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Abstract

Gamow’s approach to exponential decay of meta-stable particles via com-
plex ’eigenvalues’ (resonances) of a Hamiltonian is scrutinized. We explain
the sense in which the non-square-integrable ’eigenfunctions’ that belong
to these resonances (Gamow functions) are relevant for the time-evolution
of square-integrable wave functions. For concreteness we study a one di-
mensional square-well potential with a trapping regionK and the evolution
of wave functions, whose support is initially inside of K. It is shown that
the sum over the first few time-evolved Gamow functions restricted to K
yields an approximation for the evolution of these initial wave functions
within the trapping region. The approximation is good for all times for
which exponential decay prevails.
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CHAPTER 1

Introduction

The exponential law appearing in connection with the phenomenon of α-decay is experi-
mentally well verified. Its quantum mechanical description has a long-standing history and
remains the subject of research in mathematical physics to this day. George Gamow [4] was
the first to study α-decay within non-relativistic Quantum Mechanics in 1928. He considered
solutions G to the stationary Schrödinger equation, which correspond to a complex ’eigen-
value’ ε = E− iΓ2 rather than a real one. The Schrödinger evolution Ge−iεt then immediately
implies the exponential decay of the ’Gamow function’ G with decay rate Γ. But due to
the continuity equation this behavior is only possible when G increases exponentially with
increasing x. Therefore, the Gamow function is not square-integrable and has no direct phys-
ical relevance. This raises the question whether there is a way to make sense of the Gamow
functions. The following argument outlines our approach to the solution of this problem.

The Schrödinger equation is a wave equation. Therefore, potentials whose core is separated
from the outside by high barriers will confine wave packets for a long time. This is due
to reflection of waves at barriers. Mathematically, this property of the potential becomes
manifest in the existence of ’almost bound states’ G or, as we have previously called them,
Gamow functions. We already know that they solve

(H0 + V )ψ = εψ (1.1)

with ε = E−iΓ2 , where the imaginary part will be small due to the long confinement measured
by the lifetime Γ−1.

On the other hand, the time evolution of a wave function ψ0 within a potential V, which does
not admit any bound states, can be determined by expanding ψ0 in so-called generalized
eigenfunctions. This yields

e−iHtψ0(x) =
∫
ψ̂0(k)φ(k, x)e−itk

2/2 dk, (1.2)

where the eigenfunctions φ(k, x) are bounded solutions of the stationary Schrödinger equa-
tion (1.1) for real ε = k2/2 ≥ 0. But if the ’eigenvalue’ of the Gamow function is very close to
the real axis, the generalized eigenfunction φ(

√
2E, x) should mimic the shape of G(x), since

both functions solve equation (1.1). This argument motivates that

φ(k, x) ∼ η(k)G(x) (1.3)

for all k in the vicinity of
√

2E.

Clearly, not every initial wave function ψ0 will decay exponentially within a certain time
regime. But Gamow’s approach suggests that a square-integrable approximation of G yields
the exponential law at least within a certain time interval. And a rough approximation is
obtained by truncating all of G that lies beyond the core K of the potential, which yields

ψ̂0(k) =
∫
χKG(x)φ(k, x) dx ∼ c η̄(k).

Inserting this and relation (1.3) into the integral (1.2), the time evolution of the truncated
Gamow function reduces to the Fourier transform of |η(k)|2. Therefore, a considerable part of
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2 Introduction

this work is devoted to the properties of the function η. It will turn out that, in the vicinity
of
√

2E, its squared modulus has Breit-Wigner shape

|η(k)|2 =
|a−1|2

(k − Re
√

2ε)2 + (Im
√

2ε)2
.

Since the Fourier transform of the Breit-Wigner distribution is the exponential function, the
time evolution of these initial wave functions is then approximately given by

e−iHtψ0(x) ∼ cG(x)
∫
|η(k)|2e−itk2/2 dk ∼ cG(x)e−

Γ
2
|t|. (1.4)

Thereby, we have not only found an initial wave function which decays exponentially within
a certain time interval, but it also takes the shape of the Gamow function G.

Now, this heuristic discussion needs to be turned into a rigorous one. In this regard, the first
major step will be taken in Chapter 3, where the precise relation between the generalized
eigenfunctions φ and the Gamow functionG will be determined and where η will be calculated.
This will primarily rely upon the complex continuation of φ in the variable k. And the
second major step will be taken in Chapter 4, where we will understand which initial wave
functions ψ0 decay exponentially within a certain time regime. The basic technique utilized
in the proofs of this chapter is the calculus of residues.

Regarding the question whether Gamow functions have physical relevance, substantial progress
was made by Skibsted with [9] and [10]. He also showed that the truncated Gamow func-
tion χKG decays exponentially within a certain time regime. And although expansions in
eigenfunctions are used in his approach as well, his proofs do not rely on complex continua-
tion. Nevertheless, he mentions this method as a possible alternative [9, p. 593], even though
Skibsted [10, p. 47] considers complex continuation as difficult if rigorous results shall be
obtained. However, the author believes that the expansion of e−iHtψ0 in eigenfunctions to-
gether with the application of the Residue Theorem to the resulting integral, is the most
direct approach to α-decay. It clearly demonstrates how exponential decay arises and which
role Gamow functions play in this regard. And in spite of the above concerns, we will obtain
rigorous results using this method, at least for the specific potential studied in this work.
In a sense, this thesis thereby explains the necessity of what was achieved by Skibsted [9].
Moreover, it will complement Skibsted’s work by explaining why truncated Gamow functions
are a particularly good choice for proving the exponential decay of e−iHtψ0 within a certain
time regime.

Another question that arises in connection with Gamow’s article is, in which sense a self-
adjoint operator admits complex ’eigenvalues’ or, as they are customarily called, resonances.
In this respect, different definitions of resonances have been studied. The most popular
ones are reviewed by Simon [8]. A recent review of Zworski [12] takes the widely accepted
definition of resonances, as a pole of the resolvent (z − H)−1 for granted. This allows for
the study of asymptotic properties of, what could be called, the extended spectrum and the
dependence of the resonances on the geometry of configuration space.

However, the main concern of this thesis is to understand the physical relevance of Gamow
functions rather than questions regarding the extended spectrum. Therefore, a precise defini-
tion of Gamow functions will be provided in the next chapter. This will allow us to study their
relation to physically relevant L2-functions in the framework of a one dimensional square-well
potential. The motivation for choosing this potential was the article [5] of Garrido, Goldstein,
Lukkarinen and Tumulka, whose main objective - contrary to this thesis - is to show that an
initially localized wave packet leaves the square-well much slower than a classical particle.
But before this specific potential is introduced and used to explain why an eigenfunction
expansion serves to express e−iHtψ0 as an integral, we will show that square-integrable wave
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functions generically undergo exponential decay only within a certain time interval. In Chap-
ter 3 we will then establish the precise relation between the generalized eigenfunctions and
the Gamow functions for our specific potential. The function η(k), which is calculated in
this process, is of vital importance for Chapter 4. With its help it will be shown that not
only truncated Gamow functions, but also bound states obtained by restricting the original
Hamiltonian, decay exponentially within a certain time interval. The bound states will then
allow us to extend these results to a general class of initial wave functions. And in this
process we will understand why truncated Gamow functions are distinguished initial wave
functions. The last chapter will then conclude with an outlook pointing to questions, which
remain open.

Notation and Units. The real part of a complex number z will be denoted by z′, its
imaginary part by z′′ and its complex conjugate by z̄. Although, the prime will denote the
derivative with respect to a real variable from time to time, it will always be self-evident
which meaning of the prime is referred to in the particular context. Moreover, O(λn) denotes
a function f(λ) which is asymptotically of the same order as λn, that is

lim sup
λ→∞

∣∣∣∣f(λ)
λn

∣∣∣∣ <∞.

Apart from this, we choose units in which ~ = m = 1.





CHAPTER 2

Problem and Tools

1. Statement of the Problem

To approach the question whether the Gamow functions have physical relevance, we will now
define them and rephrase the problem in mathematically precise terms.

Gamow derived the exponential decay law from non-relativistic Quantum Theory, by consid-
ering functions ψ that solve the stationary Schrödinger equation

− 1
2
d2

dx2
ψ(x) + V (x)ψ(x) = ε ψ(x) (2.1)

for complex rather than real ε. Since such a ψ yields the solution

ψ(t, ·) = e−iεtψ(·) (2.2)

to the time dependent Schrödinger equation, it decays exponentially in time when Im ε is
negative. But due to the fact that (2.2) needs to respect the continuity equation

∂t|ψ|2 + div
(
Im ψ̄∇ψ

)
= 0

as well, the flux associated to this solution must be outgoing such that both terms on the left
hand side cancel. This motivates the following definition of Gamow functions.

Definition 1. Given the one-dimensional stationary Schrödinger equation (2.1) with a po-
tential V having compact support and non-zero complex ε having negative imaginary part. A
function G ∈ C1(R) is called Gamow function, if it solves (2.1) and if there is a non-zero
constant C such that

G(x) = Ce+iz|x| ∀x ∈ (supp V )c,
where ε = 1

2z
2 = E − iΓ2 .

Thus, Gamow functions are defined by regarding the Schrödinger equation as ordinary dif-
ferential equation on C1 rather than as an operator identity on a Hilbert space. Since the
notion of self-adjointness thereby loses its meaning, it should not be disturbing that the
Gamow ’eigenvalue’ ε is complex.

From Definition 1 it becomes evident that Gamow functions do not lie in the Hilbert space L2(R).
For, the negative imaginary part of z directly implies that G(x) must increase exponentially
as |x| tends to ∞. Therefore, the question whether the Gamow functions have physical rele-
vance can be rephrased to whether there is a relation between Gamow functions and Hilbert
space solutions of the time dependent Schrödinger equation.

As already outlined in the introduction, we will find a relation between G and the generalized
eigenfunctions φ. And although these eigenfunctions do not belong to L2(R) either, they can
be used to express the time evolution of a square-integrable wave function ψ0 as the integral

e−iHtψ0 =
∫
ψ̂0(k)φ(k, ·) dk.

And this will allow us to establish a relation between physical relevant Hilbert space solutions
of the time dependent Schrödinger equation and Gamow functions.
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6 Problem and Tools

2. Properties of the Schrödinger Evolution

In the current section we will see that e−iHtψ can not decay exponentially for t� 1 as well
as t � 1. This will follow from two well-known properties of the survival probability, which
is defined as

Pψ(t) = |
〈
ψ, e−iHtψ

〉
|2.

The proof presented here, is based upon the arguments given by Simon in [8]. And it relies
heavily on the spectral theorem for unbounded self-adjoint operators (see e.g. [1, Chapter 2]),
such as the Schrödinger operator. Therefore, we will briefly review the contents of this
theorem.

Casually speaking, the spectral theorem generalizes the fact that every hermitian matrix
can be diagonalized, to operators on Hilbert spaces. To make this precise, let H denote
the Schrödinger operator, H denote the Hilbert space on which it is defined and let σ(H)
denote its spectrum. Then the spectral theorem guarantees the existence of a finite countably
additive measure µ on σ(H)× N and the existence of a unitary map

F : H → L2(σ(H)× N, µ).

This map is such that FHF−1 = h, where h is the multiplication operator associated to
the function h(n, s) = s with s being an element of σ(H). Since h is the analogue of a
diagonal matrix, this justifies the casual statement of the spectral theorem given above.
However, F develops its full power only when it is applied to the operator f(H) with f being
an arbitrary bounded measurable function. In this case we find analogously to the identity
from above Ff(H)F−1 = f(h), which will be used extensively in the following two proofs.
The fact that F maps onto a direct sum of several L2(σ(H), µ)-spaces is due to the devision
of H into cyclic subspaces, which is necessary to prove the spectral theorem. But on every
cyclic subspace, H is unitarily equivalent to a multiplication with h(s). Therefore, we will
neglect this detail in the sequel without causing any harm.

Having reviewed the spectral theorem, we can now turn to the first of the above-mentioned
properties of the survival probability Pψ. It concerns the short time behavior of e−iHtψ.

Lemma 1. Let H be a self-adjoint operator and let ψ be an element of its domain. Then Pψ(t)
is differentiable everywhere and Ṗψ(0) = 0.

Proof. The differentiability of Pψ(t) follows from the differentiability of

A(t) =
〈
ψ, e−iHtψ

〉
.

Since H is self-adjoint, the spectral theorem is applicable. This directly implies

A(t) =
∫
σ(H)

|Fψ(ε)|2e−iεt µ(dε). (2.3)

Using dominated convergence and the inequality of Cauchy-Schwarz, we thereby see that A
is differentiable if∣∣∣∣ ∫

σ(H)
ε|Fψ(ε)|2e−iεt µ(dε)

∣∣∣∣ = ∣∣〈ψ, e−iHtHψ〉∣∣ ≤ ‖ψ‖ ‖Hψ‖ <∞.

Since this is the case for all ψ in the domain of H, the survival probability Pψ(t) is differen-
tiable for all t in R.

Using the spectral theorem again, Pψ can be rewritten as

|
〈
ψ, e−iHtψ

〉
|2 =

〈
ψ, e−iHtψ

〉 〈
ψ, eiHtψ

〉
,
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which implies that Pψ(t) = Pψ(−t) for all t in R and ψ in the domain of H. Moreover, an
application of the inequality of Cauchy-Schwarz proves that Pψ(t) ≤ Pψ(0). From these facts
and the differentiability of Pψ, we can conclude that Ṗψ(0) = 0. �

The differentiability of Pψ and the vanishing derivative at zero, immediately imply that

Pψ(t) 6= Ce−Γt

for small t. So even if e−iHtψ contains a contribution of the form e−Γtψ̃, there must be an
additive remainder that accounts for the non-exponential behavior of Pψ for small t. Apart
from this restriction on the short time behavior of e−iHtψ, there is another property of the
survival probability having implications for the long time behavior.

Lemma 2. Let H be a self-adjoint operator, whose spectrum is bounded from below. Then the
only element ψ in the domain of H that satisfies

Pψ(t) ≤ Ce−Γ|t|

for some C,Γ > 0 is the zero element.

Proof. Since H is self-adjoint and ψ is an element of its domain, equation (2.3) can be
utilized again such that

A(t) =
∫
σ(H)

|Fψ(ε)|2e−iεt µ(dε) =
∫

R
g(ε)e−iεt µ(dε),

where g is equal to |Fψ|2 on the spectrum σ(H) and zero otherwise. Therefore, A is the
Fourier transform of a L1-function g, which is supported only on the spectrum of H. By
inverting the Fourier transform, we find

g(ε) =
∫

R
A(t)eiεt µ(dt).

And if we assume that
|A(t)| ≤ Ce−

Γ
2
|t|

for some non-zero positive constants C and Γ, this formula together with the theorem of dom-
inated convergence implies that g is analytic on the strip {ε0 + iη|ε0 ∈ R, η ∈ (−Γ/2,Γ/2)}.
But the spectrum of H is bounded from below. So g(ε) vanishes for all real ε smaller than
the infimum of σ(H). Therefore, g must vanish on the whole strip, which is only possible if ψ
equals zero. �

That there is no exponential bound on Pψ, can only be due to the asymptotics of the survival
probability and thereby due to the asymptotics of e−iHtψ. It reflects the fact that the wave
function ultimately decays polynomially instead of exponentially. This is not surprising, since
it is in accord with the following heuristic scattering theoretical argument (for a detailed
discussion see [2, Remark 15.2.4]). The time evolved wave function at the fixed position x is
given by

e−iHtψ(x) = t−1/2

∫
Fψ

(
κ√
t

)
φ

(
κ√
t
, x

)
e−i

κ2

2 dκ,

where κ/
√
t was substituted for k. In the limit of t tending to∞ the right hand side multiplied

by t1/2 turns out to be constant, which can be seen heuristically by interchanging limit and
integration. For t� 1 we therefore expect that

e−iHtψ(x) ∼ cFψ(0)φ(0, x) t−1/2.



8 Problem and Tools

The previous lemmas also show that the heuristic discussion in the introduction, which lead
us to

e−iHtψ(x) ∼ G(x) e−
Γ
2
|t|,

can only be valid on intermediate time scales. However, for very small as well as very large
times the error terms, hidden behind the ∼ symbol, will not be negligible anymore. In
Chapter 4 this heuristic statement will be turned into a precise one.

Let us conclude this section with the following aside. If exponential decay can prevail on
intermediate time scales, we could just choose t0 big enough and consider

Pψ(t0 + t) = |〈ψ, e−iHte−iHt0ψ〉|2

in order to ensure exponential decay even for times t � 1. This suggests that by choosing
the initial time t0 advantageous the result of Lemma 1 can be somehow circumvented. But
in fact resetting the initial time results in the quantity

|〈e−iHt0ψ, e−iHte−iHt0ψ〉|2

as opposed to Pψ(t0 + t), since we really want to compare the time evolved wave func-
tion e−iHtψt0 to the initial wave function ψt0 . And this quantity is identical to Pψ(t), which
is why it can not decay exponentially for times t� 1 either.

3. Setting and Tools

The specific potential that provides the framework for this thesis is given by

Vλ(x) = λχ[−a,a](x) with a, λ > 0 (2.4)

and is illustrated in Figure 2.1. Due to the reflection of waves at barriers, it confines initially
localized wave packets for a long time if λ � 1. As was already mentioned in the introduc-
tion, Vλ will therefore admit resonances. Since it is explicitly solvable too, Vλ is a good choice
for approaching the question whether Gamow functions have physical relevance.

Figure 2.1. Plot of the potential Vλ.

Clearly, the function Vλ(x) defines a multiplication operator Vλ acting on L2(R). It is not
difficult to see that this operator is symmetric and bounded. And in particular, Vλ has relative
bound zero with respect to the free Schrödinger operator H0 acting on L2(R). The Kato-
Rellich theorem (see [1, Theorem 1.4.2]) therefore immediately implies that Hλ = H0 + Vλ
is self-adjoint with domain H2(R) = D(H0). And due to the self-adjointness, the spectral
theorem guarantees the existence of a map F yielding the spectral representation of Hλ. In
the previous section we already used this map, in order to diagonalize e−iHt. Regarding the
time evolution of the wave function ψ0, this only yields

e−iHλtψ0 = F−1e−i(·)tFψ0.
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In order to get any further we need to determine F explicitly. Fortunately, for our simple
potential this can be done. One possibility to achieve F , is to determine the integral kernel of
the resolvent (z−Hλ)−1 which rather directly yields the spectral measure dPε. This strategy is
pursued in [11, Chapter 23] to which we refer for details. However, after doing the calculations
one will find that the map F yielding the spectral representation of Hλ can be defined as an
integral operator

Fψ(k) =
∫

R
ψ(x)φ(k, x)dx (2.5)

with respect to the Lebesgue measure. And the integral kernel turns out to be an element
of L∞, which solves

− 1
2
d2

dx2
φ(k, x) + V φ(k, x) = ε φ(k, x) for ε =

k2

2
≥ 0 (2.6)

and is therefore called generalized eigenfunction. Although, bona fide eigenfunctions usually
enter into the explicit expression of F as well, this is not the case for Vλ. For this particular
potential the pure point spectrum is empty. Thus, there are no bona fide eigenfunctions and
the spectrum is given by

σ(Hλ) = [0,∞).

Before we continue, notice the similarity of equation (2.5) with the Fourier transform. It has
earned F the name generalized Fourier transform. Clearly, the generalized eigenfunctions φ
define the spectral representation of the perturbed Hamiltonian Hλ in complete analogy to
the way the plane waves eikx define the spectral representation of H0. And it is often helpful
to remember this analogy.

4. Resonances and Gamow Functions

In the present section we will determine the Gamow functions that belong to the potential Vλ.
Thereby, we will not only have an explicit example for their generic definition. But in the
process of calculating the Gamow functions, we will also determine the approximate location
of the corresponding ’eigenvalues’. Although these eigenvalues will be called resonances from
now on, it will only be seen in the next chapter that their defining equation coincides with
the formula which defines the poles of the S-Matrix thereby justifying this name.

An ansatz for the solution of equation (2.1) with potential Vλ, which satisfies the boundary
conditions of Definition 1 is given by

G(x) =


Ae−izx , x < −a
Beiz̃x + Ce−iz̃x , |x| ≤ a

Deizx , x > a

with z̃ =
√
z2 − 2λ.

Whereas the complex square root is defined such that Re
√
w > 0 for all w in C\ (−∞, 0]. So

whenever Im w ≶ 0 we know that Im
√
w ≶ 0. For G to be an element of C1 as required from

the definition of Gamow functions, its first derivative and itself have to be continuous at x
equal to ±a. This will be the case when the coefficients satisfy the following homogeneous
system of linear equations

eiza −e−iz̃a −eiz̃a 0
−izeiza −iz̃e−iz̃a iz̃eiz̃a 0

0 −eiz̃a −e−iz̃a eiza

0 −iz̃eiz̃a iz̃e−iz̃a izeiza



A
B
C
D

 = 0. (2.7)
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Due to the fact that this system has non-trivial solutions only when the determinant of the
matrix vanishes, the equation

ei4az̃ =
(
z + z̃

z − z̃

)2

(2.8)

needs to have solutions for Gamow functions to exist.

Lemma 3. Given the potential Vλ with fixed width a > 0, there is a Gamow function corre-
sponding to every integer n which satisfies

1 ≤ n <
2
π

√
2a2λ− 1. (2.9)

Moreover, if such an n is fixed the corresponding resonance is given by

zn =
(

2λ+
n2π2

4a2

)1/2

− i
n2π2

4a3
√

2λ

(
2λ+

n2π2

4a2

)−1/2

+O(λ−3/2) and

z̃n =
nπ

2a
− i

nπ

2a2
√

2λ
+O(λ−1)

respectively.

Proof. Due to the fact that exp(−in2π) = 1 for all n in Z, the identity (2.8) represents
a whole family of equations numbered by the integer n. Using the definition of z̃, this family
can be expressed as

ei4a
√

2λκ̃−in2π =
(
κ̃+

√
κ̃2 + 1

)4
,

where κ̃ denotes z̃/
√

2λ. And with the help of some simple manipulations we can even bring
it into the fixed-point form

Fn(κ̃) := n
π

2a
√

2λ
− i

1
a
√

2λ
ln(κ̃+

√
κ̃2 + 1) = κ̃,

where ln denotes the principal branch of the complex logarithm. Therefore, the Banach Fixed
Point Theorem (see [3, Chapter 9.2.1]) can be applied to each of these equations in order to
find their solutions by iteration.

This theorem is applicable whenever Fn is contractive on a closed subset T of C and T is
invariant under Fn. Due to the fact that the derivative of Fn satisfies

|F ′
n| =

1
a
√

2λ
1

|1 + κ̃2|1/2
≤ 1
a
√

2λ
1

|1− |κ̃|2|1/2
,

the map is contractive on T = {κ̃ ∈ C
∣∣|κ̃| ≤ K} with K being a constant which satisfies

0 < K <

√
1− 1

2a2λ
.

The requirement of having an invariant subset will restrictK further. In order for |Fn(κ̃)| ≤ K
to hold, we need

|Fn(κ̃)| ≤ |Fn(κ̃)− Fn(0)|+ |Fn(0)| ≤ 1
a
√

2λ
|κ̃|

|1− |κ̃|2|1/2
+ |n| π

2a
√

2λ
≤ K.

But since every term is positive, this can only be the case for non-zero κ̃, if

|n| π

2a
√

2λ
< K.

Together with the upper bound on K from above, we thereby conclude that

1 +
(nπ

2

)2
< 2a2λ (2.10)
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needs to hold true for such a K to exist. Thus, for fixed parameters a and λ the Banach Fixed
Point Theorem can only be applied to those fixed-point equations whose index satisfies (2.10).
If the parameters are such that this inequality is fulfilled, n = 0 will always be allowed. But
the corresponding fixed-point equation has κ̃ = 0 as its unique solution, which leads us to
the trivial solution of the Schrödinger equation. Since this was excluded in the definition of
Gamow functions, we require |n| ≥ 1.

To prove the second part of the Lemma let a > 0 be fixed, assume that λ is big enough
for (2.9) to allow resonances and fix an n which satisfies this condition. Then we can iterate
the corresponding fixed-point equation in order to find the location of the nth resonance. If
this is done up to second order starting with κ̃(0) = 0, we end up with a rather cumbersome
expression. Expanding this expression in powers of λ−1/2 and keeping only the first non-
vanishing order of real and imaginary part yields

κ̃(2)
n =

nπ

2a
√

2λ
− i

nπ

4a2λ
+O(λ−3/2) and z̃n =

nπ

2a
− i

nπ

2a2
√

2λ
+O(λ−1)

respectively. If we use the definition of z̃ and expand again we also get

zn = (z̃2
n + 2λ)1/2 =

(
2λ+

n2π2

4a2

)1/2

− i
n2π2

4a3
√

2λ

(
2λ+

n2π2

4a2

)−1/2

+O(λ−3/2),

where we implicitly used that Im
√
z < 0 whenever Im z < 0. And in order for Im z̃n to be

negative, n is restricted to positive integers. �

To determine the Gamow functions that correspond to the resonances just found in the
previous lemma, it remains to solve the homogeneous system of linear equations (2.7). A
series of straightforward calculations yields

G(x) = B



2z̃
z̃−z e

−iz̃ae−iz(x+a) , x < −a

eiz̃x + z̃−z
z̃+z e

iz̃ae−iz̃(x−a) , |x| ≤ a

2z̃
z̃+z e

iz̃aeiz(x−a) , x > a.

Evaluating this expression at z = zn immediately implies that

Gn(x) =



z̃n
z̃n+zn

eiz̃nae−izn(x+a) , x < −a

cos z̃nx , |x| ≤ a

z̃n
z̃n+zn

eiz̃naeizn(x−a) , x > a

(2.11)

for odd n, while

Gn(x) =



− z̃n
z̃n+zn

eiz̃nae−izn(x+a) , x < −a

i sin z̃nx , |x| ≤ a

z̃n
z̃n+zn

eiz̃naeizn(x−a) , x > a

(2.12)

for even n, where B was set to 1/2. This can be seen by using

ei2z̃na z̃n − zn
z̃n + zn

=

{
+1 , n odd
−1 , n even,
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which directly follows from equation (2.8) with −in2π added to the exponent on the left hand
side.

We conclude this chapter with Figure 2.2, which illustrates that the Gamow functions do
indeed increase exponentially in x. In the next chapter we will establish a connection between
these functions and the generalized eigenfunctions. For this purpose, the explicit expression
for the resonances will become relevant again, since we will discover that the generalized
eigenfunctions have poles located at the resonances.

Figure 2.2. Plot of the squared modulus |G1|2 of the Gamow function cor-
responding to the first resonance with parameter choice a = 2 and λ = 30.
Notice that for x > a the function is strongly compressed in the x-direction,
to make the exponential increase better visible. This was done by inserting
the factor λ in front of (x− a).



CHAPTER 3

Generalized Eigenfunctions and Strategy

In this chapter we will establish precisely how the Gamow functions are connected with the
generalized eigenfunctions of the potential Vλ. Thereby, the relation

φ(k, x) ∼ η(k)G(x)

that was announced in the introduction will be turned into a rigorous statement, from which
the function η will be deduced. But the major part of this chapter is devoted to the properties
of η that are needed to prove the exponential decay of truncated Gamow functions within a
certain time regime.

1. Calculation of the Eigenfunctions

First of all, the generalized eigenfunctions that belong to the potential Vλ will be calculated.
Clearly, there are symmetric and anti-symmetric solutions to a symmetrical potential and
considering both cases separately simplifies calculations considerably. An ansatz for the
symmetric generalized eigenfunctions is given by

φ(k, x) =


Aeikx +Be−ikx , x < −a
C(eik̃x + e−ik̃x) , |x| ≤ a

Beikx +Ae−ikx , x > a,

where k̃ =
√
k2 − 2λ. Due to the symmetry condition, it is sufficient to require that φ and its

first derivative are continuous at x equal to +a in order to guarantee continuity everywhere.
And this yields the following homogeneous system of linear equations

Ae−ika +Beika − C(eik̃a + e−ik̃a) = 0

−Ae−ika +Beika − k̃

k
C(eik̃a − e−ik̃a) = 0.

Upon solving this system, the symmetric generalized eigenfunctions are given by

φ(k, x) = Ae−ika



eik(x+a) + F̄ (k)
F (k)e

−ik(x+a) , x < −a

2
F (k) cos k̃x , |x| ≤ a

e−ik(x−a) + F̄ (k)
F (k)e

ik(x−a) , x > a

(3.1)

with F (k) = cos k̃a− i
k̃

k
sin k̃a.

Since this is a L∞-solution to the Schrödinger equation, it can not be normalized in the
usual L2-sense. But similarly to the usual Fourier transform it is required
that

∫
φ(k′, x)φ(k, x) dx = δ(k′ − k). And this gives A = 1√

4π
.

13



14 Generalized Eigenfunctions and Strategy

Analogously the ansatz for the anti-symmetric generalized eigenfunctions leads to the follow-
ing expression

φ(k, x) =
e−ika√

4π



eik(x+a) − J̄(k)
J(k)e

−ik(x+a) , x < −a

2i
J(k) sin k̃x , |x| ≤ a

−e−ik(x−a) + J̄(k)
J(k)e

ik(x−a) , x > a

(3.2)

with J(k) =
k̃

k
cos k̃a− i sin k̃a.

2. Refined Strategy

The purpose of this section is to refine the argument that served to illustrate in the intro-
duction how the exponential decay of e−iHtψ0 arises within a certain time regime.

A vital part of this argument was the relation φ(k, x) ∼ η(k)G(x). But given that the gener-
alized eigenfunctions solve (ε−H0)φ = V φ their generic structure is

φ(k, x) = eikx + Φ(k, x), (3.3)

that is general solution to the homogeneous part plus particular solution to the inhomogeneous
part. And usually it is not the Φ(k, x) part that governs the time evolution

e−iHtψ0(x) =
∫
Fψ0(k)φ(k, x)e−i

k2

2
t dk, (3.4)

but the eikx part. However, only Φ can cause the generalized eigenfunctions to mimic the
shape of the Gamow function G. Therefore, we are interested in the situation in which this
function gives the dominating contribution to the generalized eigenfunctions. And heuristi-
cally this will be the case when

|Φ(k, x)| = |φ(k, x)− eikx| � |eikx|.

Clearly, the generalized eigenfunctions that belong to Vλ have the structure (3.3). And
according to the above-mentioned argument, we expect that they take the shape of G when

|F |−1 � 1 and |J |−1 � 1

respectively. In fact, the squared modulus of F−1 consists of a series of Breit-Wigner distri-
butions whose height is of O(λ). This is illustrated in Figure 3.1 and will be proven rigorously
later. Since these distributions are represented by the formula

|a−1|2

(k − z′n)2 + z′′2n
=

|a−1|2

(k − z′n − iz′′n)(k − z′n + iz′′n)
,

their appearance in |F |−2 reflects the fact that the continuation of φ(k, x) to the complex
k-plane has poles due to F−1. Therefore, we just need to apply the calculus of residues to the
above-mentioned integral (3.4) to extract a term being proportional to exp(−z′nz′′n t). So for
those t for which this term gives the dominating contribution to e−iHλtψ0, the wave function
will decay exponentially. But before we pursue this idea further, the existence of the poles will
be proven in the next lemma.

Lemma 4. The complex continuations of F and J have roots, which coincide with the reso-
nances zn corresponding to odd n and even n respectively. In both cases the multiplicity of
the roots is one.
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Figure 3.1. Plot of |F |−2 with parameter choice a = 2 and λ = 100,
where kF (k) denotes the Jost function of the symmetric generalized eigen-
functions. The k-axis was rescaled by using the relation k̃ =

√
k2 − 2λ.

Proof. As already noted in Section 4, the resonances zn satisfy the following identity

ei2az̃n
z̃n − zn
z̃n + zn

=

{
+1 , n odd
−1 , n even.

Using this, a straightforward calculation shows that

eiaz̃n − e−iaz̃n

eiaz̃n + e−iaz̃n
=
zn
z̃n

holds for odd n. And it is not difficult to see that this equation is equivalent to tan z̃na = −i zn
z̃n
,

which is the equation satisfied by the roots of F. An analogous argumentation holds for J
with even n.

To show that the multiplicity of the roots is one, we need to show that F ′(z2n−1) and J ′(z2n)
do not vanish. In this regard, notice that

F ′(z2n−1) = −ia
(

cos k̃a− i
k

k̃
sin k̃a

)
− i

2λ
k̃k2

sin k̃a
∣∣∣∣
k=z2n−1

.

Using the fact that F (z2n−1) = 0, this can be expressed as

F ′(z2n−1) = −
(
a− i

k

)
2λ
k̃k

sin k̃a
∣∣∣∣
k=z2n−1

.

The term in brackets can not vanish, because Re z2n−1 is non-zero. Since the sine has roots
only on the real axis and Im z2n−1 > 0, it can not vanish either. Hence, F ′(z2n−1) is non-zero.
An analogous argumentation holds for J. �

According to the previous lemma, the poles of the generalized eigenfunctions coincide with
the resonances, which justifies that the Gamow ’eigenvalues’ have been termed this way. In
order to see this notice that kF (k) and kJ(k) are so called Jost functions (see [9, Section 2]),
which define the Scattering-Matrix by

S(k) =
F̄ (k)
F (k)

and S(k) =
J̄(k)
J(k)
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respectively. Since it is common to define resonances as poles of the complex continuation
of this operator, we see that they coincide with the roots of F and J and thereby with the
Gamow ’eigenvalues’. Although, this was only verified for Vλ, Skibsted’s article [9] shows
that it remains true for more general potentials.

Another consequence of this observation, is that the Gamow function Gn and the residue
of φ(k, ·) at zn are linearly dependent. In order to see this let ϕ be defined by

φ(k, ·) =
ϕ(k, ·)
H(k)

,

where H denotes either F or J . Then Res φ = a−1 ϕ(zn, ·). And given that the Jost function
evaluated at zn can be expressed as (see [9, Section 2])

znH(zn) =
∣∣∣∣ Gn(x) ϕ(zn, x)
d
dxGn(x)

d
dxϕ(zn, x)

∣∣∣∣ ,
the linear dependence becomes immediately evident, when we recall that H(zn) = 0. There-
fore, we can establish a precise relation between the generalized eigenfunctions and the
Gamow functions by expanding φ in a Laurent series about the resonance zn. This yields
the expression

φ(k, x) =
a−1

k − zn
c︸ ︷︷ ︸

η(k)

Gn(x) + Remainder,

from which η(k) can be simply read off.

3. Laurent Expansion of the Eigenfunctions

This section will show that for big enough λ there is an interval [z′n − δ, z′n + δ] on which
the principal part η(k)G of the Laurent expansion of φ(k, ·) is a good approximation for the
generalized eigenfunctions. In the next chapter this will allow us to justify the approximation

e−iHλtψ0 =
∫
Fψ0(k)φ(k, ·)e−i

k2

2
t dk ∼ G(·)

∫
Fψ0(k)η(k)e−i

k2

2
t dk

for those initial wave functions, whose energy distribution Fψ0 is concentrated in the above-
mentioned interval.

Due to the fact that Vλ has compact support, the generalized eigenfunctions break up in a
part being valid on the support of Vλ and a part being valid on its complement. Therefore,
it is convenient to consider the time evolution integral (3.4) on these subsets of R sepa-
rately. For now, we focus on supp Vλ. And this will require frequent use of the characteristic
function χ

[−a,a]
, which is why it is advantageous to introduce the following shorthand

χa := χ
[−a,a]

.

Moreover, it is convenient to restrict ourselves to symmetric initial wave functions such that
only the symmetric generalized eigenfunctions (3.1) contribute to the integral (3.4). However,
every result has a straightforward extension to the anti-symmetric case.

Lemma 5. Let φ denote the symmetric generalized eigenfunctions of Hλ with λ ∈ R+ and
let z2n−1 with n ≥ 1 denote its resonances. Then φ can be expanded in the Laurent series

φ(k, x) = e−ika
(

a−1(x)
k − z2n−1

+ a0(x) +R0(k, x)
)
, (3.5)
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for every x in [−a, a]. And if λ is chosen big enough, there is a δ > 0, such that this expansion
converges absolutely and uniformly on [z′2n−1 − δ, z′2n−1 + δ], provided n satisfies

1 ≤ n <

√
λ

2
−
√

2λ =: nλ.

Proof. In Lemma 4 it was proven that the resonances z2n−1 are first order poles of the
complex continuation of φ(k, x) to the lower complex k plane. Thus, it is clear that the
Laurent expansion of φ is given by (3.5). In order to prove that it converges in the above-
mentioned interval about z′2n−1, we will determine its annulus of convergence. Since the
resonances are separated points in the complex plane, it is clear that it will be a punctured
disc around that particular resonance z2n−1. So it remains to estimate the outer radius of
convergence, which can be done by estimating the distance between neighboring poles of φ.

By Lemma 4, the symmetric generalized eigenfunctions have poles numbered by odd indices,
while the anti-symmetric ones have poles numbered by even indices. Therefore, we need to
ensure that

|z2n+1 − z2n−1|2 > 4z′′22n+1 > 4z′′22n−1 for n ≥ 1, (3.6)
where the last inequality will automatically hold if the first one is true. This is due to
z′′2k being a monotonically increasing function of k. Notice, that the factor in front of the
imaginary part is chosen for convenience, but is not optimal. Using the explicit formula for
the resonances given in Lemma 3, we find

|z2n+1 − z2n−1|2 =

(√
2λ+

(2n+ 1)2π2

4a2
−
√

2λ+
(2n− 1)2π2

4a2

)2

+
π2

4a2

1
2λ

 2n+ 1(
1 + 4a2 2λ

(2n+1)2π2

)1/2
− 2n− 1(

1 + 4a2 2λ
(2n−1)2π2

)1/2


2

.

By exploiting the formula (a+ b)(a− b) = a2− b2, the term in brackets appearing in the first
summand can be simplified to

π2

4a2

8n√
2λ+ (2n+1)2π2

4a2 +
√

2λ+ (2n−1)2π2

4a2

≥ π2

4a2

8n

2
√

2λ+ (2n+1)2π2

4a2

.

The second summand can be simplified by using a similar argumentation, which yields the
following lower bound

π2

4a2

1
2λ

 2(
1 + 4a2 2λ

(2n+1)2π2

)1/2


2

=
(
π2

4a2

)2 1
2λ

4(2n+ 1)2

2λ+ (2n+1)2π2

4a2

.

Together these lower bounds imply that inequality (3.6) is full filled, if(
π2

4a2

)2 (4n)2 + 1
2λ4(2n+ 1)2

2λ+ (2n+1)2π2

4a2

> 4z′′22n+1 =
(
π2

4a2

)2 1
2λ

4(2n+ 1)4

2λ+ (2n+1)2π2

4a2

.

Hence, inequality (3.6) holds if

(4n)2 >
2
λ

(2n+ 1)2((2n+ 1)2 − 1).

Some simple rearrangements and estimates yield the following inequality

0 > n2 −

(√
2λ
2

− 1

)
n+

1
4
,
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where equality would hold for

n± =
1
2

(√2λ
2

− 1

)
±

√√√√(√2λ
2

− 1

)2

− 1

 .

Clearly, n− will approach zero in the limit of λ tending to ∞. Therefore, only n+ is of
relevance when λ � 1 and n ≥ 1. And if we regard n+ as arithmetic mean, this allows us
to conclude that the distance |z2n+1 − z2n−1| between neighboring resonances is larger than
2|z′′2n+1| for all integer n, which satisfy

1 ≤ n <

√
λ

2
−
√

2λ =: nλ.

So for these resonances there is a non-zero positive δ, such that the Laurent expansion (3.5)
converges absolutely and uniformly for all k in [z′n − δ, z′n + δ]. �

That the region in which the Laurent expansion (3.5) converges ceases to intersect the real
axis is not surprising. It reflects the fact that the influence of the resonances fades the larger
their real part grows. From a physical point of view this can be anticipated, since initial wave
functions with high energy 〈ψ0,Hλψ0〉 impinge on the ’barrier’ with increased rate. Thus,
their lifetime on top of the plateau is reduced.

But more importantly, Lemma 5 shows that

ηn(k) = e−ika
a−1

k − z2n−1
with a−1 = Res

z2n−1

(
1√

πF (k)

)
,

which verifies the Breit-Wigner shape of |ηn|2 as announced in the introduction.

The estimates on the remainder of the Laurent expansion, will involve contour integrals
around circles in the complex k-plane. But to handle them some properties of the corre-
sponding contour performed by k̃ =

√
k2 − 2λ are needed. And the relevant details will be

established in the following lemma by considering the function
√
c+ d eiϕ, where 0 ≤ d ≤ c

are real constants. Basically, this function will perform a contour which looks like an egg
whose symmetry axis coincides with the real axis. This becomes plausible by rewriting the
argument of the complex square root in polar form r(ϕ) exp(iS(ϕ)). Then the effect of the
square root on the exponential is to compress the circle in the direction of the imaginary axis,
whereas its effect on the radius r(ϕ) shifts its center and will cause the circle to be compressed
along the real axis. Since the strength of these effects depends on ϕ, the resulting contour will
roughly look like an egg. For the purpose of estimating the remainder, the only information
we need is in which region of the complex k-plane the contour performed by k̃ can be found.
And the preceding illustration suggests that it is an annulus. The following lemma makes
this precise.

Lemma 6. Let 0 ≤ d ≤ c be real and let ϕ lie in [0, 2π). Then the complex contour
√
c+ d eiϕ,

remains within the annulus S enclosed by the circles

zout =
√
c+ rout e

iϕ with rout =
√
c−

√
c− d and

zin =
√
c+ rin e

iϕ with rin =
√
c+ d−

√
c.

Proof. The assertion follows, if we show that the continuous function f(ϕ) defined
by |

√
c+ d eiϕ −

√
c| remains within the interval [rin, rout]. This can be done by showing

that f2 takes its only maximum at ϕ being equal to π and its only minimum at ϕ being equal
to zero. In order to do that, it is enough to show that f2 is monotonically increasing on the
interval (0, π), while it is monotonically decreasing on (π, 2π).
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The monotonicity can be deduced from the sign of the first derivative of f2. But this will be
easier if f2 is rewritten first. By using the equality (a+ b)(a− b) = a2 − b2, we see that

f2(ϕ) =
d2

|
√
c+ d eiϕ +

√
c|2
,

which has the following derivative with respect to ϕ

− d2

|
√
c+ d eiϕ +

√
c|4
∂ϕ|
√
c+ d eiϕ +

√
c|2︸ ︷︷ ︸

=:f̃2

.

That means, f2 is increasing whenever f̃2 is decreasing and vice versa. In order to deter-
mine which of these cases occurs for which ϕ, we need to carry out the differentiation of f̃2

symbolically

∂ϕf̃
2 = 2 (Re

√
c+ d eiϕ +

√
c) ∂ϕRe

√
c+ d eiϕ

+ 2 Im
√
c+ d eiϕ ∂ϕIm

√
c+ d eiϕ.

With the help of the formula
√
x+ iy = 2−1/2

(
(
√
x2 + y2 + x)1/2 + i sgn(y)(

√
x2 + y2 − x)1/2

)
,

which is easily proved by rewriting the argument of the square root in polar form, we can
bring real and imaginary part in the following form

Re
√
c+ d eiϕ =

1√
2

(√
c2 + d2 + 2cd cosϕ+ c+ d cosϕ

)1/2
and

Im
√
c+ d eiϕ = sgn(sinϕ)

1√
2

(√
c2 + d2 + 2cd cosϕ− (c+ d cosϕ)

)1/2
.

Using these formulas, the real and imaginary part can be differentiated with respect to ϕ,
yielding

∂ϕRe
√
c+ d eiϕ =

1
4

1
Re

√
c+ d eiϕ

(
−cd sinϕ√

c2 + d2 + 2cd cosϕ
− d sinϕ

)
and

∂ϕIm
√
c+ d eiϕ =

1
4

sgn(sinϕ)
Im

√
c+ d eiϕ

(
−cd sinϕ√

c2 + d2 + 2cd cosϕ
+ d sinϕ

)
.

Therefore, we arrive at the following expression for the derivative of f̃2

∂ϕf̃
2 = −d sinϕ

2

(
c√

c2 + d2 + 2cd cosϕ
+ 1

)(
1 +

√
c

Re
√
c+ d eiϕ

)

+
d sinϕ

2

(
−c√

c2 + d2 + 2cd cosϕ
+ 1

)
sgn(sinϕ)

= g(ϕ) + h(ϕ).

Comparing both summands factor by factor, we see that |g| is strictly bigger than |h| on
the interval (0, π) and (π, 2π). And the signs of g and h are such that f2 is monotonically
increasing in the first case, while it is monotonically decreasing on (π, 2π). Therefore, f2

reaches its maximum at π and its minimum at zero. So if we define

rout = f(π) =
√
c−

√
c− d and

rin = f(0) =
√
c+ d−

√
c,

we can conclude that the contour performed by
√
c+ d eiϕ remains within the annulus S,

which is enclosed by the circles with radii rin and rout both being centered at
√
c. �
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We can now estimate the modulus of the remainder of the Laurent expansion.

Theorem 1. Let φ denote the symmetric generalized eigenfunctions of Hλ and let n be a
fixed odd integer satisfying 1 ≤ n < nλ. If λ is chosen big enough, the Laurent expansion
of eikaφ(k, ·) in k about the resonance zn converges for all k in [z′n − δ, z′n + δ] with

δ =
1
2
(z′n − z′n−1).

Furthermore, the Laurent coefficients am(·) and the remainder R0(k, ·) satisfy

‖χaam(·)‖∞ ≤ O(λm/2) and

‖χaR0(k, ·)‖∞ ≤ O(λ1/2)|k − zn|.

Proof. The L∞ bounds on the coefficients will be proven first. Since (3.5) is a Laurent
expansion its coefficients can be calculated by

am(·) =
1

2πi

∮
C

φ(z, ·)eiza

(z − zn)m+1
dz,

where C is a closed contour around the pole zn, which remains within the annulus of conver-
gence. Using the explicit form of the generalized eigenfunctions given in (3.1), we therefore
have the following upper bound

‖χaam(·)‖∞ ≤ 1√
π

sup
z∈C

1
| cos az̃ − i z̃z sin az̃|

sup
z∈C

sup
x∈R

|χa cos z̃x| r−m. (3.7)

Here C was chosen to be the circle

{zn + reiϕ |ϕ ∈ [0, 2π)} with (3.8)

r = z′n − z′n−1,

which is a contour within the annulus of convergence for all n, since only one pole is enclosed.
To handle the suprema appearing in (3.7), we need to know how the circle C in the z plane
looks like in the z̃ plane. Due to the fact that we are only interested in the limit of λ tending
to ∞, we can exploit the dependence of zn on λ in order to find

z̃ = (z2 − 2λ)1/2 = (z2
n − 2λ+ 2znreiϕ + r2ei2ϕ)1/2

= (z̃′2n + 2(z′n + iz′′n)re
iϕ)1/2

=
(
z̃′2n + 2z′n

√
2λ
(

1 +
1
2

(2n− 1)2π2

4a22λ
− 1− 1

2
(2n− 2)2π2

4a22λ

)
eiϕ
)1/2

= (z̃′2n + (z̃′2n − z̃′2n−1)e
iϕ)1/2 =:

√
z̃′2n + r′eiϕ,

which does not depend on λ anymore. Thus,

sup
z∈C

sup
x∈R

|χa cos z̃x| ≤ sup
z∈C

sup
x∈R

χa cosh z̃′′x = sup
z∈C

cosh z̃′′a ≤ c, (3.9)

since z̃′′ is independent of λ on the circle C. And for similar reasons
|z̃|
|z|
| sin az̃| ≤ c

|z|
= O(λ−1/2),

from which we can deduce

sup
z∈C

1
| cos az̃ − i z̃z sin az̃|

≤
(

inf
z∈C

| cos az̃| − | z̃
z

sin az̃|
)−1

≤
(

inf
z∈C

| cos az̃| − 1
4

)−1

,

provided λ is big enough. So it remains to estimate the infimum of | cos az̃| on the circle C.
Regarding this, the information given in Lemma 6 will be sufficient, due to the maximum
modulus principle of complex analysis (see e.g. [6]). According to this principle, the modulus
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of an analytic non-constant function considered on a connected open subset S of C, reaches
its maximum on the boundary ∂S. Lemma 6 proves that the contour C remains within the
annulus S bounded by the circles

z̃in = z̃′n +
(√

2z̃′2n − z̃′2n−1 − z̃′n

)
eiϕ and

z̃out = z̃′n + (z̃′n − z̃′n−1) e
iϕ.

Since these circles enclose exactly one root of cos az̃ at their center, (cos az̃)−1 is analytic
within the annulus S. Thus the maximum modulus principle is applicable and it can be
concluded that | cos az̃| reaches its minimum on one of the circles z̃in or z̃out.

In order to find the minimum of | cos az̃| on the above mentioned circles, it is easiest to
consider the squared modulus. Since az̃′n is a root of the cosine, the squared modulus can be
rewritten as follows

| cos(az̃′n + areiϕ)|2 = | sin(areiϕ)|2 =
1
2
(cosh(2ar sinϕ)− cos(2ar cosϕ)),

where r denotes either rin or rout. Due to the symmetry of this expression about π, it is
enough to consider

∂ϕ| sin(areiϕ)|2 = ar(sinh(2ar sinϕ) cosϕ− sin(2ar cosϕ) sinϕ)

on the interval [0, π]. For ϕ in (0, π/2) we also know that cosϕ and thereby the first summand
is positive. In this case

∂ϕ| sin(areiϕ)|2 ≥ ar sinϕ(2ar cosϕ− sin(2ar cosϕ)) > 0,

since sinhx is bigger than x and (x − sinx) is bigger than zero for all positive x. However,
should ϕ lie in (π/2, π) we know that cosϕ is negative. Then

∂ϕ| sin(areiϕ)|2 = −ar(sinh(−2ar sinϕ) cosϕ− sin(−2ar cosϕ) sinϕ)

≤ −ar sinϕ((−2ar cosϕ)− sin(−2ar cosϕ)) < 0

for the same reasons as above. The monotonicity implied by these considerations shows
that | sin(areiϕ)|2 reaches its minima at zero and π. But due to symmetry the modulus of
this function at zero will not differ from its modulus at π, which is why

inf
z∈C

| cos az̃| ≥ inf
z∈S

| cos az̃| = min {| cos az̃in(0)|, | cos az̃out(0)|} .

A lower bound for this minimum can be found by determining lower bounds for the cosines.
Since z̃in(0) =

√
2z̃′2n − z̃′2n−1, we see that

| cos(az̃in(0))|2 =
1
2

(
1 + cos

(
2a
√

2z̃′2n − z̃′2n−1

))
=

1
2

(
1 + cos

(
2nπ

√
1− 1

2n2

))
,

where the explicit location of the resonances z̃n was used. Considering the square root in
the argument of the remaining cosine as deviation from 2nπ, where the cosine would take its
maximum, it becomes clear that

| cos(az̃in(0))|2
n=1
≥ 1

2
(1 + cos(

√
2π)) ≥ 1

2

(
1 + cos

(
5
4
π

))
=

1
2

(
1− 1√

2

)
.

Using the explicit location of the resonances z̃n again, we also find

| cos(az̃out(0))|2 = | cos(nπ)|2 = 1.

And this immediately implies that

inf
z∈C

| cos az̃| ≥

√
1
2

(
1− 1√

2

)
>

1
3
,
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from which we can conclude

sup
z∈C

1
| cos az̃ − i z̃z sin az̃|

≤
(

inf
z∈C

| cos az̃| − 1
4

)−1

≤ 12

provided λ is big enough.

This was the missing estimate for the upper bound of the L∞-norm of the Laurent coeffi-
cients χaam(·). Using this inequality together with inequality (3.9), we can deduce from the
usual Cauchy estimate (3.7) for the Laurent coefficients that

‖χaam(·)‖∞ ≤ cr−m = c(z′n − z′n−1)
−m = O(λm/2).

It remains to prove the bound on the remainder R0 of the Laurent expansion. Multiply-
ing (3.5) by eika and subtracting the principal part of the Laurent expansion on both sides
yields

eikaφ(k, x)− a−1(x)
k − zn

= a0(x) +R0(k, x).

Since the right hand side is a Taylor expansion of the left hand side in the complex variable k,
the Lagrange form of the remainder can be used, to get an upper bound on the modulus of R0.
(Notice that, the Lagrange form of the remainder only gives a bound in dimensions bigger
than one, but it is not exact anymore.) So if k is within the radius of convergence of the
Taylor series, there is a

ζ ∈ {zn + t(k − zn)|t ∈ (0, 1)} such that

‖χaR0(k, ·)‖∞ ≤
∥∥∥χa∂k[eikaφ(k, ·)](ζ)

∥∥∥
∞
|k − zn|,

where we exploited that the am are equal to the Laurent coefficients of eikaφ(k, ·). Using
Cauchy’s formula, the derivative that appears in the above bound can be estimated as follows

‖χa∂k[eikaφ(k, ·)](ζ)‖∞ =
1
2π

∥∥∥∥χa ∮
C

eizaφ(z, ·)
(z − ζ)2

dz

∥∥∥∥
∞

≤ 1
2π

sup
z∈C

sup
x∈R

|χaeizaφ(z, x)|
∮
C

1
|z − ζ|2

dz,

where C needs to be a closed contour that contains ζ. The supremum can be estimated as
above, when the domain of ζ is contained in the interior of the circle (3.8), provided C is
chosen to be this contour. If we postpone proving that ζ satisfies this condition, we can
conclude that the supremum of ‖χaeizaφ(z, ·)‖∞ over all z ∈ C is of O(λ0). And this together
with the particular form of the contour C, implies

‖χa∂k[eikaφ(k, ·)](ζ)‖∞ ≤ O(λ0)
2π

r

∫ 2π

0

1
|zn − ζ + reiϕ|2

dϕ

≤ O(λ0) r
(

inf
ϕ∈[0,2π)

|zn − ζ + reiϕ|2
)−1

,

where r denotes (z′n − z′n−1). The term in brackets can be estimated as follows

|zn − ζ + reiϕ|2 = |w + reiϕ|2 = (w′ + r cosϕ)2 + (w′′ + r sinϕ)2

≥ (|w′| − r)2 + (|w′′| − r)2

≥ 2r(r − (|w′|+ |w′′|)).

Since k is in [z′n − δ, z′n + δ] with δ being equal to 1
2(z′n − z′n−1), the real part of ζ will lie in

the very same interval, which implies

|w + reiϕ|2 ≥ r(z′n − z′n−1 − 2|w′′|) ≥ r(r − 2|z′′n|) = r O(λ−1/2).
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Thus, we can conclude that

‖χaR0(k, ·)‖∞ ≤ O(λ1/2)|k − zn| ∀ k ∈ [z′n − δ, z′n + δ],

provided λ is big enough. So it remains to show that the domain of ζ is contained in the
interior of the circle defined by (3.8). This is the case if

|k − zn|2 < (z′n − z′n−1)
2 ∀ k ∈ [z′n − δ, z′n + δ].

But on this interval
|k − zn|2 ≤ δ2 + z′′2n =

1
4
r2 + z′′2n .

So for fixed n, the variable ζ will lie in the interior of the circle (3.8), if

z′′2n <
3
4
r2 = O(λ−1).

For big enough λ this condition is full filled, since z′′2n is of O(λ−2). Notice that r is smaller
than |zn − zn−2|. Hence, this condition will also ensure that the k interval of interest, will lie
within the annulus on which the Laurent expansion of φ converges. �





CHAPTER 4

Exponential Decay

The purpose of this chapter is to show that the truncated Gamow functions χaGn decay
exponentially within a certain time regime on the support of Vλ. Thereby, the last step of
the heuristic discussion given in the introduction, which is

e−iHtψ0(x) ∼
∫
Fψ0(k)η(k)G(x)e−i

k2

2
t dk ∼ G(x) e−

Γ
2
t, (4.1)

will be turned into a precise statement. We will discover that the error which is produced by
this approximation decreases with increasing λ. And after we have determined the regime in
which the exponential law is valid, we will conclude by extending these results to initial wave
functions which lie in C2([−a, a]) and vanish at ±a.

1. Truncated Gamow Functions

The exponential decay of the truncated Gamow functions χaGn within a certain time regime
follows from the exponential decay of any other initial wave function lying in their neighbor-
hood (with respect to the L2-norm). This is due to the unitarity of e−iHλt, which implies
that an L2-neighbor ψn of the truncated Gamow function χaGn satisfies

‖e−iHλtχaGn − e−iHλtψn‖2 = ‖χaGn − ψn‖2 � 1.

So for now it will make no difference if we choose the bound states of Hλ restricted
to LD = {ψ ∈ L2([−a, a])|ψ(a) = ψ(−a) = 0} in place of χaGn. But we will benefit from
this choice when the results derived for these specific initial wave functions will be extended
to generic ones. Apart from that, we restrict ourselves to symmetric bound states for conve-
nience, and in order to see that they lie in the vicinity of χaGn, notice that the symmetric
bound states are given by

ψn = cos(z̃′2n−1 ·)χa.
Therefore, they differ from the symmetric truncated Gamow functions only by the appearance
of the real part z̃′2n−1 instead of the entire resonance z̃2n−1. Given that the imaginary part of
the resonance is of O(λ−1/2) we only need to choose λ big enough to ensure that the distance
between the symmetric bound states and the symmetric truncated Gamow functions is small
enough with respect to the L2-norm.

In order to show that the time evolved symmetric bound states decay exponentially within a
certain time regime, we need to determine e−iHλtψn. In this regard, we will exploit that for
big λ the major part of the L2-mass of the energy distribution Fψn(k) is concentrated in a
small interval about z′2n−1. This becomes evident from

Fψn(k) = ψ̂n(k) =
cn e

ika

F̄ (k)
cos k̃a

z
′2
2n−1 − k2

. (4.2)

Its second factor resembles a sinc-function which is peaked about z′2n−1 and has roots at z′2m−1

for all m 6= n. Due to the fact that |F̄ (z′2m)|−1 is of O(λ0) and |F̄ (z′2m−1)|−1 is of O(λ1/2)
for all integer m, this causes |ψ̂n| to be strongly peaked in a neighborhood of z′2n−1 while
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being of O(λ0) everywhere else. And since the distance between neighboring roots of the
energy distribution is of O(λ−1/2), we conclude that the major part of the L2-mass of ψ̂n is
concentrated in the interval

[z′2n−1 − δ, z′2n−1 + δ] with δ =
1
2
(z′2n−1 − z′2n−2) = O(λ−1/2). (4.3)

This property of the energy distribution ψ̂n is the reason why the time evolution of the
symmetric bound states is governed by the generalized eigenfunctions φ(k, ·) that belong
to the interval (4.3). So this property is the reason for (4.1) to be a good approximation.
However, for the rigorous justification of (4.1) we need to estimate the error that is pro-
duced when φ(k, ·) is replaced by ηn(k)Gn, which is its leading order contribution on the
interval (4.3). Therefore, we will consider

χae
−iHλtψn = χa

∫ ∞

0
ψ̂n(k)ηn(k)Gn(·)e−i

k2

2
t dk

+ χa

∫ ∞

0
ψ̂n(k)(φ(k, ·)− ηn(k)Gn(·))e−i

k2

2
t dk

and prove that the L2-norm of the error integral

En(·, t) = χa

∫ ∞

0
ψ̂n(k)(φ(k, ·)− ηn(k)Gn(·))e−i

k2

2
t dk

is small, while we will see that its main contribution

Ψn(·, t) = χa

∫ ∞

0
ψ̂n(k)ηn(k)Gn(·)e−i

k2

2
t dk

decays exponentially within a certain time regime.

2. Truncated Gamow Functions - Main Contribution

In the current section it will be shown that the main contribution Ψn to χae−iHλtψn decays
exponentially within a certain time regime and moreover this regime will be determined.

In order to prove that there is a time interval in which

Ψn(·, t) = χaGn

∫ ∞

0
ψ̂n(k) e−ika

a−1

k − z2n−1
e−i

k2

2
t dk

decays exponentially, we will use the calculus of residues. Due to the term exp(−ik2

2 t), the
integration contour needs to run through the lower complex k-plane in order to get converging
integrals. In particular, we will choose the contour illustrated in Figure 4.1 with R tending
to ∞, which results in an exponentially decaying contribution to Ψn caused by the pole of ηn.
Therefore, our main task will be to determine the contribution from the rest of the integration
contour and to show that it can be neglected during a certain time regime.

Lemma 7. Let n be a fixed odd integer satisfying 1 ≤ n < nλ. Then for all t > 0, we have

Ψn(·, t) = c χaGne
−i z2

n
2
t + χaGnr(t), (4.4)

where the non-zero constant c is of O(λ0) and

|r(t)| ≤ O(λ−2) t−1/2.
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Figure 4.1. Illustration of the integration contour C in the complex k-plane,
where R is understood to tend to ∞.

Proof. By the residue theorem∮
C
ψ̂n(z)ηn(z)e−i

z2

2
t dz = −2πiRes

zn

(
ψ̂nηne

−i t
2
(·)2
)
,

where C is the contour illustrated in Figure 4.1. From this figure it becomes clear that the
contour integral breaks up into∫ ∞

0
ψ̂n(k)ηn(k)e−i

k2

2
t dk +

∫
C1+C2

ψ̂n(z)ηn(z)e−i
z2

2
t dz.

We will show first that the arc-like part C1 of the integration contour gives no contribution.
In this respect, notice that

|
∫
C1

| ≤ lim
R→∞

R

∫ π/4

0
|ψ̂n(Re−iϕ)ηn(Re−iϕ)| e−

t
2
R2 sin 2ϕ dϕ.

As limR→∞ |ψ̂n(Re−iϕ)e−iaRe
−iϕ | = 0 for all ϕ in [0, π/4], which becomes evident by a straight-

forward calculation, we only need to choose R big enough to ensure the following estimates

|
∫
C1

| ≤ lim
R→∞

cR

∫ π/4

0
((R cosϕ− z′n)

2 + (R sinϕ+ z′′n)
2)−1/2 e−

t
2
R2 sin 2ϕ dϕ

≤ lim
R→∞

cR

∫ π/4

0
|R cosϕ− R

2
cosϕ|−1 e−

t
2
R2 2

π
ϕ dϕ

≤ lim
R→∞

c′
∫ π/4

0
e−

t
2
R2 2

π
ϕ dϕ = lim

R→∞
c′′

1− e−t
R2

4

tR2

 = 0.

Let us estimate the modulus of the contribution from C2 next. Using the explicit form of ψ̂n
and ηn, the following estimates are immediately evident

|
∫
C2

| ≤
∫ ∞

0

|cn|
|1 + i z̃z tan az̃|

1
|z′2n + ir2|

|a−1|
|z − zn|

e−
t
2
r2 dr

≤ |cn a−1|
z′2n

∫ ∞

0

∣∣1 + i
z̃

z
tan az̃

∣∣−1 |z − zn|−1 e−
t
2
r2 dr.

To handle the first factor of the remaining integrand, we will show that Re (i z̃z tan az̃) is
positive, since this implies the following inequality∣∣1 + i

z̃

z
tan az̃

∣∣−1
<
∣∣ z̃
z

tan az̃
∣∣−1

.
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In order to see this, notice that

arg
(
i
z̃

z
tan az̃

)
=

3
4
π + arg

(
i
√

2λ+ ir2
)

+ arg(tan az̃) and

tan az̃ =
sin 2az̃′ + i sinh 2az̃′′

cos 2az̃′ + cosh 2az̃′′
.

Therefore, z̃′′ ≥
√

2λ and this implies that

arg(tan az̃) ∈
(
π

4
,
3
4
π

)
as well as | tan az̃| > O(λ0) 6= 0.

But then arg(i z̃z tan az̃) remains within the interval (3π/2, 2π + π/4), which justifies

|
∫
C2

| < c
|cn a−1|
z′2n

∫ ∞

0
|re−iπ/4 − zn|−1 e−

t
2
r2 dr

provided λ is big enough. By determining the maximum of the first term in the remaining
integrand and using Theorem 1, we can thereby conclude that

|
∫
C2

| < c
|cn a−1|

z′2n (z′n − |z′′n|)

∫ ∞

0
e−

t
2
r2 dr ≤ O(λ−2) t−1/2.

So it remains to determine the residue and its order with respect to λ. First of all, it is not
difficult to see that

Res
zn

(
ψ̂nηne

−i t
2
(·)2
)

= a−1ψ̂n(zn)e−iazne−i
z2
n
2
t = c e−i

z2
n
2
t.

From the previous section it is known that |ψ̂n(z′n)| is of O(λ1/2). Since z′′n is of O(λ−1), the
continuity of ψ̂n in the region between zn and the real axis requires |ψ̂n(zn)| to be of O(λ1/2).
But according to Theorem 1, we have |a−1| ≤ O(λ−1/2). So we conclude that c is of O(λ0). �

To determine the regime in which Ψn decays exponentially consider the ratio of the two
summands that contribute to Ψn (equation (4.4)), that is

|r(t)|∣∣∣∣c e−i z2
n
2
t

∣∣∣∣ ≤ O(λ−5/4) eΓnt (Γnt)−1/2.

According to Lemma 7 exponential decay prevails, if this quotient is much smaller than one.
Clearly, this can not be the case for t� 1 nor for t� 1. But this is exactly what we expected,
since it was shown in Section 2 that the survival probability |〈ψ0, e

−iHtψ0〉|2 can not decay
exponentially in these time regimes as long as ψ0 is a non-zero element of D(H). And the
initial wave functions ψn are elements of D(Hλ), because their weak derivatives ψ′n and ψ′′n
exist and have finite L2-norm. However, on intermediate time scales the above-mentioned
quotient is small for periods of several lifetimes provided λ � 1. This becomes immediately
evident when t is such that it satisfies

1 ≤ Γnt ≤ N

with an integer N > 1 that depends on λ.
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3. Truncated Gamow Functions - Error

To finish the proof that e−iHλtψn decays exponentially in a certain time interval on the
support of Vλ, it remains to estimate the L2-norm of the error integral

En(·, t) = χa

∫ ∞

0
ψ̂n(k)(φ(k, ·)− ηn(k)Gn(·))e−i

k2

2
t dk.

We will see that this norm is of O(λ−1/4). Therefore, the main contribution determined in
the previous section will approximate χae−iHλtψn better the bigger λ is chosen. This is in
accord with our intuition that an initially localized wave function remains longer within the
support of Vλ the higher the potential plateau is.

Let us illustrate briefly why we should expect En(·, t) to have small L2-norm before it will be
proven rigorously. It was explained in Section 4.1 that the energy distribution ψ̂n is strongly
localized within the interval I given by [z′2n−1 − δ, z′2n−1 + δ]. By exploiting this fact we will
be able to show that the contribution from R+ \I to En has small L2-norm. To estimate the
contribution from I itself, we will use the fact that ηnGn is the principal part of the Laurent
expansion of φ. But since this part of the proof is a bit more involved, we will briefly outline
the approach. Using Lemma 5 and Theorem 1, the contribution from I can be expressed as

χaa0(·)
∫
I
ψ̂n(k)e−ikae−i

k2

2
t dk + χa

∫
I
ψ̂n(k)e−ikaR0(k, ·)e−i

k2

2
t dk.

The details on the remainder R0 proven in Theorem 1 are sufficient to handle the second
integral in a straightforward manner. The involved part is the first integral. In this respect,
notice that ψ̂n contains F̄−1 whose meromorphic continuation has poles at z̄n instead of zn.
Therefore, F̄−1 has a Laurent expansion which is completely analogous to the one of F−1,
namely

F̄−1(k) =
a−1

k − z̄n
+R(k).

From this expression it becomes clear that the phase of the principal part of ψ̂n oscillates
rapidly on the interval I. Therefore, we will use a stationary phase argument to handle the
major contribution to the first integral from above.

Lemma 8. Let n be a fixed odd integer satisfying 1 ≤ n < nλ. Then for all t > 0, we have

‖En(·, t)‖2 ≤ O(λ−1/4).

Proof. For brevity let I denote [z′n − δ, z′n + δ], where δ can be chosen as 1
2(z′n − z′n−1)

due to Theorem 1. Then,

‖En(·, t)‖2 ≤
∥∥∥∥χa ∫ ∞

0
(1− χI )(k)ψ̂n(k)(φ(k, ·)− ηn(k)Gn(·))e−i

k2

2
t dk

∥∥∥∥
2

+
∥∥∥∥χa ∫

I
ψ̂n(k)(φ(k, ·)− ηn(k)Gn(·))e−i

k2

2
t dk

∥∥∥∥
2

=: A+B.

First consider A. The following estimate is immediately evident

A ≤
∥∥∥∥∫ ∞

0
(1− χI )(k)ψ̂n(k)φ(k, ·)e−i

k2

2
t dk

∥∥∥∥
2

+ ‖χaGn‖2

∫ ∞

0
(1− χI )(k)|ψ̂n(k)ηn(k)| dk

=: A1 +A2,
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where χa was dropped in the first summand. From the spectral theorem, we deduce

A2
1 =

∥∥∥∥e−iHλt

∫ ∞

0
(1− χI )(k)ψ̂n(k)φ(k, ·) dk

∥∥∥∥2

2

=
∥∥∥e−iHλtF−1(1− χI )ψ̂n

∥∥∥2

2
.

Using the unitarity of F and e−iHλt, this reduces to

A2
1 =

∫ ∞

0
(1− χI )(k)|ψ̂n(k)|2 dk ≤

∫ ∞

0
(1− χI )(k)

|cn|2

(z′2n − k2)2
dk ≤ O(λ−1/2),

where the last step follows from a straightforward calculation. Regarding A2, notice that

‖χaGn‖∞ = ‖χa cos(z̃n·)‖∞ ≤ O(λ0),

which follows from the λ-dependence of z̃n given in Lemma 3. Therefore, we find the following
estimates

A2 ≤ c sup
k∈R+\I

|a−1|
|k − zn|

∫ ∞

0
(1− χI )(k)

|cn|
|z′2n − k2|

dk

≤ c′
∫ ∞

0
(1− χI )(k)

|cn|
|z′2n − k2|

dk

≤ O(λ−1/2),

where the last step follows again from a straightforward calculation. And this directly implies
that

A ≤ O(λ−1/4) ∀ t > 0.

So it remains to estimate B. From Lemma 5 and Theorem 1, it is known that

φ(k, ·)− ηn(k)Gn(·) = e−ika (a0(·) +R0(k, ·)) ∀ k ∈ I

with ‖χaa0‖∞ ≤ O(λ0) and ‖χaR0(k, ·)‖∞ ≤ O(λ1/2)|k − zn|.
Thus, using the fact that x takes only values within a compact set we find

B ≤ O(λ0)
∣∣∣∣∫
I
ψ̂n(k)e−ikae−i

k2

2
t dk

∣∣∣∣+O(λ1/2) δ sup
k∈I

|ψ̂n(k)(k − zn)| =: B1 +B2.

If we define

hn(k) =
cos k̃a
z′2n − k2

for brevity and apply the results of Theorem 1 to F−1, we find

sup
k∈I

|ψ̂n(k)(k − zn)| = |cn| sup
k∈I

|F̄−1(k)(k − zn)hn(k)|

≤ c′n sup
k∈I

|F−1(k)(k − zn)|

≤ c′n sup
k∈I

(|a−1|+ |a0(k − zn)|+ |R0(k)(k − zn)|) = O(λ−1/2).

And due to the fact that δ is of O(λ−1/2), we conclude

B2 ≤ O(λ−1/2).

As was described above, we want to apply a stationary phase argument to estimate B1. For
this purpose we will use Theorem 1 once again in order to expand F̄−1, which is part of ψ̂n.
This immediately implies

B1 ≤ O(λ0)
∣∣∣∣∫
I

a−1

k − z̄n
hn(k)e−i

k2

2
t dk

∣∣∣∣+O(λ0) δ sup
k∈I

|(a0 +R0(k))hn(k)|

≤ O(λ0)
∣∣∣∣∫
I
η̃n(k)hn(k)e−i

k2

2
t dk

∣∣∣∣+O(λ−1/2),
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where η̃n was defined as a−1(k − z̄n). Since hn is real valued, it does not contribute to the
phase of the remaining integrand. Therefore, we can use partial integration in order to get

|
∫
I
| =

∣∣∣∣∫
I
|η̃n(k)|hn(k)eiS(k)−i k2

2
t dk

∣∣∣∣
≤

∣∣∣∣∣
[
|η̃n(k)|hn(k)
∂kS(k)− kt

eiS(k)−i k2

2
t

]z′n+δ

z′n−δ

∣∣∣∣∣+
∫
I

∣∣∣∣∂k |η̃n(k)|hn(k)∂kS(k)− kt

∣∣∣∣ dk, (4.5)

where S denotes the phase of η̃n. Due to the fact that η̃n is of O(λ0) at the boundaries of
integration, as well as

∂kS(k) = ∂k arctan
−z′′n
k − z′n

=
z′′n

(k − z′n)2 + z′′2n
< 0,

we immediately see that the first summand in (4.5) is bounded by a constant of O(λ−1/2) for
all t > 0.

The second term that appears in (4.5) will be of the same order, if the supremum of its
integrand is bounded by a constant of O(λ0). An application of the product rule yields the
following upper bound for the integrand∥∥∥∥χI

hn|η̃n|′

S′ − (·)t

∥∥∥∥
∞

+
∥∥∥∥χI

|η̃n|h′n
S′ − (·)t

∥∥∥∥
∞

+
∥∥∥∥χI

S′′ − t

(S′ − (·)t)2
|η̃n|hn

∥∥∥∥
∞
.

Straightforward calculations justify the following estimates∥∥χI |η̃n|
′∥∥
∞ =

∥∥∥∥χI

|a−1|(k − z′n)
((k − z′n)2 + z′′2n )3/2

∥∥∥∥
∞
≤ O(λ1/2)

and
∥∥χIS

′′∥∥
∞ =

∥∥∥∥χI

2z′′n(k − z′n)
((k − z′n)2 + z′′2n )2

∥∥∥∥
∞
≤ O(λ1/2).

To get an upper bound for ‖χIh
′
n‖∞ notice that hn is an element of the Sobolev space H2(R).

We can therefore apply Sobolev’s inequality (see [7, Chapter 8]) in order to find that

‖∂khn(k)‖2
∞ ≤ 1

2
(
‖∂khn(k)‖2

2 + ‖∂2
khn(k)‖2

2

)
≤ 1

2
(
‖xψn(x)‖2

2 + ‖x2ψn(x)‖2
2

)
≤ O(1),

where we used the fact that hn is the usual Fourier transform of ψn. Putting all these in-
equalities together we find∥∥∥∥χI

(
|η̃n|hn
S′ − (·)t

)′∥∥∥∥
∞
≤ O(λ1/2)

∥∥∥∥ χI

S′ − (·)t

∥∥∥∥
∞

+O(λ)
∥∥∥∥ χI

(S′ − (·)t)2

∥∥∥∥
∞

+O(λ0)
∥∥∥∥χI

|η̃n|
S′ − (·)t

∥∥∥∥
∞

≤ O(1) ∀ t > 0.

This shows that B1 has to be bounded by a constant of O(λ−1/2), which allows us to conclude
that

‖En(·, t)‖2 ≤ A+B ≤ O(λ−1/4) ∀ t > 0.
�

4. Generic Initial Wave Functions

From a physical point of view it is not satisfactory, that only the specific initial wave func-
tions considered in the previous sections show exponential decay in certain time intervals.
Therefore, we will extend the results achieved so far to generic ψ0 in this section. In this
process we will understand why truncated Gamow functions are distinguished initial wave
functions. And moreover, it will become clear why the bound states of Hλ restricted to LD
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are better adapted for the extension to generic initial wave functions than the truncated
Gamow functions.

But what does generic mean in the first place? The probability that the meta-stable particle
already decayed should initially still be zero. So we still demand that supp ψ0 ⊂ [−a, a].
For simplicity we will restrict ourselves to symmetric wave functions again. And since we
exploited the strong localization of Fψ0, the Riemann-Lebesgue Lemma suggests that ψ0

should be sufficiently smooth. Therefore, under generic we shall understand that

ψ0 ∈
{
f ∈ Ck0 ([−a, a])|f(x) = f(−x)

}
=: Ak,

where k will be chosen big enough and Ck0 ([−a, a]) denotes the space of k-times continuously
differentiable functions on [−a, a] which vanish at ±a.

The fact that the generalized eigenfunction φ(k, ·) could be replaced in (4.1) by the principal
part of its Laurent expansion about zn without producing a huge error, was possible only
since the contribution ‖χR+\[z′n−δ,z′n+δ]Fψ0‖2 from all the other resonances was small. So for
the method from the previous section to be successful, this one-resonance-approximation has
to remain valid for elements of Ak. However, it is not difficult to see that this will not happen
without any further restrictions on ψ0, even when k = ∞. Choose for example

ψ0(x) = (cos z̃′1x+ cos z̃′3x)χa(x),

then this will be an element of Ak and we know from Section 4.1 that

Fψ0(k) =
eika

F̄ (k)

(
c1 cos k̃a
z′21 − k2

+
c3 cos k̃a
z′23 − k2

)
.

But this is strongly localized about z′1 and z′3, which implies that ‖χR+\[z′1−δ,z′1+δ]Fψ0‖2 is
not small. This shows that the initial wave functions

B0 =
{
cos(z̃′n ·)χa

}
n∈N

considered in the previous sections are distinguished insofar as they allow for a one-resonance-
approximation. And since the truncated Gamow function cos(z̃n ·)χa belongs to the neigh-
borhood of cos(z̃′n ·)χa (measured in the L2-norm) it is distinguished for the same reason. But
for generic initial wave functions there will be contributions from more than one resonance.
And in order to handle them, we will follow the hint that is actually given by the above
counterexample.

As already noted in Section 4.1, the initial wave functions B0 are a subset of

B =
{

sin
nπ(x+ a)

2a

}
n∈N

,

which are the eigenfunctions of H0 with domain C2
0([−a, a]). From the theory of Fourier se-

ries (see [1, Example 1.2.3]) it is well-known that B is a complete orthonormal set in L2([−a, a]).
One consequence of this is the essential self-adjointness of H0 on its domain. But more im-
portantly we can conclude that B0 is an orthonormal basis in the set of general initial wave
functions Ak. The counterexample given above is therefore just one particular element of Ak
expressed as a Fourier series, which as we now know can be done with any other element as
well.
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Thus, we can now determine the time evolution of our general class of initial wave functions
through a term by term application of the one-resonance-approximation, which yields

e−iHλtψ0(x) =
∞∑
n=1

anCn(t)Gn(x) +R(x, t) for all x ∈ [−a, a],

where Cn(t) =
∫ ∞

0
Fψn(k)ηn(k)e−i

k2

2
t dk with ψn ∈ B0. (4.6)

The exponential decay within a certain time regime then immediately follows from Lemma 7.
And to avoid questions of summability we will exploit the smoothness of the elements in Ak.
This property together with the Riemann-Lebesgue Lemma ensure that the modulus of the
Fourier coefficients an is as small as we please if only n is big enough. Therefore, it will
be sufficient to apply the one-resonance-approximation to the first few summands, which
represent the major contribution to ψ0.

Before we will use the preceding considerations to prove the next Lemma, notice that contrary
to B0 it is not evident that the set of truncated Gamow functions {χaGn}n∈N is a basis in Ak.
Therefore, it is not clear which set of initial wave functions actually is covered by finite linear
combinations of them.

Lemma 9. Let ψ0 be an element of A1 and let Cn(t) be defined as in equation (4.6). If λ is
big enough, there is an integer 1 ≤ N < nλ such that for every x ∈ [−a, a]

e−iHλtψ0(x) =
N∑
n=1

anCn(t)Gn(x) +R(x, t)

with ‖χaR(·, t)‖2 ≤ O(λ−1/4) for all t > 0.

Proof. Let ψn with n ≥ 1 denote the elements of B0. Following the considerations from
above these elements build a complete orthonormal set in Ak. Hence, for every ψ0 in Ak we
have

e−iHλtψ0 = e−iHλt
∞∑
n=1

〈ψ0, ψn〉ψn = e−iHλt
N∑
n=1

anψn + e−iHλt
∞∑

n=N+1

anψn

= e−iHλtψ̃0 +R(·, t),

where the integer N ≥ 1 will be specified later.

The Fourier coefficients an are independent of λ, since neither ψ0 nor any of the ψn depends
on this parameter. Therefore, we can use the Riemann-Lebesgue Lemma together with
the differentiability of ψ0, in order to see that for any m ≤ k there is a λ-independent
constant Cm > 0 such that

|an| ≤
Cm
nm

∀n ≥ 1.

This inequality together with the unitarity of e−iHλt imply

‖R(·, t)‖2
2 =

∥∥∥∥ ∞∑
n=N+1

anψn

∥∥∥∥2

2

=
∞∑

n=N+1

|an|2 ≤ C2
k

∞∑
n=N+1

n−2k,

where Plancherel’s identity was used in the second step. For this sum to converge, it is
sufficient to choose k = 1. In this case we find the following upper bound

‖R(·, t)‖2
2 ≤ C2

1

∞∑
n=N+1

∫ n

n−1
m−2 dm =

C2
1

N
.
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By Lemma 8 we can therefore find a 1 ≤ N < nλ such that the one-resonance-approximation
applies to every summand of e−iHλtψ̃0, while ‖R(·, t)‖2 ≤ O(λ−1/4) for all t > 0.

And using Lemma 8 once again, we conclude that for these N and every x ∈ [−a, a]

e−iHλtψ0 =
N∑
n=1

anψ̃n(t) +R′(·, t),

where ψ̃n(t) denotes the main contribution from the one-resonance-approximation applied
to e−iHλtψn that is

ψ̃n(t) = Gn

∫ ∞

0
Fψn(k)ηn(k)e−i

k2

2
t dk

and ‖R′(·, t)‖2 ≤ O(λ−1/4) for all t > 0. �



CHAPTER 5

Outlook

In the previous chapters we studied the physical significance of Gamow functions by ana-
lyzing the Schrödinger evolution of initially localized wave functions on the support of the
potential Vλ. The piece missing to complete picture is therefore the evolution of these ini-
tial wave functions outside of the support. In this regard, Skibsted’s results [9] suggest
that |e−iHλtψ0(x)| increases exponentially in x up to a radius R(t) which moves outward,
since he proved

e−iHλtχaGn
L2

∼ e−itz
2
n/2χR(t)Gn with R(t) = a+ Re(zn) t.

On the one hand this is an astonishing assertion, but on the other hand large radii R(t)
correspond to early escape. Thus, the exponential decay in time on the support of the
potential should cause an exponential increase in x, otherwise the continuity equation would
be violated. However, Skibsted’s result was proven in the L2-norm, which raises the question
whether the pointwise exponential increase of the wave function is actually true. Proving
this with the help of an expansion in generalized eigenfunctions seems to be more delicate
than proving the exponential decay within a certain time regime on the support of Vλ. This
is due to the fact that the main contribution to the integral

e−iHλtψ0(x) =
∫
Fψ0(k)φ(k, x)e−i

k2

2
t dk,

which is its residue, is of O(λ−1/2) for x > a. Since the lifetime Γ−1
n increases with increasing λ,

this is sensible from a physical point of view. But from a mathematical viewpoint the problem
becomes more demanding, because this is even a lower order than some of the error integrals
obtained when the time evolution on the support of the potential was studied.

The question whether the Gamow functions have physical relevance, which was the subject
this thesis, is part of the larger endeavor to study the Time-Energy Uncertainty Relation.
This question appeared due to the connection between energy width and lifetime of meta-
stable states. And although, the α-decay is a well-established application of the Time-Energy
Uncertainty Relation, this inequality is surrounded by many mathematical questions. One
of them is its rigorous derivation, which is problematic given that no self-adjoint time op-
erator exists. However, this as well as several other questions concerning the Time-Energy
Uncertainty Relation remain as a challenge for future work.
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[12] M. Zworski. Resonances in Physics and Geometry. Notices Amer. Math. Soc., 46:319–328, 1999.

39


	Chapter 1. Introduction
	Chapter 2. Problem and Tools
	1. Statement of the Problem
	2. Properties of the Schrödinger Evolution
	3. Setting and Tools
	4. Resonances and Gamow Functions

	Chapter 3. Generalized Eigenfunctions and Strategy
	1. Calculation of the Eigenfunctions
	2. Refined Strategy
	3. Laurent Expansion of the Eigenfunctions

	Chapter 4. Exponential Decay
	1. Truncated Gamow Functions
	2. Truncated Gamow Functions - Main Contribution
	3. Truncated Gamow Functions - Error
	4. Generic Initial Wave Functions

	Chapter 5. Outlook
	Bibliography

