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1 A ‘thought’ experiment

Consider the following experiment: A spin-1/2 particle is constrained to move within a semi-
infinite cylindrical waveguide of radius ρ, with a potential barrier constructed at a distance
d from the end face of the waveguide. Initially the barrier is made impenetrable, trapping
the particle within a cylindrical box of width d formed between the end face of the waveguide
and the barrier. At the start of the experiment the barrier is suddenly switched off, allowing
the particle to propagate freely within the waveguide. We ask, how long does it take for the
particle to arrive at a distance L > d (from the end face of the waveguide) for the first time?
In particular, if the experiment is repeated several times, with the particle taking apparently
random times to span the same distance L, we ask for the distribution of these arrival times.

2 Background and motivation

The prediction of first arrival time of a quantum particle has a long history [1]. The very notion
of arrival or tunneling time of a particle is not well posed within the orthodox (or Copenhagen)
interpretation of quantum mechanics, since the particle is said to not have a well defined po-
sition at a given instant of time. However, the problem of time, or the problem of timing
the motion of quantum particles surfaced long before any known interpretations of quantum
mechanics came into being. As early as 1925, shortly after the invention of matrix mechanics,
Wolfgang Pauli wrote to Niels Bohr:

“In the new theory, all physically observable quantities still do not really occur. Absent, namely,
are the time instants of transition processes, which are certainly in principle observable (as for
example, are the instants of the emission of photoelectrons). It is now my firm conviction
that a really satisfying physical theory must not only involve no unobservable quantities, but
must also connect all observable quantities with each other. Also, I remain convinced that the
concept of ‘probability’ should not occur in the fundamental laws of a satisfying physical theory.”

Pauli’s early views on the problem of time in quantum mechanics deeply influenced the sub-
sequent research on this subject. In particular, he showed that a self-adjoint time operator T̂ ,
canonically conjugate to the Hamiltonian Ĥ, viz.

[Ĥ, T̂ ] = i~ (1)

implied that the spectrum of Ĥ would be unbounded from below, which in turn implied that
matter couldn’t be stable. This result raised doubts on the status of the ‘time-energy uncer-
tainty relation’

∆E∆T ≥ ~
2
. (2)

Despite these impediments, many physicists have attempted to incorporate a respectable time
observable by extending the basic framework of quantum theory [4]. These proposals are yet
to be checked by experiments.

On the other hand, it has also long been realized that quantum theories comprising of actual
particle trajectories, such as Bohmian Mechanics (BM) [2] and Nelson’s stochastic mechanics [3]
provide a natural framework for addressing this problem. In such theories, when the particle
moves on a trajectory RRR(t,RRR0), where RRR0 is the initial position of the particle lying in the
support of the (compactly supported) initial wave function ψ0, the time of first arrival on a
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surface Σ placed outside the support of ψ0 is given by

τ(RRR0) = inf{t |RRR(t,RRR0) ∈ Σ, RRR0 ∈ supp(ψ0)} . (3)

Since the initial position RRR0 is always assumed to be |ψ0|2-distributed (Born’s statistical law),
the time of first arrival is random as is the position where the particle crosses Σ. While the
distribution of τ(RRR0) will in general be only numerically accessible, it has been conjectured–at
least in the case of Bohmian Mechanics–that it provides a good prediction for the statistics in a
measurement of first arrival times. Such measurements have unfortunately not been performed
until now. The conjecture has however to be taken cum grano salis as we shall explain. First
note that the definition (3) applies to all versions of quantum mechanics in which particles
move on trajectories. As remarked before, there are many such versions apart from Bohmian
Mechanics; for example in Nelson’s stochastic mechanics, the particle exhibits Brownian like
motion. In view of this it is clear that the distributions of first arrival times will differ con-
siderably for the different versions, but the theories are nevertheless empirically equivalent. To
understand this it is good to recall the following theorem [5]:

“All measured quantum statistics are given by positive operator valued measures (POVMs)
on a Hilbert space.”
This means that for a given experimental setup for measuring first arrival times, there will be a
POVM associated with that experiment on the Hilbert space of the particle which determines
for any initial wave function of the particle the statistics of the readings of the apparatus1.

Empirically equivalent versions of quantum mechanics would, when the experiment were
theoretically analyzed, predict that POVM. However, the theoretical analysis could be rather
different in the different versions, for example it may be the case that τ(RRR0) itself plays little or
no role. This is because the determination of the POVM associated with the given experiment
will in general depend on the full quantum mechanical analysis of the combined system of
apparatus and particle, i.e. on solving Schrödinger’s equation for the entangled wave function
of the combined system. Since this is practically impossible, there have been many attempts to
guess a universal POVM or a universal class of POVMs from symmetry or other principles of
orthodox quantum mechanics, which should be close to the true POVM of a given experiment,
where closeness means that the statistics of the universal POVMs are close to the registered
statistics [4, 8] of the hopefully sometimes soon to be performed arrival time experiment. So
far none of the POVMs have been experimentally verified in a serious manner.

Focusing now on Bohmian Mechanics we see that the guidance law for the particle’s motion
(given in Eq. (7) below) is nonlinear in the wave function, with the nonlinearity being such that
it is inconceivable that the distribution of τ(RRR0) is given by a POVM, which must be bilinear
in ψ0. But in the so called scattering regime, i.e. when the surface Σ is far from the support of
ψ0 it has been shown that the probability distribution of τ(RRR0) is given by

%ψ0(t < τ ≤ t+ dt) =

∫
Σ

jjjψt ·dΣΣΣ dt (4)

where

jjjψt =
~
m

Im[ψ∗t∇∇∇ψt] (5)

1The theorem does not apply to generalized notions of measurements like e.g. weak measurements. In the
latter the weakly measured values are averages conditioned on a selected sub-ensemble. The selection of sub-
ensembles makes such “measurements” nonlinear [6] in contrast to the standard measurements, which are in
that sense linear and to which the theorem applies.
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is the probability current density defined in terms of the particle’s wave function ψt. It satisfies
the continuity equation

∂

∂t
|ψt|2 +∇∇∇·jjjψt = 0. (6)

The probability jjjψt · dΣΣΣ dt leads directly to the quantum mechanical S−matrix formalism,
which is experimentally verified. In this asymptotic sense the flux defines a POVM and in this
asymptotic sense the first arrival distribution defines a POVM.

The connection between the left and the right hand side of (4) is based on the fact that
the current density jjjψt actually defines the Bohmian guiding law for spinless particles: The
trajectory RRR(t) of the particle is governed by the differential equation

ṘRR(t) =
jjjψt(RRR(t))

|ψt|2(RRR(t))
. (7)

In view of other trajectory based versions of quantum mechanics, we remark that formula (4)
does not hold, for instance in Nelson’s stochastic mechanics.

When the surface Σ is near to the support of the initial wave function, equation (4) is no
longer true, since the right hand side can become negative, which implies that the quantum
flux lines, or the Bohmian trajectories cross the surface Σ several times by crossing back and
forth through the surface, while in the scattering regime the trajectories become straight lines
and they cross only once. Since in the scattering regime, the probability distribution for first
arrival times of the Bohmian trajectories is experimentally verified in scattering experiments, it
is natural to conjecture that the Bohmian first arrival time distribution, which can be computed
numerically will still be close to the measured distribution, for non pathological wave functions.
By non pathological wave functions we mean wave functions which can be prepared, e.g. ground
states in a trap. As we stressed above, it cannot reproduce the first arrival time distributions
for all wave functions, since it is in general not a POVM.

There is however a caveat one needs to take note of. Measurement is an interaction that
always affects the wave function in terms of back scattering. This effect changes the Bohmian
trajectories guided by the wave function and hence changes the arrival time distribution deter-
mined by the unperturbed wave function. For simplicity we ignore this effect in our discussion.
In this thesis, we will be concerned with what are known as intrinsic or ideal arrival time
distributions without referring to a particular measurement procedure. In § 9 we discuss ex-
perimental questions like initial state preparation, measurement etc. at length.

The relevant ingredients of Bohmian mechanics needed for an analysis of our experiment
are presented in the next section. We also compare the Bohmian arrival time statistics with
the so-called semiclassical formula, which is determined from the momentum distribution of
the particle. This formula tends to agree with other approaches in the scattering regime, but
is highly doubtful to be correct in the near field regime.

3 Elements of Bohmian mechanics

In the de Broglie-Bohm pilot wave theory, or Bohmian mechanics, a spin-1/2 particle is a point
particle, whose sole attribute is a position in space at time t, denoted by RRR(t) ∈ R3. In the
course of time, the particle moves on a deterministic (Bohmian) trajectory RRR with velocity
vector ṘRR specified by the guidance law [12, 13]

ṘRR(t) =
~
m

Im

[
Ψ†∇∇∇Ψ

Ψ†Ψ

]
(RRR(t), t) +

~
2m

[
∇∇∇×

(
Ψ†σσσΨ

)
Ψ†Ψ

]
(RRR(t), t) . (8)
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Here,

Ψ(rrr, t) =

(
ψ+(rrr, t)
ψ−(rrr, t)

)
(9)

is a complex-valued spinor wave function, satisfying the Pauli wave equation

i~
∂

∂t
Ψ(rrr, t) = − ~2

2m
(σσσ ·∇∇∇)2 Ψ(rrr, t) + V (rrr, t)Ψ(rrr, t), (10)

where V (rrr, t) is an external potential characterizing the interactions of the particle with its
surroundings, while

σσσ := σx x̂xx+ σy ŷyy + σz ẑzz (11)

is a 3-vector of Pauli matrices. Note that the vector rrr in the argument of Ψ is a mere place
holder, and shouldn’t be confused with an actual particle position RRR(t). One may regard the
wave function Ψ as a convenient parameterization of the particle velocity in space-time.

Since RRR(t) doesn’t appear in the wave equation, it can be solved autonomously, given an
initial condition Ψ(rrr, 0). Similarly, knowledge of the initial particle positionRRR(0) on a trajectory
suffices to solve equation (8). However, if the trajectory encounters a zero (or node) of the wave
function it cannot be continued further, since the velocity ṘRR becomes unbounded there. Luckily,
general theorems guaranteeing the global existence of Bohmian trajectories exist, which show
that the singularities of the velocity field will not be reached in finite time for typical initial
conditions [14, 15].

Applying these equations to any physical situation of interest, one achieves a vivid de-
scription of quantum mechanical processes, which is lacking in the operational approaches to
quantum mechanics. See [16, 17, 18, 19] for an analysis of the Stern-Gerlach experiment and
neutron interferometry. The Bohmian analysis of the double-slit experiment with spin-1/2
particles is given in [13].

Equations (8–10) apply to a single spin-1/2 particle placed in an external potential field V ,
and can be generalized to account for many interacting particles [20]. Thus using the many-
body guidance law, one can study the motion of electrons in simple atoms like hydrogen [21, 22]
and helium [23]. Radiative transitions in hydrogen atoms driven by an external electromagnetic
field are discussed in [24, 25], while the non-local spin correlations of the EPR-B experiment
have been explained in [17, 26] using the guidance law.

4 Formulation

In this section we present a detailed analysis of the experiment outlined in Section 1 using the
dynamical equations of Bohmian mechanics. Let the cylindrical waveguide be mounted on the
xy−plane of a right-handed coordinate system, the axis of the cylinder defining the z−axis,
and let the barrier at z = d be switched off at t = 0.

Employing cylindrical coordinates (r, φ, z), the potential field of the waveguide may be
written as

V (rrr) = V⊥(r) + V‖(z) (12)

for t > 0. Here,

V⊥(r) =
1

2
mω2r2 (13)

is a transverse confining potential, and

V‖(z) =

{
∞ z ≤ 0

0 z > 0
(14)
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is the axial potential, comprised of an impenetrable hard wall at z = 0, which defines the
end face of the waveguide. The choice of a harmonic confinement in the transverse direction
is motivated in part by mathematical simplicity, but more importantly by experimental con-
siderations. For instance, the radial potential profile encountered by electrons propagating in
semiconductor waveguides is well approximated by the harmonic potential [27]. These struc-
tures have typical radii ρ ≈ 0.5 μm and trap widths d ≈ 5 nm. Single neutrons stored in Penning
traps also experience harmonic confinements, remaining stable (to beta decay) for about 870 s
[28].

Beside fundamental particles, composite species like calcium 40
20Ca+, ytterbium 171

70Yb+ and
barium 137

56Ba+ ions featuring an unpaired electron, behave like spin-1/2 particles. These ions
can be easily isolated and trapped in radio frequency linear Paul traps, which provide harmonic
confinements up to radial distances ρ ≈ 1 mm, with a characteristic ω ≈ 5 − 100 MHz [29]. An
optical barrier may be added to this assembly at a distance d ≈ 10 μm from one of the end-caps,
where the distance between the end-caps defines the length of the waveguide (≈ 6 mm).

The wave functions in a harmonic potential have Gaussian tails, characterized by a length
scale of

√
~/mω, which for a calcium ion of mass m ≈ 5.18× 10−26 kg and trapping frequency

ω ≈ 50 MHz equals ≈ 6.4 × 10−9 m. Since the waveguide radius ρ is much larger than this
(decay) length, it can be set to ∞ for practical calculations. From here on, we will also set
~ = m = d = 1 in all equations for convenience. These constants may be restored with the
substitutions

a→ a

d
, Ψ→ d−3/2Ψ, ω → md2

~
ω, t→ ~

md2
t, (15)

where a = r, z, L,RRR.
We will further assume that the particle was prepared in one of the ground states of the

trap at the instant when the potential barrier was turned off.2 Since the ground state of the
cylindrical box for a spin-1/2 particle is doubly degenerate, any ground state wave function can
be conveniently parameterized with two real parameters (see appendix A). The wave function
of the particle at t = 0, thus has the general form

Ψ(rrr, 0) = ψ0(rrr)

(
cos(α/2)

sin(α/2) eiβ

)
, (16)

where
0 ≤ α ≤ π, 0 ≤ β < 2π

characterize the ‘spin part’ of the wave function,

ψ0(rrr) =

√
2ω

π
θ(z)θ(1− z) sin(πz) exp

(
−ω

2
r2
)

(17)

is the ‘spatial part’ of the wave function, and θ(x) is the Heaviside step function.

4.1 Time evolution of wave function

We begin by solving the time dependent Pauli equation:

i
∂

∂t
Ψ(rrr, t) =− 1

2
∇2Ψ(rrr, t) +

1

2
ω2r2Ψ(rrr, t) + V‖(z)Ψ(rrr, t), (18)

2We discuss state preparation in a later section.
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with initial condition (16). In writing equation (18) we have used the identity

(σσσ ·∇∇∇)2 = ∇21 (19)

(denoting the 2 × 2 unit matrix by 1), which follows readily from the algebraic properties of
the Pauli matrices, viz.

(σσσ ·∇∇∇)2 =
3∑

a,b=1

σa∂aσb∂b =
3∑

a,b=1

∂a∂bσaσb

=
3∑

a,b=1

δab ∂a∂b1 + i
3∑

a,b,c=1

εabc ∂a∂bσc

= ∇21.

Considering the form of the initial wave function, we make the ansatz

Ψ(rrr, t) = ψ(rrr, t)

(
cos(α/2)

sin(α/2) eiβ

)
(20)

for the time dependent wave function. It satisfies equation (18), iff ψ(rrr, t) solves the Schrödinger
equation

i
∂

∂t
ψ(rrr, t) = Ĥψ(rrr, t), (21)

where

Ĥ := −1

2
∇2 +

1

2
ω2 r2 + V‖(z). (22)

Further, letting
ψ(rrr, 0) = ψ0(rrr) (23)

ensures that equation (16) is satisfied as well.
The solution of the Schrödinger equation can be formally written as

ψ(rrr, t) = e−itĤψ0(rrr), (24)

using the unitary time evolution operator exp(−itĤ). This formal solution may be developed
further by resolving ψ0(rrr) in a basis of eigenfunctions of Ĥ. These functions satisfy the usual
time independent Schrödinger equation

Ĥϕ(rrr) = Eϕ(rrr). (25)

The eigenfunctions suitable for our purpose may be written as

ϕ(rrr) = ζ(z) exp
(
−ω

2
r2
)
. (26)

Substituting this ansatz into equation (25), we arrive at an ODE for ζ(z), viz.

− d2

dz2
ζ(z) + 2V‖(z)ζ(z) = k2

ζ(z), (27)

where

E = ω +
k2

2
. (28)
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The general solution of equation (27) has the form

ζ(z) = Aθ(z) sin(kz), k > 0 (29)

where A is an arbitrary constant.3 Thus,

ϕk(rrr) = Aθ(z) sin(kz) exp
(
−ω

2
r2
)
. (30)

Customarily, A is suitably chosen to ensure∫
R3

d3rrr ϕk(rrr)ϕk′(rrr) = δ(k − k′). (31)

This yields

A =

√
2ω

π
. (32)

Now, expanding the initial wave function as

ψ0(rrr) =

∫ ∞
0

dk c(k)ϕk(rrr), (33)

we have (by virtue of equation (31))

c(k) =

∫
R3

d3rrr ϕk(rrr)ψ0(rrr) = 2
√
π

sin k

π2 − k2
. (34)

Substituting equation (33), together with equation (28) for the energy eigenvalues, into our
formal solution, equation (24), yields

ψ(rrr, t) =

∫ ∞
0

dk c(k)e−itĤϕk(rrr) =

∫ ∞
0

dk c(k) e−iωt−i
k2

2
tϕk(rrr). (35)

Writing out ϕk(rrr), and substituting c(k) from equation (34), we obtain an explicit integral
representation of the time dependent wave function

ψ(rrr, t) = 2

√
2ω

π
θ(z) exp

(
−ω

2
r2 − iωt

)∫ ∞
0

dk
sin k sin(kz)

π2 − k2
e−i

k2

2
t (36)

For later convenience, we define the ‘time evolution integral’

W (z, t) := θ(z)

∫ ∞
−∞

dk
sin k sin(kz)

π2 − k2
e−i

k2

2
t, (37)

which allows writing the wave function as4

ψ(rrr, t) =

√
2ω

π
exp

(
−ω

2
r2 − iωt

)
W (z, t). (38)

Fortunately, the time evolution integral can be evaluated in closed form (see appendix B):

W (z, t) = θ(z) [D(z − 1, t) + D(1− z, t)−D(1 + z, t)−D(−1− z, t)] (39)

3Since sin(kz)=− sin(−kz), we will fix k > 0 in order that the eigenfunctions are linearly independent.
4Exploiting the symmetry of the integrand, the integral has been extended to −∞ < k <∞.
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where

D(ξ, t) :=
e−i

π
2

2
t

8i

{
eiπξ erfc

[
i3/2√

2

(
ξ√
t
− π
√
t

)]
− e−iπξ erfc

[
i3/2√

2

(
ξ√
t

+ π
√
t

)]}
, (40)

and erfc(x) is the complementary error function. In the limit t→ 0+

W (z, t)→ θ(z)θ(1− z) sin(πz), (41)

as a result of the identity5

lim
t→0+

erfc

[
i3/2√

2

(
ξ√
t
± π
√
t

)]
= 2 θ(ξ). (42)

This ensures that ψ(rrr, t) satisfies equation (23). A few snapshots of the time evolution integral
are shown in Fig. 1.
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Figure 1: Re[W ] (red), Im[W ] (blue) and |W | (black) vs. z at different instants of time.

4.2 Bohmian trajectories

The particle trajectories are the integral curves of the Bohmian velocity field given in equation
(8). It is comprised of the convective velocity

vvvc = Im

[
Ψ†∇∇∇Ψ

Ψ†Ψ

]
= Im

[
∇∇∇ψ
ψ

]
= Im

[
W ′

W

]
ẑzz, (43)

where W ′ = ∂W/∂z, and the spin velocity

vvvs =
1

2

[
∇∇∇×

(
Ψ†σσσΨ

)
Ψ†Ψ

]
=

[
∇∇∇×(|ψ|2sss)
|ψ|2

]
. (44)

5See identity (19) of [30].
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Here,

sss =
1

2

(
sin α cos β x̂xx+ sin α sin β ŷyy + cos α ẑzz

)
(45)

is the spin vector depicted in Fig. 2. Resolving the Cartesian unit vectors along the unit vectors
in cylindrical coordinates, viz.

x̂xx = cosφ r̂rr − sinφφ̂φφ (46a)

ŷyy = sinφ r̂rr + cosφφ̂φφ (46b)

we can transform the spin vector sss to it’s cylindrical equivalent, viz.

sss =
1

2

(
sin α cos(φ− β) r̂rr − sin α sin(φ− β) φ̂φφ+ cos α ẑzz

)
. (47)

This allows one to evaluate ∇∇∇×(|ψ|2sss) conveniently, using the formula for the curl of a vector
field in cylindrical coordinates, leading to

∇∇∇×(|ψ|2sss) =
1

2
sin α sin(φ− β)∂|ψ|

2

∂z
r̂rr +

1

2

{
sin α cos(φ− β)∂|ψ|

2

∂z
− cos α

∂|ψ|2

∂ r

}
φ̂φφ

− 1

2
sin α sin(φ− β)∂|ψ|

2

∂ r ẑzz. (48)

Now, writing |ψ|2 = 2ω
π

exp(−ω r2)|W |2 from equation (38), the required partial derivatives can
be evaluated easily, following which the spin velocity would take the form

vvvs = sin α sin(φ− β) Re

[
W ′

W

]
r̂rr +

{
sin α cos(φ− β) Re

[
W ′

W

]
+ ω r cos α

}
φ̂φφ

+ ω r sin α sin(φ− β) ẑzz. (49)

The particle position at time t is

RRR(t) = R(t) [ cos Φ(t) x̂xx+ sin Φ(t) ŷyy ] + Z(t) ẑzz, (50)

the time derivative of which is

ṘRR(t) = Ṙ(t) r̂rr(t) +R(t) Φ̇(t) φ̂φφ(t) + Z(t) ẑzz, (51)
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where r̂rr(t) = cos Φ(t) x̂xx+sin Φ(t) ŷyy and φ̂φφ(t) = − sin Φ(t) x̂xx+cos Φ(t) ŷyy. The r.h.s of the guidance
law, equation (8), can be evaluated using equations (43) and (49), and comparison with the
above derivative yields the component equations

Ṙ(t) = sin α sin(Φ(t)− β) Re

[
W ′

W

]
(Z(t), t), (52a)

Φ̇(t) =
sin α

R(t)
cos(Φ(t)− β) Re

[
W ′

W

]
(Z(t), t) + ω cos α, (52b)

Ż(t) = Im

[
W ′

W

]
(Z(t), t) + ω sin α sin(Φ(t)− β)R(t). (52c)

5 Solving equations (52)

We have arrived at a coupled system of non-linear ODEs describing the motion of the spin-1/2
particle. These equations are explicitly time dependent (nonautonomous), which are almost
never analytically solvable. As a result, we must resort to numerical methods to gain insight
into the dynamics. However, for some special spin orientations6 we can integrate out one or
more position coordinates, thereby decoupling the equations of motion partially or completely.

5.1 Special cases

In this section we consider two special wave functions, viz.

Ψ↑(rrr, t) = ψ(rrr, t)

(
1
0

)
, (53a)

Ψl(rrr, t) =
ψ(rrr, t)√

2

(
1
1

)
, (53b)

which correspond to α = 0 and α = π

2
respectively. We shall refer to Ψ↑ as the spin-up wave

function, and to Ψl as the up-down wave function.
For the spin-up wave function, the equations of motion simplify greatly, viz.

Ṙ(t) = 0, (54a)

Φ̇(t) = ω, (54b)

Ż(t) = Im

[
W ′

W

]
(Z(t), t). (54c)

Equation (54a) implies that the radial coordinate of the particle remains constant in time

R(t) = R(0), (55)

hence the Bohmian trajectory lies on a right circular cylinder of radius R(0). Subsequently,
integrating equation (54b) yields

Φ(t) = Φ(0) + ωt, (56)

which implies that the angular velocity of the particle about the z−axis is a simple linear func-
tion of time, independent of the radial or axial distance. Equation (54c) cannot be integrated
analytically, hence we have plotted a few numerical solutions in Fig. 3 as illustrative examples.
Here, the trajectories have been integrated from t = 0 to t = 5.

6Spin orientation refers to a particular α.
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Figure 3: Bohmian trajectories for spin-up wave function (α = 0) for trapping frequency ω = 30 and
initial positions RRR(0) = (0.1, π6 , 0.6) (red), RRR(0) = (0.15, 4π

3 , 0.9) (blue).

Also Note that a spin-down wave function (α = π) yields the same equations of motion as
above, except for a minus sign on the r.h.s of equation (54b), as a result spin-up and spin-down
trajectories arising from the same initial point cover the same axial distance in a given amount
of time, but spiral in counterclockwise and clockwise directions respectively.

Now, for the up-down wave function (α = π/2), the equations of motion take the form

Ṙ(t) = sin(Φ(t)− β) Re

[
W ′

W

]
(Z(t), t), (57a)

Φ̇(t) = R−1(t) cos(Φ(t)− β) Re

[
W ′

W

]
(Z(t), t), (57b)

Ż(t) = Im

[
W ′

W

]
(Z(t), t) + ωR(t) sin(Φ(t)− β). (57c)

Dividing equation (57a) by equation (57b), we obtain

d

dt
lnR(t) = tan(Φ(t)− β) dΦ

dt
= − d

dt
ln |cos(Φ(t)− β)| , (58)

which upon integration yields an integral of motion

R(t) | cos(Φ(t)− β)| = const. (59)

Since this equation holds at all times on the trajectory, one can fix the constant of integration
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from the initial conditions, obtaining

R(t)

R(0)
=

∣∣∣∣cos(Φ(0)− β)
cos(Φ(t)− β)

∣∣∣∣ . (60)

We can also rewrite equation (59) in terms of the xy−coordinates of the particle, as

| cos βX(t) + sin βY (t)| = const.

⇒ Y (t) = − cot βX(t)± const.

sin β
(61)

This implies that the xy−projection of the particle trajectory lies on a straight line, which is
inclined at an angle π

2
+ β to the x−axis. Figure 4 plots a few Bohmian trajectories for the

up-down wave function, which were integrated from t = 0 to t = 20.

Figure 4: Bohmian trajectories for up-down wave function (α = π

2) for trapping frequency ω = 50,
β = π

6 and initial positions RRR(0) = (0.1, π3 , 0.6) (red), RRR(0) = (0.2, 4π
3 , 0.9) (blue), RRR(0) = (0.06, π6 , 0.1)

(black). Note that the xy−projections of the trajectories are straight lines, inclined at an angle
2π
3

(
= π

2 + β
)

to the x−axis.

5.2 General spin orientations

For general spin orientations the equations of motion (52) become analytically intractable, hence
we cannot comment on the universal features of the solutions as before. In these circumstances,
one could, for instance apply techniques of asymptotic analysis for understanding the long time
behavior of the trajectories, or develop various perturbative expansions about the special cases
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considered above. Even strong confinement conditions (i.e. large ω) can allow for interesting
perturbative calculations. We will not pursue these directions here, as they are not relevant
for the discussion of first arrival time statistics. In Fig 5 we plot a few numerically generated
Bohmian trajectories for α = 3π

5
and two different trapping frequencies ω = 30 and ω = 60. All

trajectories have been integrated from t = 0 to t = 5 in these examples.

(a) ω = 30 (b) ω = 60

Figure 5: α = 3π
5 , β = 0 for all trajectories. (a) Initial positions: RRR(0) = (0.1, π3 , 0.1) (red), RRR(0) =

(0.13, 5π
3 , 0.6) (blue), RRR(0) = (0.2, π20 , 0.1) (green) (b) Initial positions: RRR(0) = (0.25, π3 , 0.2) (green),

RRR(0) = (0.13, 5π
3 , 0.6) (blue).

6 Arrival time distributions

For our experiment the time of first arrival is given by

τ(RRR0) = inf{t |Z(t,RRR0) = L, RRR0 ∈ supp(Ψ0)} , (62)

where RRR0 = RRR(0) and Ψ0 = Ψ(rrr, 0) are the initial position and wave function (cf. Eq. (16)) of
the particle respectively, while Z(t,RRR0) is its z−coordinate at time t. The support of the initial
wave function Ψ0 is given by {rrr = (r, φ, z)| 0 < z < 1}, which is simply the interior of the trap.
For a given pair of RRR0 and Ψ0, the time of first arrival is uniquely determined in accordance
with equation (62). However, in repeated trials of the experiment, it becomes impossible (in
practice) to control the initial particle position RRR0 precisely; although the initial wave function
Ψ0 can be prepared deterministically (see § 9). Due to varying initial conditions the particle
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arrives at apparently random times in each run of the experiment, hence it is desirable to
consider the arrival time distribution

%(τ) = Prob (τ < first arrival time ≤ τ + dτ). (63)

In order to determine %, we recall the so-called quantum equilibrium hypothesis, which asserts
that the initial particle positions realized in repeated trials of the experiment are drawn from
the Ψ†0Ψ†0−distribution [35]. Under this assumption, the guidance law (cf. Eq. (8)) implies
that the particle position at any later time t is distributed according to Ψ†tΨ

†
t . This property

is known as equivariance.
Now, consider the cumulative distribution function F (τ) = Prob(first arrival time ≤ τ),

which is the probability that the first arrival time τ(RRR0) is less than or equal to some fixed τ .
The arrival time distribution % is simply the derivative of F , viz.

%(τ) =
d

dτ
Prob (τ(RRR0) ≤ τ)

=
d

dτ

∫
{RRR0∈R3|τ(RRR0)≤τ}

d3RRR0 Ψ†0Ψ†0(RRR0) (64)

=
d

dτ

∫
d3RRR0 θ (τ − τ(RRR0)) Ψ†0Ψ†0(RRR0)

=

∫
d3RRR0

∂

∂τ
θ (τ − τ(RRR0)) Ψ†0Ψ†0(RRR0) (65)

=

∫
d3RRR0 δ (τ − τ(RRR0)) Ψ†0Ψ†0(RRR0), (66)

where δ(x) is the Dirac delta function. We have thus arrived at the result

%Bohm(τ) =

∫
supp(Ψ0)

d3RRR0 δ
(
τ(RRR0)− τ

)
Ψ†0Ψ†0(RRR0). (67)

Due to the complicated nature of the Bohmian trajectories, %Bohm(τ) can not be determined
from equation (67) analytically, except in very special circumstances. Therefore, it can only be
approximated numerically from a large ensemble of Bohmian trajectories. However, for certain
special initial wave functions the Bohmian trajectories cross the arrival surface z = L only once.
In these special cases, the first arrival time distribution, or simply the arrival time distribution
can be expressed in terms of the probability current density jjj [38], which satisfies the continuity
equation

∂

∂t
Ψ†tΨ

†
t(rrr) +∇∇∇·jjj(rrr, t) = 0. (68)

The argument goes as follows: Since the particle crosses z = L only once, the probability that
the arrival time τ(RRR0) > τ equals the probability that the particle is located in the region z < L
at time τ , which implies,

1− F (τ) =

∫
z<L

d3rrr Ψ†τΨ
†
τ (rrr). (69)

Note that the r.h.s follows from the property of equivariance discussed above. Differentiating
both sides w.r.t τ , and using equation (68), we arrive at

%Bohm(τ) = −
∫
z<L

d3rrr
∂

∂τ
Ψ†τΨ

†
τ (rrr) =

∫
z<L

d3rrr ∇∇∇·jjj(rrr, τ) =

∫
z=L

jjj(τ)·dΣΣΣ, (70)
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where dΣΣΣ is a differential area element pointing along ẑzz. The last step follows from an appli-
cation of the Gauss divergence theorem. The surface integral of jjj is called the quantum flux,
hence we define

%qf(τ) :=

∫
z=L

jjj(τ)·dΣΣΣ. (71)

Since %qf(τ) is a probability density, it must be non-negative, while the probability current
density jjj can become negative. A negative jjj implies that the Bohmian trajectories are re-
entrant (i.e. they cross z = L more than once), in which case equation (69) becomes invalid.
This caveat is almost always overlooked in the literature, and the Bohmian arrival time is said
to be given by the quantum flux %qf in all circumstances. In general, there is no known simple
formula (like Eq. (71)) for the first arrival time distribution of a particle. As an illustration,
we will later show that %Bohm 6=%qf for the up-down wave function.

The quantum flux can be explicitly written as

%qf(τ) =

∫ 2π

0

dφ

∫ ∞
0

dr r jz(r, φ, L, τ), (72)

where jz is the z−component of jjj, which for a spin-1/2 particle takes the form [36, 37]

jjj(rrr, t) = Im
[
Ψ†∇∇∇Ψ

]
(rrr, t) +

1

2
∇∇∇×(Ψ†σσσΨ)(rrr, t). (73)

This gives for the z−component of the current density

jz(rrr, t) =
2ω

π
exp(−ω r2)

(
Im[W ∗W ′](z, t) + ω r sin α sin(φ− β) |W |2(z, t)

)
. (74)

Plugging this expression into equation (72), we obtain

%qf(τ) = 2 Im[W ∗W ′](L, τ). (75)

Note that %qf is independent of the trapping frequency ω, and the spin orientation angles α
and β. See Fig. 6 for plots of %qf for select values of L. The distribution has a large main lobe
preceded by infinitely many smaller lobes. The zeros of %qf(τ) are given by L

nπ
, n = 2, 3, 4 ...

approximately. With increasing L, the main lobe becomes positively skewed (or skewed to the
left).

The natural question that arises at this point is, which initial ground state wave functions
(if any) give %qf for the first arrival time distribution? In order to answer this question, consider
the z−component of the Bohmian velocity field (cf. Eq. (43) and (49)) evaluated on the arrival
surface z = L, viz.

vz(rrr, t)|z=L = Im

[
W ′

W

]
(L, t) + ω r sin α sin(φ− β), (76)

whose sign determines the direction of crossing of the Bohmian trajectory passing through the
point (r, φ, L) at time t. It turns out that the first term, viz. Im[W ′/W ](L, t) is non-negative
for t > 0 and L > 1, while the second term becomes negative whenever sin(φ− β) < 0.7

Therefore,
vz(rrr, t)|z=L ≥ 0, ∀ t > 0 (77)

7Since 0 ≤ α ≤ π, sin α ≥ 0.

19



0 1 2 3 4 5 6 7
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

τ

L = 10

L = 20

L = 50

Figure 6: Graphs of %qf(τ) = 2 Im[W ∗W ′](L, τ) for select values of L. The zeros of the distribution
occur at ≈ L

nπ , n = 2, 3, 4 ...

if α = 0 or α = π, which correspond to the spin-up and spin-down wave functions respectively.
Hence, the spin-up and spin-down Bohmian trajectories cross the arrival surface only once,
consequently the arrival time distribution in these cases is given by the quantum flux. However,
for other spin orientations, (77) may still hold (for instance if ω is small), in which case the
distribution of arrival times will be given by the quantum flux.

As remarked earlier, for a general spin orientation we can at best approximate %Bohm(τ) from
numerical simulations. The strategy for achieving this, given a particular α is quite simple:

1. Sample N initial positions from the

Ψ†0Ψ†0 =
2ω

π
θ(z)θ(1− z) sin2(πz)exp(−ω r2) (78)

distribution. This is called the quantum equilibrium ensemble.

2. Solve the equations of motion (cf. Eq. (52)) numerically for each initial position in the
ensemble, until the trajectory hits the arrival surface z = L.

3. Record the instant of arrival for the N simulations and plot the (area normalized) his-
togram of arrival times.

For N large, the obtained histogram approximates %Bohm(τ).

7 Results and discussion

For generating the quantum equilibrium ensemble we use the inverse transform sampling
method, while the equations of motion have been integrated with Wolfram Mathematica’s
NDsolve[] numerical differential equation solver. With N ≈ 104, we obtain very satisfactory
results.
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Since we have employed dimensionless variables from the very beginning (cf. Eq. (15)), it
is useful to recall that all lengths (such as L) and all times (such as τ) are measured in units
of the trap width d and md2/~, respectively. If we take a proton (m ≈ 1.67 × 10−27 kg) for
the spin-1/2 particle and a trap of width d ≈ 10 μm, md2/~ ≈ 1.6 ms, hence L = 10 would
correspond to 0.1 mm and τ = 5 for instance, would be about 8 ms. Similarly, the trapping
frequency ω is measured in units of ~/md2 ≈ 0.63 kHz. Therefore, ω = 80 corresponds to
50.4 KHz approximately, which is comparable to the trapping frequencies realized in linear Paul
traps.

7.1 Dependence on β

The arrival time distribution is independent of β. In order to derive this result, consider

η(t) = sin(Φ(t)− β), (79)

in terms of which the equations of motion (52) can be written as

Ṙ(t) = sin α η(t)Re

[
W ′

W

]
(Z(t), t), (80a)

η̇(t)

1− η2(t)
=

sin α

R(t)
Re

[
W ′

W

]
(Z(t), t) +

ω cos α√
1− η2(t)

, (80b)

Ż(t) = Im

[
W ′

W

]
(Z(t), t) + ω sin α η(t)R(t). (80c)

The initial coordinates of the particle, viz. R(0), Φ(0) and Z(0) are independently distributed,
since the quantum equilibrium distribution (78) is of the separable form. It is also clear that
Φ(0) is distributed uniformly on the interval [0, 2π), which implies that η(0) = sin(Φ(0)− β) is
distributed on the interval (−1, 1) with density

%(η(0)) =
1

π
√

1− η2(0)
. (81)

Equations (80) and (81) do not depend on β, and are equivalent to the original set of equations
(52) with Φ(0) distributed uniformly on [0, 2π). Clearly, the distribution of arrival times (which
is same for both) is also independent of β. From here on we will set β = 0 for brevity.

7.2 Dependence on α and ω

The arrival time distributions for spin orientation angles α1 and α2, satisfying α1 + α2 = π are
the same. We have already seen a special instance of this result, viz. α1 = 0 (spin-up) and
α2 = π (spin-down), where the arrival time distribution was given by the quantum flux. In
order to prove this claim, consider α1 = α and α2 = π− α. When plugged into the equations of
motion (52), we obtain

Φ̇(t) =
sin α

R(t)
cos Φ(t) Re

[
W ′

W

]
(Z(t), t) + ω cos α, (82a)

Φ̇(t) =
sin α

R(t)
cos Φ(t) Re

[
W ′

W

]
(Z(t), t)− ω cos α, (82b)
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respectively for equation (52b), while equations (52a) and (52c) are identical in either case.
However, letting Φ(t) → π − Φ(t) in the equations of motion for α2, makes them exactly
identical to those for α1. Since the initial φ−coordinate is distributed uniformly on [0, 2π), Φ(0)
and π−Φ(0) are sampled equally likely, as a result the ensemble of Bohmian trajectories for α1
and α2 are the same, which implies that the arrival time distributions for these spin orientations
are also equal. In view of this result, we may only consider 0 ≤ α ≤ π

2
. In Fig. 7 we plot the
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Figure 7: Histogram of arrival times for spin-up wave function (red) for L = 10, ω = 50, generated
from 8× 104 Bohmian trajectories. The agreement with %qf(τ) (black curve) is clearly seen.

arrival time histogram for the spin-up wave function, which fits the quantum flux very well.
At this point one might wonder: which initial positions end up in the main lobe? which initial
positions end up in the smaller lobes? We answer these questions with the help of Fig. 8,
which shows that particles starting closer to the barrier (z = 1) arrive faster compared to those
starting at the bottom of the waveguide.

Since the quantum flux is independent of the trapping frequency ω, the arrival time distri-
bution for the spin-up (or spin-down) wave function doesn’t change with varying ω. In fact,
it turns out that this distribution is also independent of the particular shape of the radial
confining potential V⊥(r), so long as it supports a bound state.

Next, considering the up-down wave function (α = π

2
) we find that the Bohmain arrival time

distribution (shown in Fig. 9) is manifestly different from the quantum flux: There seems to
be a maximum arrival time τmax beyond which no particles arrive. For arrivals at L = 10 we
obtain τmax ≈ 5.85 and τmax ≈ 4.44 for trapping frequencies ω = 50 and ω = 500 respectively.
We have graphed the mean first arrival time <τ> as a function of the spin orientation α in Fig.
10.

7.3 Dependence on L

For large L the maxima of the main lobe moves rightwards, as the particles take longer to arrive
at the detection surface. However, the surprising results we found previously for the up-down
wave function persist. In Fig. 11 we graph the arrival time histogram for this wave function
with L = 102 and ω = 103. As before, no particles arrive beyond a characteristic maximum
arrival time τmax ≈ 42.55.
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Figure 8: (a) Lobes of %qf(τ). Inset: initial particle positions in the vicinity of the barrier. (b) Initial
positions sampled from the quantum equilibrium distribution (cf. Eq. (78)). The color code identifies
the initial positions with the lobes, they correspond to.
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Figure 9: Histogram of arrival times for up-down wave function (red) for L = 10, generated from
4× 104 Bohmian trajectories. The disagreement with %qf(τ) (black curve) is clearly seen.

8 Limits of semiclassical analysis

Since the standard interpretation of quantum mechanics fails to account for the time of arrival
of particles in a satisfactory manner, semiclassical methods are often employed for interpreting
time-of-flight measurements. These measurements are usually performed in the far field (i.e.
L � 1) and the time of arrival statistics is interpreted as a momentum measurement. Such
a treatment is usually justified on the grounds that the initial distance from the detector
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Figure 10: Mean first arrival time <τ> vs. spin orientation angle α for L = 10 and ω = 50.
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Figure 11: Histogram of arrival times for up-down wave function (red) for L = 102 and ω = 103,
generated from 4 × 104 Bohmian trajectories. The disagreement with %qf(τ) (black curve) is clearly
seen as before.

being much larger than the uncertainty in the initial position of the particle, each particle
approximately travels the same length L. Hence, the randomness in the time of arrival is
approximately determined by the quantum mechanical momentum distribution. For a free
particle in one dimension, the connection between time and momentum is given by p(t) = mL/t.
By a change of variable, this relation implies that the probability density of the arrival time τ
is

%sc(τ) =
mL

~ τ 2
|ψ̃|2

(
mL

~τ

)
, (83)
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where ψ̃ is the Fourier transform of the wave function ψ. Applying this idea to our experiment,
we will show that %sc differs from the Bohmian predictions, even when L� d.

In order to find the correct generalization of equation (83) for our experiment, consider an
ensemble of classical particles subject to the waveguide potential V (rrr) (cf. Eq. (12)), which
are subject to Newton’s second law of motion (with ~ = m = d = 1)

R̈RR(t) = −∇∇∇V (rrr). (84)

Here, RRR(t) = R(t) [ cos Φ(t) x̂xx+ sin Φ(t) ŷyy ] + Z(t) ẑzz denotes the position of the particle at time
t. Equation (84) gives three component equations, viz.

R̈−RΦ̇2 = −V ′⊥(R), RΦ̈ + 2ṘΦ̇ = 0, Z̈ = −V ′‖(Z). (85)

The exact solutions of these equations are not needed for our derivation. Note that the first
two equations have no bearing on the time of arrival at z = L. However, the hard wall placed
at z = 0 leads to an ‘instantaneous reversal’ of the sign of Ż, whenever Z(t) = 0, i.e. the
particle gets reflected elastically on colliding with the wall, and moves with constant velocity
subsequently. Denoting the initial z−coordinate of the particle by Z(0), the (classical) time of
arrival τ is given by

τ =


L− Z(0)

Ż(0)
Ż(0) > 0

L+ Z(0)

−Ż(0)
Ż(0) < 0

or τ =
L− sgn[Ż(0)]Z(0)

|Ż(0)|
. (86)

Since the particle is trapped in the beginning, 0 < Z(0) < 1. Therefore, if L� 1, we have

τ(pz) ≈
L

|pz|
, pz = Ż(0). (87)

This equation implicitly defines the relation between the z−component of the initial momentum
and the arrival time of a classical particle moving in the potential field V (rrr).

At this stage, one assumes that the distribution of momenta of the classical ensemble is
determined by the initial wave function of the quantum particle. In particular, the momenta
are distributed according to the density Ψ̃†0Ψ̃†0(ppp), where

Ψ̃0(ppp) = (2π)−3/2

∫
R3

d3rrr Ψ0(rrr) e−ippp·rrr (88)

is the Fourier transform of the initial wave function Ψ0(rrr).
Since the arrival time τ is a function only of the z−momenta pz we can integrate out

(marginalize) px and py, obtaining

Λ(pz) =

∫ ∞
−∞

dpx

∫ ∞
−∞

dpy Ψ̃†0Ψ̃†0(ppp). (89)

Now, we will obtain a formula for the distribution of first arrival times of the ensemble in terms
of Λ. To achieve this, consider the cumulative distribution function F (τ) = Prob(τ(pz) ≤ τ),
which is the probability that the arrival time τ(pz) is less than or equal to some fixed τ . Using
equation (87), we can write

F (τ) = Prob

(
L

|pz|
≤ τ

)
= Prob

(
|pz| ≥

L

τ

)
=

∫ −L/τ
−∞

dpz Λ(pz) +

∫ ∞
L/τ

dpz Λ(pz). (90)
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The distribution of first arrival times %sc(τ) is simply the derivative of F w.r.t τ , which is given
by

%sc(τ) =
L

τ 2

(
Λ

(
L

τ

)
+ Λ

(
−L
τ

))
. (91)

Using the closed expression for the marginal momentum density obtained in appendix C, we
are led to

%sc(τ) =
8πL

τ 2

cos2(L/2τ)

((L/τ)2 − π2)2
. (92)

This distribution has been graphed along with the quantum flux in the figure below.
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Figure 12: Graphs of %sc(τ) (red) and %qf(τ) (black) for L = 100.

9 Experimental Considerations

As remarked in our introduction, the intrinsic (i.e. measurement independent) arrival time
distributions discussed here cannot be obtained directly due to the disturbances (or delays)
caused by the measuring apparatus. Some authors have addressed this problem by including
the detector (a clock for instance) into the Hamiltonian, treating this clock + particle system
to be otherwise isolated (see Ch. 8 of [1], [39]). These approaches yield model dependent
results, while a physical realization of the clock Hamiltonian is a further concern. Another
interesting measurement proposal made by Damborenea et al. [40] seems to be better suited
for our experiment.

The proposal of Damborenea et al. is aimed at measuring the arrival time of a two-level
atom, which upon entering the detection region (say z > L) encounters a cavity impregnated
with photons. The time at which the atom emits the first photon, following an absorption is
claimed to be a good approximation to the time of arrival of the atom. In order to subtract the
various delays (finite absorption and emission times, photon travel times etc.) they consider
another (identical) atom at rest placed in the same cavity, which serves as a reference system.
Clearly the arrival time of the reference atom is zero, and the first photon emission time of the
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same is a measure of the delays caused by our measuring apparatus. On carefully subtracting
these delays by means of a deconvolution procedure, they find (for a one dimensional model) that
the intrinsic arrival time of the two-level atom equals the quantum flux, under this operational
measurement prescription.

In three dimensions however, as we have shown, the intrinsic arrival time distribution (as
determined from a Bohmian analysis) can be significantly different from the quantum flux for
certain initial wave functions. Therefore, a full three dimensional analysis of Damborenea et al.’s
operational proposal becomes necessary. Since we wish to measure the arrival times of a spin-
1/2 particle instead of a two-level atom, we have to modify the above proposal appropriately.
We suggest that a static magnetic field BBB be added to the region z > L in addition to the laser
field. This would cause the doubly-degenerate ground state of the spin-1/2 particle to split,
which would then function as an effective two-level system. A detailed Bohmian analysis of the
measurement procedure is hoped to appear in a future paper.

9.1 Initial state preparation

A naive approach to preparing a particle in the ground state of a given potential well would
require 1.) setting up the potential field in a desired region of space, 2.) directing the particle
from a source to this region, 3.) waiting for radiation damping to bring the particle to the
ground state [41]. As an alternative to step 3.) one could also stimulate the ground state
transition by external electromagnetic fields.

However, this method is not immediately applicable to our advantage, due to the degeneracy
of the ground state of the trap. Therefore, in order to prepare the initial wave function (16):

Ψ0(rrr) =

√
2mω

π ~ d
θ(z/d) θ(1− z/d) sin(πz/d) exp

(
−mω

2~
r2
)( cos(α/2)

sin(α/2) eiβ

)
(93)

we add a static magnetic field BBB = B0 n̂nn to the trap region 0 < z < 1, where

n̂nn = sin α cos β x̂xx+ sin α sin β ŷyy + cos α ẑzz (94)

specifies the direction of the magnetic field. The relevant Hamiltonian is given by [36]

Ĥprep =
(σσσ ·π̂ππ)2

2m
+ V⊥(r) + V bar

‖ (z) =
π̂ππ

2

2m
− ~q

2m
σσσ ·BBB + V⊥(r) + V bar

‖ (z) (95)

where π̂ππ = −i~∇∇∇− qAAA (in SI units) and AAA is the electromagnetic vector potential, defined by
the equations

∇∇∇×AAA = BBB, ∇∇∇·AAA = 0. (96)

The axial potential V bar
‖ (z) is comprised of the impenetrable potential barriers located at z = 0

and z = d (cf. Eq. (A.2)). For simplicity, we assume that AAA varies slowly in the trap region for
the dipole approximation π̂ππ ≈ −i~∇∇∇−qAAA to be valid. Here, AAA denotes the value of AAA evaluated
at the center of the trap, viz. (0, 0, d/2).8 Due to the static magnetic field, the degeneracy of
the ground state gets lifted. The new ground state wave function is given by

Ψ0(rrr) = exp

(
iq

~
rrr·AAA

)
Ψ0(rrr). (97)

8The dipole approximation can be dispensed with in a rigorous analysis of the preparation procedure, without
affecting the conclusions.
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Thus, a trapped spin-1/2 particle would evolve into the state Ψ0 by radiation damping in
the presence of the magnetic field. Once in this state (say at time t = t∗) the subsequent
evolution of the wave function is trivial. Now, in order to recover Ψ0 from Ψ0, one could switch
on Lamb’s pulsed potential [41]

U(t) = q (rrr·AAA) δ(t− t∗) (98)

to kill the unwanted phase factor exp
(
iq
~ rrr·AAA

)
instantaneously, thus obtaining Ψ0. A more

practical alternative for achieving the same would be to switch off the background magnetic
field BBB slowly, after time t∗ keeping it’s direction n̂nn undisturbed. The Adiabatic theorem would
as a result, ensure that the wave function Ψ0 evolves to Ψ0 at the instant when BBB = 0.

10 Conclusion

In this thesis we discussed the time of arrival statistics of spin-1/2 particles within the frame-
work of Bohmian mechanics. Analyzing a realistic experiment, we obtained several interesting
predictions hitherto unknown. It must be emphasized that empirical confirmation of our pre-
dictions would not prove the ‘reality’ Bohmian trajectories, although it would provide strong
experimental evidence in their favor. We hope that our results will encourage many experimen-
tal investigations in the near future.

A Ground state wave function

For t < 0 the particle is trapped in the region between the planes z = 0 and z = 1. The relevant
Hamiltonian is given by

Ĥtrap = −1

2
(σσσ ·∇∇∇)2 + V⊥(r) + V bar

‖ (z), (A.1)

where V⊥(r) = 1
2
ω2 r2 and

V bar
‖ (z) =

{
0 0 ≤ z ≤ 1

∞ otherwise
. (A.2)

In this appendix we will sketch the derivation of the ground state wave function Ψ0(rrr), which
satisfies the eigenvalue equation

ĤtrapΨ0 = E0Ψ0, (A.3)

where E0 is the ground state energy eigenvalue. Note, as a result of identity (19), the Hamil-
tonian becomes diagonal, hence the desired wave function may be written as

Ψ0(rrr) = ψ0(rrr)χ, (A.4)

where ψ0(rrr) is the spatial wave function and χ is a constant spinor normalized to unity. The
spatial wave function thus satisfies the differential equation

−1

2
∇2ψ0 +

1

2
ω2 r2ψ0 = E0ψ0, (A.5)
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subject to the usual boundary conditions

ψ0(z = 0) = ψ0(z = 1) = 0, limr→∞r ψ0(rrr) = 0.

The continuous, single-valued normalized solutions of equation (A.5), which satisfy the above
boundary conditions are well known in the literature (see pp. 727 of [33]). The desired ground
state wave function is given by

ψ0(rrr) =

√
2ω

π
θ(z)θ(1− z) sin(πz) exp

(
−ω

2
r2
)
, (A.6)

where θ(x) is the Heavside step function. It corresponds to the energy eigenvalue

E0 = ω +
π

2

2
. (A.7)

Further, writing the unit spinor as

χ =

(
cos(α/2)

sin(α/2) eiβ

)
, (A.8)

we obtain a convenient representation for the spin part of the ground state wave function. Here,
0 ≤ α ≤ π and 0 ≤ β < 2π are real parameters.

B Time evolution integral

In this appendix we will obtain a closed expression for the time evolution integral

W (z, t) = θ(z)

∫ ∞
−∞

dk
sin k sin(kz)

π2 − k2
e−i

k2

2
t, (B.1)

where t ≥ 0. Letting

f(k) =
sin k sin(kz)

π2 − k2
, g(k) = e−i

k2

2
t (B.2)

we may view the integral as the inner product of these functions, viz.

W (z, t) = θ(z)

∫ ∞
−∞

dk f ∗(k)g(k). (B.3)

Using Plancherel’s formula we can write

W (z, t) = θ(z)

∫ ∞
−∞

dx

2π
F ∗(x)G(x), (B.4)

where F and G are the Fourier transforms of the functions f and g respectively. The Fourier
transform of a Gaussian is well known, viz.,

G(x) =

∫ ∞
−∞

dk g(k) e−ikx =

∫ ∞
−∞

dk e−i
k2

2
t−ikx =

√
2π

it
ei
x2

2t . (B.5)

Next, defining

y(k) =
1

π2 − k2
, (B.6)

29



the Fourier transform of f(k) can be written as

F (x) =

∫ ∞
−∞

dk f(k) e−ikx =

∫ ∞
−∞

dk sin k sin(kz) y(k) e−ikx

=
1

4

∫ ∞
−∞

dk
{
e−i(z−1)k − e−i(z+1)k − ei(z+1)k + ei(z−1)k

}
y(k) e−ikx

=
1

4

{
Y (x+ z − 1)− Y (x+ z + 1)− Y (x− z − 1) + Y (x− z + 1)

}
, (B.7)

where Y (x) is the Fourier transform of y(k), given by

Y (x) =

∫ ∞
−∞

dk
e−ikx

π2 − k2
=

1

2π

∫ ∞
−∞

dk
e−ikx

k + π
− 1

2π

∫ ∞
−∞

dk
e−ikx

k − π
(letting u = k ± π)

=
eiπx

2π

∫ ∞
−∞

du
e−ixu

u
− e−iπx

2π

∫ ∞
−∞

du
e−ixu

u

=
i

π
sin(πx)× (−iπ) sgn(x) = sgn(x) sin(πx), (B.8)

and the Fourier transform of u−1 is −iπ sgn(x), in the sense of distributions. Substituting
equations (B.5) and (B.7) in equation (B.4), we arrive at

W (z, t) =
θ(z)

25/2
√
πit

∫ ∞
−∞

dx
{
Y ∗(x+ z − 1)− Y ∗(x+ z + 1)− Y ∗(x− z − 1) + Y ∗(x− z + 1)

}
ei
x2

2t

=
θ(z)

25/2
√
πit

∫ ∞
−∞

du Y ∗(u)
{
ei

(u+1−z)2
2t − ei

(u−1−z)2
2t − ei

(u+1+z)2

2t + ei
(u+z−1)2

2t

}
, (B.9)

after substituting u = x ± 1 ± z appropriately in each of the previous terms. Note that the
integrand is a symmetric function of u, hence

W (z, t) =
θ(z)

23/2
√
πit

∫ ∞
0

du Y ∗(u)
{
ei

(u+1−z)2
2t − ei

(u−1−z)2
2t − ei

(u+1+z)2

2t + ei
(u+z−1)2

2t

}
= θ(z) [D(z − 1, t) + D(1− z, t)−D(1 + z, t)−D(−1− z, t)] , (B.10)

where

D(ξ, t) :=
1

23/2
√
πit

∫ ∞
0

du sin(πu) ei
(u−ξ)2

2t =
1

23/2
√
πt

∫ ∞
0

du sin
(
πu
√
i
)
e
− 1

2t

(
u− ξ√

i

)2

. (B.11)

=
e−i

π
2

2
t

8i

{
eiπξ erfc

[
i3/2√

2

(
ξ√
t
− π
√
t

)]
− e−iπξ erfc

[
i3/2√

2

(
ξ√
t

+ π
√
t

)]}
. (B.12)

Since the integrand is holomorphic, (B.11) is easily verified by a simple deformation of the
integration path that changes the integral into a typical Gaussian integral. Finally, equation
(B.12) follows from writing the sine as a sum of complex exponentials, and identifying the
resulting integrals as representations of the complementary error function, see equation 7.7.6
of [34].
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C Fourier transform of Ψ0

We need only compute the Fourier transform of the spatial part of the initial wave function Ψ0,
viz.

ψ̃(ppp) := (2π)−3/2

∫
R3

d3rrr ψ(rrr) e−ippp·rrr (C.1)

Since we are working in cylindrical coordinates, it will be convenient to parameterize the
xy−components of ppp as

px = p cosϑ, py = p sinϑ. (C.2)

This results in

ppp·rrr = pxx+ pyy + pzz = pr cosϑ cosφ+ pr sinϑ sinφ+ pzz

= pr cos(φ− ϑ) + pzz. (C.3)

Using the explicit representation of the ground state wave function, along with the result
obtained above, we can write

ψ̃(ppp) = 2
√
ω

∫ ∞
0

dr r e−ω2 r2

∫ 2π

0

dφ

2π
e−ipr cos(φ−ϑ)

∫ 1

0

dz

2π
sin(πz) e−ipzz. (C.4)

The integral w.r.t z can be readily evaluated, viz.∫ 1

0

dz

2π
sin(πz) e−ipzz =

e−i
pz
2

π2 − p2
z

cos
(pz

2

)
, (C.5)

while substituting φ− ϑ = π+ γ, renders the integral over φ to the form∫ 2π

0

dφ

2π
e−ipr cos(φ−ϑ) =

∫ −π−ϑ+2π

−π−ϑ

dγ

2π
eipr cos γ = J0(pr), (C.6)

see equation (44) of [31]. Thus, we have arrived at

ψ̃(ppp) =
2
√
ω e−i

pz
2

π2 − p2
z

cos
(pz

2

)∫ ∞
0

dr r J0(pr) e−
ω
2
r2

=
2 cos(pz/2)√
ω (π2 − p2

z)
e−

p2

2ω
−i pz

2 (C.7)

This result follows from the 4th identity in § 6.63 of [32]. Now, we will compute the marginal
momentum density Λ(pz) defined by equation (89), which can also be written as (dpx dpy =
p dp dϑ)

Λ(pz) =

∫ 2π

0

dϑ

∫ ∞
0

dp p |ψ̃|2(ppp) =
8π

ω

cos2(pz/2)

(p2
z − π2)2

∫ ∞
0

dp p e−
p2

ω = 4π
cos2(pz/2)

(p2
z − π2)2

(C.8)
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[6] Dürr D., Goldstein S. and Zanghi, N. J Stat Phys 134 1023 (2009)

[7] Holland P. R., The Quantum theory of Motion (Cambridge University Press, UK 1993),
Ch. 9-10.

[8] Tumulka R., arXiv: 1601.03715 (2016)

[9] Daumer M. et al., Lett. Math. Phys. 38 1, 103–116 (1996)

[10] Daumer M. et al., J. Stat. Phys. 88 (3-4), 967–977 (1997)
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