ1)⊥ (62)

The existence of such a sequence is proven in [30]. It is shown (by using Rφ) that
for some C <∞

||∂φΦφ|| ≤ C(1− φ)−
13
16 (63)

for all φ close enough to 1.
Using these sequences the adiabatic lemma without gap stated in the following
can be proven.

Lemma (Adiabatic lemma without gap)
Let t < 0 be such that a bound state Φφ of H0 +φA with energy Eφ > −m exists.
Then:

limε→0||PN1U
ε(0, t)Φφ(t)|| = 1 (64)

The proof of this lemma uses the adiabatic theorem, i.e. that for t0 < 1

limε→0||PNφ(t0)U
ε(t0, t)Φφ(t)|| = 1 (65)

The constructed sequences are needed to form suitable orthonormal basises for
(Nφ)φ:
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If {Φi}i∈N is an orthonormal basis of N1, the constructed sequences {Φi
φ} cor-

responding to Φi are orthonormal basises of Nφ for φ close enough to one (but
unequal one).
The proven bound for ||∂φΦφ|| is needed to estimate the error between an ap-
proximate time evolution defined by

Φε
φ(t),t0

= e
− i
ε

∫ t
t0
Eφ(s)ds

n∑
l=1

αεt0,lΦ
l
φ(t) (66)

where the sum stands for the expansion in the basis {Φl
φ(t)} and the true time

evolution U ε(0, t0)Φφ(t0). It turns out that for some C <∞

||Φε
φ(0),t0

− U ε(0, t0)Φφ(t0)|| ≤
13

16
Ct

3
16
0 (67)

Note that the right hand side is independent of ε.
With this result the adiabatic lemma can be proven easily (see [30], proof of
lemma 7.1). The lemma completes the first part of the proof.

Second part of the proof
Mathematically “the state stays in the upper continuum when the Aµ-field be-
comes undercritical again“ means that the bound states during overcriticality
must leave the support of the (time dependent) external potential fast enough
in order not to be taken out of the upper continuum again when the potential
becomes undercritical.
The proof of this fact in [30] uses generalized eigenfunctions. The proof is partly
very technical. It consists of three basic steps:
First, the time evolution of the state is controlled in the case of potentials constant
in time. Several estimates are given in this first step. The one which is most
intuitive is that (see Corollaries 5.2 and 7.2 in [30]) for all η ∈ L2

||1SV ε
φ (s, 0)η|| ≤ Cζ (||η||+ ||H0 + φA||) |Φ− 1|−

1
2 t−

3
2

(1−ζ) (68)

where S ⊂ R3 compact, Vφ is the unitary time evolution generated by the Dirac
operator minimally coupled to a potential which is constant in time, 0 < ζ < 1.
The proof of this first step heavily relies on an estimate for generalized eigen-
functions for Dirac operators (see [30], part 4).
Second, the time evolution of the state is controlled in the case of time dependent
potentials for small times (of order 1).
Third, this result is extended to all times.
This separation of the proof between the second step and the third step is done
because it turned out that in the small time considered in step 2 the state already
leaves the range of the potential.
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The most important parts of the procedure of controlling the time evolution of
the state for time dependent external potentials (i.e. the most important steps
of the second and third steps of part two of the proof) are reviewed (see 7.2. and
7.3 in [30]). For this purpose σ denotes a time of order 1. Now in step 2 estimates
for times T ∈ (0, σ] are proven and in step 3 estimates for times T ∈ [σ,∞). The
lemma to prove where (i) corresponds to step 2 and (ii) corresponds to step 3
reads like follows (see lemma 7.3 and lemma 7.5 in [30]).

Lemma
Let U ε(t, T ) be the solution of iε∂tU

ε(t, T ) = HU ε(t, T ) (see 2.2.2) and η ∈ L2

s.t. ||η|| = 1, ||H0η|| < ∞ and supp(η) ⊂ S. Assume that C̃ ≥ ∂tφ(t) ≥ C > 0
for t ∈ (0, T ] and C, C̃ ∈ R72. Let 0 < ζ < 1

3
arbitrary. Then

(i) there exist constants Cζ ∈ R s.t. for all t ∈ (0, T ]

||1SU ε(t, 0)η|| ≤ Cζ

(
ε
1
2
− 3

2
ζt−

3
2

)
(69)

(ii) there exists some constant c ∈ R s.t. for all t ∈ [T,∞)

||1SU ε(t, 0)η|| ≤ cε
1
12
− 3

4
ζ (70)

Idea of the proof of the lemma
(i)
A key point to control the error is to use V ε

φ(l) (see above) with l = t. Thus

ε
(
U ε(t, 0)− V ε

φ(t)

)
= ε

∫ t

0

∂a
(
V ε
φ(t)(t, a)U ε(a, 0)

)
da

= −i
∫ t

0

V ε
φ(t)(t, a)

(
Hφ(t) −Hφ(a)

)
U ε(a, 0)da

= −i
∫ t

0

V ε
φ(t)(t, a) (φ(t)− φ(a))AU ε(a, 0)da (71)

Thus

U ε(t, 0)η = V ε
φ(t)(t, 0)η +

i

ε

∫ t

0

(φ(a)− φ(t))V ε
φ(0)(t, a)AU ε(a, 0)ηda (72)

Given this expression one can introduce an appropriate cutoff σ̃ ∈ (0, t), split
the integral and estimate both resulting integrals. The necessarity of the cutoff
is due to an estimate concerning generalized eigenfunctions which is needed to

72This assumption can always be fulfilled because of the definition of φ (see 2.2.2, Definition
(i)).
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prove step 1 of the second part of the proof which led to a Corollary (Corollary
7.2 of [30]) used to perform the estimate for U ε(t, 0)η. This corollary is essential
for the proof to “go through“ but it is not reviewed here because a rather long
discussion on generalized eigenfunctions would be needed. The lemma follows
when using this corollary carefully (see [30], proof of lemma 7.3).

(ii)
For the proof of the estimate an auxiliary time evolution Ũ ε(t) is introduced by
defining Ũ ε(t, 0) = U ε(t, 0) for t ≤ σ and Ũ ε(t, 0) = V ε

φ(σ)(t, σ) for t > σ. now i.p.

with corollary 7.2 again it is shown in [30] that there exists some Ψ̃ε
t s.t.

||Ũ ε(t, 0)η − Ψ̃ε
t|| ≤ Cε

1
12
− 3

4
ζ (73)

and that there exist Cζ s.t.

||1SΨ̃ε
t|| ≤ Cζε

2
3
−1t−2 (74)

This is lemma 7.6 of [30].
Using this the claim of lemma (ii) follows easily: As in the proof of (i) for t > σ:

ε
(
U ε(t, σ)− Ũ ε(t, σ)

)
= −i

∫ t

σ

U ε(t, a) (φ(σ)− φ(a))AŨ ε(a, σ)da (75)

Using this and the last estimate of lemma 7.6 it is easy to show that for some
C ∈ R

||1SU ε(t, σ)Ψ̃ε
σ|| ≤ Ct−2ε (76)

and together with the first estimate of lemma 7.6 the claim follows.

The results of the first and the second part of the proof can be combined to prove
the theorem (see [30], 7.4). From the theorem and the adiabatic theorem pair
creation in the formalism reviewed in 1.1.4 follows, i.e.
(i) for t < ti:

limε→0 < Ψε, P−Ψε >= 1 (77)

(ii) for t > tf :
limε→0 < Ψε, P+Ψε >= 1 (78)

Note that the theorem mentioned here in 2.2.3 is just needed to prove (ii), (i) is
a direct consequence of the initial condition and the adiabatic theorem.
For the discussion of adiabatic pair creation in external laserfields (3.2) the most
important insight from this proof will be that in order to prove the existence of
adiabatic pair creation the bound states and i.p. the whole space dependence
played a crucial role.
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3 Adiabatic Pair Creation in laserfields

3.1 Review of the “standard arguments“

In the recent physics literature it has been discussed if pair creation in laserfields
can happen (e.g. in [32], [33], [34], [35]). In this section the arguments given
there are carefully reviewed.
It is argued that lasers of a new generation (X-ray lasers) can be used (when
focussing them to a spot) to produce very large electric fields which can be used
to create an observable amount of pairs. For example in his analysis in [32]
Ringwald i.p. refers to the Schwinger calculation (1.1.6) and its generalization
by Brezin and Itzykson ([36]) as well as to calculations by Popov and Marinov
([38], [39], [40] and references therein). So these calculations are reviewed first.
They mainly treat the phenomenon of pair creation in external fields periodic
w.r.t. time (to be specified in 3.1.1 and 3.1.2) and use quasiclassical approxi-
mations which are valid under the two conditions73

ω0 << m (79)

eE << m2 (80)

where ω0 is the period of the external field, E is the strength of the electric field
and m the mass of the particle to create. These conditions seem to be plausible for
quasiclassical considerations because in a quasiclassical treatment Im(S) >> ~
should hold which leads to the given conditions.

3.1.1 The treatment by Brezin and Itzykson ([36]) and an early crit-
icism by Troup and Perlman ([37])

The paper by Brezin and Itzykson ([36]) asks the question if fields created by
optical lasers are able to cause pair creation which can be observed. The dis-
cussion is based on the Schwinger calculation ([19]) which is generalized for time
dependent periodic fields constant in space.74 The generalization is meant in a
way to be an “order-of-magnitude estimate“[36] which is not applicable for all
situations.75

(In the notation used in the following capital letters (like P0, P1, X0, ...) represent
operators whereas p0, p1, ... ∈ R. Bold face letters like p, x represent the spatial
part of some 4-vector.)
The discussion in [36] starts with a potential Aµ which is given by

Aµ(t, x) = A(t)δµ4 (81)

73This is not true for some of the work of Marinov and Popov (like [39]) where exact methods
are used (see 3.1.2).

74The reason why such types of fiels are considered is given below.
75A more detailed explanation how this is meant is given at the end of 3.1.1 when the

criticism by Troup and Perlman ([37]) is discussed.
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where A is periodic with a period ω0 << m, x ∈ R3 are the space variables and
t ∈ R is the time variable. In a specific gauge (here temporal gauge) the given Aµ

describes an electric field which is periodic w.r.t. time and constant w.r.t space.76

It is crucial to point out that the given Aµ-field wich is used describes such an
electric field just in the chosen gauge and that Brezin and Itzykson use this
fixed gauge when giving physical arguments. This is different to the Schwinger
calculation (reviewed in 1.1.6) which is (manifestly) gauge invariant.
Now the detailed treatment of Brezin and Itzykson proceeds like follows: The
given expression for Aµ is plugged in the general expression given by Schwinger
for the probability per unit volume and unit time for pair creation w(x) where
(see 1.1.6)

w(x) = Tr < x, ln
(
1− Tρ+T̄ ρ−

)
x > (82)

The calculation starting from this expression is done for bosons where the expres-
sions for T , T̄ and ρ± are a bit different as the ones given in 1.1.6 (see [36]). This
is done because it is assumed that the difference between fermions and bosons is
just a counting factor (this is showed for the static case for eE << m2). Brezin
and Itzykson obtain the following result using i.p. eE << m2:

w(x) ≈ 1

2π

d

dt

(∫
d3p

(2p0)2
| < −p0, Tpp

0 > |2
)

(83)

where p0 =
√

p2 +m2 (i.e. p0 lies on-shell) and Tp satisfies the one dimensional
Lippmann-Schwinger equation

Tp = Vp + Vp
1

P 2
0 − (p0)2 + iε

Tp (84)

Here Vp = −2ep3A(X0) + e2A2(X0).
As a consequence the matrix element < −p0, Tpp

0 > describes the scattering
amplitude for a process backwards in time which is identified with antiparticle
scattering. The corresponding differential equation for the particle is given by(

d2

dt2
+
(
p0
)2

+ Vp(t)

)
Ψ(t) = 0 (85)

Now the assumption eE << m2 is used (again) to justify the use of a classi-
cal approximation by a generalized WKB-method. That is because eE << m2

implies a slow variation of (p0)
2

+ Vp(t) =: w(t) (see [36]). By the generalized
WKB-method one makes the ansatz

Ψ(t) = A(t)e−i
∫ t
0 dsw(s) +B(t)ei

∫ t
0 dsw(s) (86)

76The restriction to a constant electric field is justified by Brezin and Itzykson through the
following statement. “Furthermore we limit ourselves to an oscillating field constant throughout
space. We expect that the space variation of the field might produce similar effects. They are
neglected for the sake of simplicity in this order-of-magnitude calculation.“[36]
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with boundary conditions given by classical physics: limt→∞A(t) = 1, limt→∞B(t) =
0. So one has to find appropriate functions A and B. In [36] this is done pertur-
batively in the following sense. In a first step differential equations for A,B are
found:

d

dt
A = −

d
dt
w(t)

2w(t)

(
A−Be2i

∫ t
0 dsw(s)

)
(87)

d

dt
B = −

d
dt
w(t)

2w(t)

(
B − Ae−2i

∫ t
0 dsw(s)

)
(88)

As a first approximation the oscillations (e±i
∫
w(s)ds) are neglected, i.e. approx-

imated by a constant. This is justified because by eE << m2 the oscillations
are very fast compared to the time variation of A and B (see [36]). So when
coarse graining the situation to large times the approximation is a good one. An

appropriate solution is then given by A(0)(t) =
√

p0

w(t)
, B(0)(t) = 0. The next

order (A1(t), B1(t)) is used to get an approximation for the pair creation per
unit volume (see [36])∫

wdt =

∫
d3p

1

(2π)3
|
∫
R
dt

d
dt
w(t)

2w(t)
e−2i

∫ t
0 E(s)ds| (89)

Next from this expression an explicit solution for w is derived in [36]:

w ≈ w0

(
eE

2w0

)2 ∫
d3p

(2π)2
|c|2 (90)

where

c =

∫ π

−π

dx

2π

sin(x)
(
p3 − eE

w0
cos(x)

)
m2 + p2

1 + p2
2 +

(
p3 − eE

w0
cos(x)

)2 e
2i
w0

∫ x
0 dy

(
m2+p21+p22+

(
p3− eEw0

cos(y)
)2) 1

2

(91)
This is further simplified using the method of steepest decend (see [36]) to get

w =
1

9
w0

∫
d3p

(2π)2
e−2αcos2(β) (92)

where α and β are defined by

−α + iβ =
2i

w0

∫ x0

0

dy

(
m2 + p2

1 + p2
2 +

(
p3 −

eE

w0

cos(y)

)2
) 1

2

(93)

Here x0 is the zero of
(
m2 + p2

1 + p2
2 + (p3 − eE

w0
cos(x))

1
2

)
for which both the real

and imaginary parts are positive.

35



To get a final expression estimates are made in [36]: cos2(β) = 1
2

(the average of
cos2) and p3 = 0. Thus

w =
αE2

2π

e−
πm2

eE
g(
mw0
eE

)

g(mw0

eE
) + 1

2
mw0

eE
g′
(
mw0

eE

) (94)

where α is the Sommerfeld constant and

g(x) =
4

π

∫ 1

0

dy

(
1− y2

1 + x2y2

) 1
2

(95)

For γ := mw0

eE
77 small (i.e. γ << 1) which is i.p. the case for (optical) lasers one

gets (see [36])

w ≈ αE2

2π
e−

πm2

eE (96)

From this result the following consequence which is the essence of the discussion
is taken:
“The condition for observing pairs in vacuum can thus be summarized as

eE ≥ πm2g (γ) (97)

“[36]. Otherwise the effect is expected to be exponentially supressed.
Since for optical lasers such a high field strength is not achievable the result of
Brezin and Itzykson is that optical lasers cannot be used to produce an observ-
able amount of pairs.

The conclusion of Brezin and Itzykson was criticized very early in a short paper
by Troup and Perlman ([37]). The two points which are criticized read:

“(1) A focused laser field will be very close to a wrenchless (< E,B >= 0),
null (E = B) field (cgs units are used). Such a field is lightlike in relativistic
terminology, and remains so in all Lorentz frames. The authors derive their
result using a timelike, alternating electric field.
(2) The authors consider only the electric field, stating that pair creation does not
occur in a pure magnetic field. In the static case, Toll (J. Toll, thesis, Princton
University, 1952, unpublished) states that pair production is “completely inhib-
ited“ if the field is wrenchless and if E ≤ B. Thus a static null electromagnetic
field will not create pairs by the “leakage through the barrier“ mechanism dis-
cussed by the authors.“[37]

The essence of this criticism is not the claim that external wrenchless null elec-
tromagnetic fields do not produce pairs. This is a fact which has already been

77This quantity is not a priori small because it is the ratio of two quantities which are both
assumed to be small in the calculation.
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known since the gauge invariant treatment by Schwinger (see [18]) and which is
well known by Brezin and Itzykson78. (I.e. Brezin and Itzykson say that their
result is (just) an “order-of-magnitude estimate“[36] and that (at least) special
cases are not covered by their calculation79.)
The essence of the criticism by Troup and Perlman is i.p. that fields created by
optical lasers are indeed (approximatly) null and wrenchles (a detailed argument
supporting this point can be found in [37]): “It seems to us therefore that the
failure to take account of the closely null nature of the alternating magnetic field
associated with the electric field, could invalidate the application of the authors’
result to a focused laser field.“[37] Thus, Troup and Perlman claim that the
“order-of-magnitude calculation“ of Brezin and Itzykson cannot be applicable
for alternating fields created by optical lasers (because it is already known that
for such fields no pair creation occurs).80

The consequence which is taken from this criticism is that in the discussion of
pair creation in laserfields it is nowadays assumed that at least two (coherent)
laser beams have to be superposed in order to cause pair creation: “Therefore to
produce pairs it is necessary to focus at least two coherent laser beams and form
a standing wave.“[33] Why (If resp.) the calculation of Brezin and Itzykson is
assumed to be applicable for such laser fields will be discussed in 3.1.3.

3.1.2 The treatment by Popov and Marinov

Popov and Marinov who - at least when writing [40] - knew about the criticism
of Troup an Perlman ([37])81 basically used the “imaginary time method“ for
their calculation of the probability of pair production in specific external time
varying electric fields. Roughly the essence of the imagniary time method is
that formally one can treat the motion of a particle through the spectral gap as
classical motion with imaginary values of “time“ t ∈ C, i.p. one can find the
motion of the particle by extremizing Im(S). (For a deduction of this method
see [40], appendix B.) In [38] this is done for special time dependent external
electric fields which are assumed to be uniform in space (the same assumption as
in the Brezin-Itzykson treatment, see 3.1.1) and pointing in one space direction.

78“It is, of course, well known that specific anomalies can occur; for instance, there is no pair
creation in a plane wave field.“[36]

79“Therefore, if the rate predicted by the theory were more favorable, one should pay more
attention to the particular geometrical characterization. At the present stage, however, we
present rather an order-of-magnitude estimate.“[36]

80This is one fact which is also known by the authors of the resent literature discussing pair
creation in laserfields (at least by some of them). Refering to the work of Troup and Perlman
([37]), Ringwald for example writes “It has been argued that fields produced in (optical) focusing
of laser beams are very close to such a light-like electromagnetic field, leading to an essential
suppression of pair creation.“[32]

81see footnote on page 385 in [40]
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Starting with the action (for t ∈ C):

S(t) =

∫ t

L(s)ds (98)

where L(s) = −m
√

1− ẋ2 + eE(s)x is the lagrangefunction of the problem it is
shown with the imaginary time method that

2Im(S) =
m2

eE
g(
mw0

eE
) (99)

where g(mw0

eE
) =

∫ 1

−1

√
1− u2Ψ

(
mw0

eE
u
)
du with Ψ(x) = dτ

dx
. Here τ is determined

by x =
∫ τ

0
f(s)ds where f is the time dependent factor of the external field E,

i.e. E(t) = Ẽf(t) with Ẽ the amplitude chosen s.t. |f | ≤ 1. So for a special form
of a time dependence of an external field the main step is to calculate Ψ. This
is in [38] i.p. done for a field of the form f(t) = cos(w0t) which is claimed to
correspond to the field of a laser. The result is equivalent to the result of Brezin
and Itzykson (see 3.1.1) and leads to the same conclusion. It is assumed that
intense lasers could be used to observe the phenomenon:

“The situation will change if in the future we suceed in constructing x-ray or γ-ray
lasers. Thus, for ω = 50keV and E ∝ (1013 − 1014) V

cm
, we have γ ∝ (10 − 100),

N = 10 and it is possible to attain wV T ∝ 1 (i.e., a pair is produced during a
time T ∝ 1sec in a volume V ∝ 1cm3)“[38]

“Apply the result of section V to the sinusoidal field E(t) = Ecos(ωt). Such
a field may be creatd in an antinode of the standing light wave produced by a
superposition of two coherent laser beams.“[40]

It is important to note two points: First, the imaginary time method can also
be applied for some magnetic fields, i.e. this part of the electromagnetic field
does not have to be neglected. More precisely: Such a calculation is possible if
the electromagnetic field is such that the classical motion of a particle in such
a field can be determined. (Nevertheless such a possibility is mentioned but a
calculation is not given by Marinov and Popov.) Second, Marinov and Popov
do not use “gauge invariant arguments“, as Brezin and Itzykson when arguing in
terms of the Aµ-field their argumentation is done in one specific gauge (see 3.1.1).

In another article ([39]) an exact method (without quasiclassical approximations
like the imaginary time method) is developed. However, this method is not ap-
plicable for electromagnetic fields with nonvanishing magnetic parts.

Kind of a summary of the work of Popov and Marinov is [40].
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3.1.3 Recent publications on pair creation in laserfields

Recently, a big amount of articles concerning pair creation in external fields
produced by x-ray lasers has been published (e.g. [32], [33], [34], [35]). Their
results are based on the calculations sketched in 3.1.1 and 3.1.2. The claim is
that x-ray lasers (which are currently under construction) will be able to cause
an observable amount of pairs. The main arguments are reviewed here.
Ringwalds analysis in [32] is based on the assumption that a field of the type
E(t) = E0cos(ωt)ez, B(t) = 0 can be produced in “an antinode of the standing
wave produced by a superposition of two coherent laser beams with wavelength
λ = 2π

ω
“[32]. That is why he argues that the calculations reviewed in 3.1.1 and

3.1.2 can be applied in this case exactly. Since the strength of the electric field
will be large enough in x-ray lasers to be constructed he concludes that pair
creation can be observed. However, it is also noted that the assumption that
the laserfield is of the type given above is an approximation. Nevertheless it is
assumed that this approximation yields an order-of-magnitude estimate.82

In [33] and [34] it is stated that a field of the type E(t) = E0cos(ωt)ez, B(t) = 0
cannot be produced in realistic situations using coherent laser beams to form a
standing wave. It is concluded that the treatment using such a field yields an
upper bound for the production rate of pairs.83

3.1.4 The role of the magnetic field

Since both in the calculations by Popov and Marinov (3.1.2) and in the cal-
culations by Brezin and Itzykson (3.1.1) concerning pair production rates in
laser fields purely electric fields are considered and since it is a basic assump-
tion made in the recent publications (3.1.3) that such a treatment leads to an
upper bound for the pair production rate (i.e. that the magnetic part of the
field is neglectable), it is useful to consider the role the magnetic field can play
in pair creation processes. For this purpose the commonly used assumptions are
reviewed.
Schwinger shows in [18] using the derived integral expression for the vacuum
action for constant electromagnetic fields (see 1.1.6) that constant magnetic fields

82“We elaborate on a model which retains the main features of the general case but neverthe-
less allows to obtain final expressions for the pair production rate in closed form. This should
be sufficient for an order-of-magnitude estimate of the critical parameters.“[32]

83“Subsequently we assume an “ideal experiment“: Owing to the diffraction limit the spot
radius of the crossing beams cannot be smaller than the wavelength, so we choose rσ ≈ λ;
and we assume a space volume in which the electric field is nonzero but the magnetic field
vanishes. Even for carefully chosen x-ray optical elements, such a situation is impossible to
achieve in practice, which means that the field strength actually availabe to produce particles
is weaker than the peak field value and hence our estimate of the production rate will be an
upper bound.“[33]
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cannot produce pairs.84 This is because for such fields the vacuum action is purely
real.85

Brezin and Itzykson claim in [36] that magnetic fields cannot produce pairs at all.
However the intuitive argument which is given in [36] explicitly refers to constant
fields.86

In [21] a perturbative argument is given claiming that pair creation is a “purely
electric effect“, more precisely that if the field is weak (i.e. if the perturbative
argument is claimed to work) pair creation does not occur in magnetic fields. Here
it is not just refered to a constant field. The argument is based on a perturbative
treatment given by Schwinger in [18]. The most important points of the result
are reviewed shortly:
It is assumed that for weak fields an appropriate vacuum action can be calculated
doing an expansion in powers of the Sommerfeld constant α. One then gets for
the imaginary part of the vacuum action in first order (see [18] or [21])

Im(W ) =
α

12

∫
−k2>4m2

d4k
(
|E(k)|2 − |B(k)|2

)(
1− 4m2

−k2

) 1
2
(

2 +
4m2

−k2

)
(100)

where E(k), B(k) are the Fouriertransforms of the electric and magnetic fields.
Since in this expression the integration domain is restricted to values −k2 > 4m2

and since for such k there exists a reference frame in which B(k) = 087 one
concludes that pair creation is an “electric effect“.
In the recent literature (3.1.3) it is also assumed that pair creation is an “electric
effect“. Thus the conclusion that the situation of a pure periodic electric field
which underlies the discussion gives an upper bound for the real situation in
which a magnetic field is present seems to be justified.

3.2 Criticism of some standard arguments

3.2.1 Modelling laserfields

In the reviewed treatments in 3.1 it is (by using one specific gauge) always argued
in terms of the (local) electric and magnetic fields. However one must emphasize
that it is the 4-potential Aµ which is used in the formulation of the problem and
which can in principle lead to global effects like the Aharonov-Bohm effect. Such
effects are not taken into account if one just uses the local electric and magnetic
fields in the discussion (see 1.1.3).

84More precisely he shows that for any constant electromagnetic field for which a reference
frame exists in which the given field is purely magnetic pair creation does not occur.

85The argument can also be found in [20], p. 288.
86“Pair creation does not occur in a pure magnetic field. This is clear since a constant field

cannot transfer energy to a charged particle. It is due to the electric field that enables particles
to leak through the 2m potential barrier. Hence the physically relevant case can be taken to
be the one of a pure electric field.“[36]

87Indeed the reference frame where k has just a temporal component.
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Thus when modelling a laserfield to be used in the treatment of adiabatic pair
creation one should use the 4-potential Aµ and when giving arguments on the
physical situation one must be (at least) very careful when one uses the local
electric and magnetic fields. Brezin and Itzykson mention this briefly in [36]:
“Therefore, if the rate predicted by the theory were more favorable, one should
pay more attention to the particular geometrical characterization.“[36]
However, in the recent articles on the subject (see 3.1.3) it is not argued for such
global effects (explicitly) and it is just stated that the discussed treatment is an
order-of-magnitude calculation which gives an upper bound for the actual pair
production rate. The question to be discussed here is if this is justified. Here
the formulation of the problem in the adiabatic switching formalism (see 2.2.2)
gives a clear answer (see [31]): A pair is created (in the adiabatic limit) iff the
external potential Aµ is overcritical - a notion which depends on the behaviour of
the bound states. However the question if a suitable bound state exists can just
be answered if the full space dependence of the potential is known. This directly
follows from the definition of a bound state.
Thus, for pair creation to exist the whole geometry of the problem is essential
(when using the adiabatic switching formalism in the argumentation). Pair cre-
ation is a global effect and the local arguments given in the recent literature
cannot be justified when the adiabatic switching formalism is taken into account.
To summarize: For dealing properly with the phenomenon of adiabatic pair cre-
ation taking the adiabatic switching formalism into account a global description
of the laserfield is needed in terms of the 4-potential.
One further well known fact to point out (which will be essential in 3.2.2) is the
fact that laserfields do not have a Coulomb electric part, i.e. that laser fields are
properly modelled by purely propagating fields which are not attached to any
source. This fact in particular holds for any superposition of laser fields.88

3.2.2 Gap bridge for laserfields?

In the calculations considered so far (1.1.6, 3.1.1, 3.1.2) the conclusion is always
that pair creation happens when the external electric field takes a critical value,
i.e. the existence of pair creation depends (just) on the strength of the external
electric field.
Here the treatment of pair creation as adiabatic phenomenon (2.2.2) gives a
crucial new insight.
In the adiabatic switching formalism it is manifest that pairs are created (in the
adiabatic limit) iff the external field becomes overcritical, i.e. if a gap bridge
exists. A priori this has nothing to do with the field strength of the external field
and is due to the fact that pair creation is a global effect (see 3.2.1).

88For the case of pair creation it is most relevant that the fact also holds for a superposition
of two coherent laser beams. Such a situation is usually assumed when discussing pair creation
(see end of 3.1.1).
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Thus, the question whether pair creation in laserfields exists reduces to the ques-
tion if a given laserfield is overcritical or not. In [31] an argument answering this
question is given which crucially depends on the magnetic part of the electromag-
netic field of the laser. This shows that this part is not neglectable as claimed
by the standard arguments (3.1). This argument of [31] is reviewed here. Its
essence is that a gap bridge does not exist when there is no “Coulomb electric
potential part“ which is the case for laserfields (see 3.2.1).

First fix Coulomb gauge (i.e. divA = 0). Note that in this gauge “no Coulomb
electric potential part“ means A0 = 0. Under this assumption it can be shown
that there is no eigenvalue curve crossing the value zero (i.p. no gap bridge)
using the eigenvalue equation for the Dirac operator H minimally coupled to the
external field, i.e. (since A0 = 0)(

H0 + e
3∑
i=1

αiA
i

)
Φ = EΦ (101)

Here E is the eigenenergy corresponding to the bound state Φ. Using β2 = 1,
the usual anticommutation relations for the matrizes αi (i ∈ {1, 2, 3}) and β (see
e.g. [3]) and B = curlA for the magnetic field B the following holds(

H0 + e
3∑
i=1

αiA
i

)2

Φ =

(
H0 + e

3∑
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αiA
i

)
EΦ
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]Φ = E2Φ(
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∑
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∂2

∂xi2
+m214 +

∑
i

Ai
2

+

(
i
∑
i

αiB
i(x)

)
α1α2α3

)
Φ = E2Φ (102)

For a magnetic field with constant direction89 (i.e.
∑

i αiB
i(x) = b(x)

∑
i αib

i

where bi are constants and b is the field strength) this gives with the Schrödinger
operator HS: (

14HS +m214 + b(x)
∑
i

αib
iα1α2α3

)
Φ = E2Φ (103)

and by diagonalizing
∑

i αib
iα1α2α3(

HS12 +m212 + µib(x)12

)
φi = E2φi (104)

89Note that this is a standard assumption, see e.g. 3.1.2.
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where µi = ±1 are the eigenvalues of
∑

i αib
iα1α2α3 and φi are the two compo-

nent vectors one gets by projecting Φ on its spin parts. Note that A0 = 0 was
essential in this argument.

This means that the eigenenergy E of a bound state of the Dirac equation mini-
mally coupled to an external laser field has the very special property that it enters
quadratically in the stated Schrödinger equation. Because such an energycurve
(crossing zero) is atypical, pair creation is not assumed to occur.
On top of that, one can use a similar argument to show even more, i.e. one
can show that ||HΦ||2 ≥ m2 for laserfields. Since HΦ = EΦ would hold for a
bound state Φ this means that −m ≤ E ≤ m. Thus, by minimally coupling of
an external laserfield no bound states in the intervall [−m,m] appear at all, i.p.
no gap bridge can exist. The calculation showing this is given using the results
from the previous calculation (it is again assumed that the magnetic field has
constant direction):

||HΦ||2 = < Φ|H+H|Φ >

= < Φ|

(
−14

∑
j

∂2

∂xi2
+m214 + 14

∑
i

(Ai)3 + i(
∑
i

αiB
i)α1α2α3

)
|Φ >

= ||∇Φ||2 +m2 +
∑
i

(Ai)2+ < Φ|ib(x)

(∑
i

αib
i

)
α1α2α3|Φ > (105)

Since the last term vanishes (one sees this by diagonalizing
∑

i αib
iα1α2α3 and

noting that the eigenvaules are +1 and −1 which leads to two terms canceling
each other) one has

||HΦ||2 = ||∇Φ||2 +
∑
i

(Ai)2 +m2 ≥ m2 (106)

3.3 Restrictions

There are a few relevant things which have been left open or which have not been
considered in this review. These are briefly mentioned here.

3.3.1 External field approximation

The whole treatment was based on the assumption that the electromagnetic field
can assumed to be external (see 1.1.3). It was not discussed why this is justified.
Also mathematical treatments of external field approximation in Q.E.D. have not
been discussed.
However the neglection of this point does not change the criticism of the standard
arguments (3.2) since external field approximation is always used.
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3.3.2 The kinetic approach

In some of the recent work on pair creation in laserfields (e.g. in [34] and [35])
a quantum kinetic approach showing a non-Markovian character of the phe-
nomenon of pair creation is used. This approach was not considered in this
review. However, it is stated in the recent works that the approach is only valid
for simple fields of the form E(t) = (0, 0, E(t)): “This procedure is exact but
it is valid only for the simplest field configurations; e.g. for a spatially-uniform
time-dependent electric field with fixed direction E(t) = (0, 0, E(t)).“[35] Thus
the criticism given in 3.2 does not have to be changed because of the kinetic
approach.

3.3.3 Existence of pair creation in second quantized theory

In 2.2 the proof of the existence of adiabatic pair creation in external overcritical
fields was just discussed for the one particle Dirac equation. In particular it was
not argued how to “generalize“ the result to hold true in the second quantized
formalism. However a procedure how such a generalization can work for adiabatic
pair creation is given in [29].

3.3.4 Applicability of the adiabatic theorem for laserfields

In 3.2 it was implicitly assumed that the adiabatic theorem holds for laserfields.
(Otherwise it is not justified why particles from the Dirac sea cannot jump from
some energy level below the upper continuum to another energy level in such
a way that they never reach the upper continuum.) However, first this does
not change the criticism of the standard arguments and second the adiabatic
theorem may also hold true for laserfields. One has to show for this point that
the adiabatic theorem holds for fields changing in space and time in the form
A(x)B(t) where xt = const. (this is the case for simple laserfields since there
λf = c = const.).

3.4 Conclusion

As a summary from this review basically the following conclusion can be taken.
For dealing with the problem of pair creation in slowly changing laserfields in a re-
alistic way it is natural to use results from adiabatic theory.90 It is useful to start
the treatment using the one particle Dirac equation, the Dirac sea picture and the
adiabatic switching formalism and afterwards to generalize the result obtained
there to a second quantized formalism. When using the adiabatic switching for-
malism to describe pair creation one has to take into account that pair creation is
a global effect and for its existence i.p. the magnetic part of the external laserfield

90Note that here the restriction 3.3.4 has to be taken into account.
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is essential. Pair creation occurs if the external Aµ-field is overcritical. For pure
laserfields this is not the case (not even bound states of the potential are present
in the spectral gap). Thus recently given “order-of-magnitude calculations“ do
not apply for laserfields and pair creation is not expected to occur there - at
least if the treatment in external field approximation is justified. The reason that
the “usual arguments“ are not applicable is that from the “order-of-magnitude
calculations“ consequences are taken by using local arguments involving the local
electric and magnetic fields instead of global arguments using the Aµ-field.
Because one essential part in the argument given in 3.2.3 was that the Coulomb
part of the external potential has to vanish it could be possible to observe pair
creation in laserfields if one additionally turns on a Coulomb external potential.
Such an experiment using heavy ions to produce strong Coulomb fields is pro-
posed in [31].
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