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Zweitgutachter: Prof. Dr. Dieter Lüst
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1 Introduction

In this Bachelorthesis, I will present recent attempts to find a relativistic deterministic
quantum theory. The most common argument against deterministic quantum theories,
as for example Bohmian Mechanics, is that they cannot be generalized to the relativistic
case. It is true that no complete relativistic Bohmian Theory that accounts for all
relativistic quantum phenomena has been found so far. Nevertheless, there is no reason
why this should be impossible.

I will restrict myself to Bohmian Mechanics, which is well-understood in the non-
relativistic limit. An overview will be given in section 2. Bohmian Mechanics is a
deterministic quantum theory. In addition, it is a realistic quantum theory in the sense
that there really is some kind of reality on the microscopic level, in contrast to the
orthodox (Copenhagen-) interpretation of quantum mechanics. In Bohmian Mechanics,
the fundamental entities are particles. They could be fields or strings or something
completely different, as long as there is some ontology on the microscopic level, the
theory can be called realistic or Bohmian. The big advantage of this realism is that
the theory does not depend on the role of an observer on a fundamental level - as it
is the case in ordinary quantum mechanics. Hence, it might also be called objective:
The exterior world, described by physical laws, does not depend on whether I look at
it or not. Particles always have positions, whether they are ”measured” (whatever that
means) or not. The moon is there, whether I see it right now or not. Finally, the cat
(and, indeed, the atom possibly causing its death) is whether dead or alive, I do not
decide this unless I take a gun and kill it. But if I’m a nice guy and just take a look into
the box to see if the cat is doing well, I won’t collapse her wave function into ”dead” or
”alive”. That falls under the regime of chance, with always one being true and the other
one false, but never both at the same time. This is what logic tells us.

As it will turn out, any quantum theory which assumes some kind of reality on the
microscopic level must be nonlocal if it wants to reproduce the results of measurements
correctly. This was shown by John Bell, since his famous inequality is violated in nature.
I will explain what is meant by this in section 3.

From the above, it seems natural to demand three properties of the theory to be found:
realism or objectivity, non-locality and, of course, relativistic invariance.

In section 4, I will first discuss David Bohm’s original work on relativistic invariance
of what he calls his ”ontological interpretation”. As it will turn out, the case is rather
trivial for one Dirac-particle. However, as soon as one considers a many-body-system,
many problems arise that are still not solved. They will be addressed in the subsequent
sections and attempts to solve them will be presented: The Hypersurface Bohm-Dirac
model, that introduces a foliation of spacetime as an additional dynamical part of the
theory to reconcile nonlocality and Lorentz invariance, and the Opposite Arrows of Time
Model, that tries the same by introducing a second time-direction on the microscopic
level.
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2 Nonrelativistic Bohmian Mechanics

In nonrelativistic Bohmian Mechanics (BM) the equations of motion are the Schrödinger
Equation

i~
∂ψ

∂t
= Hψ (1)

and the guiding equation for the particle trajectories

Q̇j =
~
mj
=ψ
∗∇jψ
ψ∗ψ

, (2)

where Q = Q(t) is the configuration of the particles at time t. Already at this point,
one sees the explicit nonlocal character of BM: In addition to the fact that the wave
function ψ is defined on configuration space, and hence influenced instantaneously by
any changes of the configuration, the velocities of the Bohmian particles, calculated from
the wave function, depend on the positions of all other particles in an instantaneous way.

The two fundamental dynamical variables of the theory are the complex- (or spinor-)
valued wave function ψ on the space of possible configurations q and the actual con-
figurations Q = Q(t) of the particles at time t. The particle trajectories are given as
integral curves to the velocity field

vψj = Q̇j . (3)

Defining the current
jψ = =ψ∗ψ, (4)

the Schrödinger Equation implies a continuity equation (the quantum flux equation):

∂|ψ|2

∂t
+∇ · jψ, (5)

which makes it seem natural to interpret |ψ|2 as a probability density ρ (it is obviously
positive definite). ρ is not stationary, since ∇ · j does not vanish, but equivariant : Due
to (5), if at some time t, the configuration of the particles is |ψt|2-distributed, then this
holds for all other times as well.
|ψ|2 is called the Quantum Equilibrium Distribution and plays the role of a typicality

measure: In BM, a property P of a configuration Q(t) is defined to be typical, if for
0 < ε� 1 holds [8] ∫

S0(p)

|ψ0(p)|2dq = 1− ε, (6)

where S0(p) is the set of initial configurations Q(0) leading to Q(t). Born’s Statistical
Law can thus be reformulated as: Typically, the position distribution of the particles is
close to the |ψ|2-distribution. According to Bell, all measurements can, in principle, be
reduced to position measurements:
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...in physics the only observations we must consider are position observa-
tions, if only positions of instrument pointers. It is a great merit of the de
Broglie-Bohm picture to force us to consider this fact. ([1], p. 166)

Hence, all quantum mechanical predictions can be derived from this law. Within the
framework of BM, it can actually be derived rather than just taken as an axiom (see
[8]). Furthermore, the whole operator formalism of ordinary quantum mechanics arises
quite natural from the two equations of motion (1) and (2), taking the fact as serious
that in BM, every apparatus that is to ”measure” something is also made of Bohmian
particles ([7], chapter 12), which implies that, in order to describe an experiment, the
combined system, including the observed system as well as the measuring system, has to
be considered. The configuration of this bigger system then transforms over time, which
is described by the guiding equation of the system1. The quantitative scale attached to
the pointers of the measuring instrument will (thanks to quantum equilibrium) reflect
the probability distribution obtained via the spectral measure of a self-adjoint operator
related to the measurement [6]. Therefore, nonrelativistic BM is experimentally (but not
conceptually) equivalent to orthodox quantum mechanics, with the advantage of being
objective and deterministic.

1Note that, in particular, no ad hoc collapse of the wave function is needed to describe a measurement
process.
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3 Bell’s Theorem and Nonlocality

Bohmian Mechanics is commonly said to be incompatible with special relativity because
it is a nonlocal theory. John Bell has shown that nonlocality is not just a feature of
Bohmian Mechanics (it is just very obvious there), but of all quantum theories or inter-
pretations of the quantum mechanical formalism. For the derivation of his inequality,
Bell only assumed locality, i.e. that no influences can travel faster than light, and that
there is some kind of reality at the microscopic level. I shall work out in detail what is
meant by this. Since the inequality and all of the equivalent formulations are violated
by the predictions of quantum theory as well as by experiments, its assumptions have
to be wrong. Bell himself concluded that our world is nonlocal and not, as in common
misunderstanding, the impossibility of ”hidden variables”:

It is the requirement of locality, or more precisely that the result of a mea-
surement on one system be unaffected by operations on a distant system with
which it has interacted in the past, that creates the essential difficulty. There
have been attempts to show that even without such a separability or local-
ity requirement no ’hidden variable’ interpretation of quantum mechanics is
possible. These attempts have been examined elsewhere and found wanting.
Moreover, a hidden variable interpretation of elementary quantum theory2

has been explicitly constructed.([1], page 14)

By this ”explicitly constructed hidden variable interpretation”, Bell means Bohmian
Mechanics. From the foregoing it is clear that the question of compatibility of Special
Relativity and nonlocality should arise in any attempt to construct a relativistic quantum
theory. Bell’s argument goes as follows ([1], pages 14 to 21):

At spatially separated points, two Stern-Gerlach-Magnets (SGMs) measure the com-
ponents σ1 · a and σ2 · b of the spin of two particles (a and b are unit vectors). Since,
by measuring the spin-component of particle 1, the spin-component of particle 2 is im-
mediately exactly known for a setup where a is parallel to b, although influences of the
one measurement apparatus to the other are excluded by the locality-condition, Ein-
stein, Podolsky and Rosen (EPR) concluded that quantum mechanics is not complete.
Now comes Bell. The completion of quantum mechanics, which is necessary from the
EPR-point of view, shall be achieved by the introduction of some parameters λ. For the
result A of a measurement of σ1 · a and B of σ2 · b holds

A(a, λ) = ±1 and B(b, λ) = ±1. (7)

Bell assumed that the two measurements cannot in any way influence each other. If ρ(λ)
denotes the probability density of the parameter λ, the expectation value of the product
σ1 · aσ2 · b is given by

P (a, b) =
∫
dλρ(λ)A(a, λ)B(b, λ) (8)

2The remark here refers to the paper of Bohm from 1952
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which should equal the quantum mechanical expectation

〈σ1 · aσ2 · b〉 = −a · b. (9)

From (7) follows that P in (8) cannot be less than −1, because ρ is normalized. But for
a = b, P = −1 can only be reached if

A(a, λ) = −B(a, λ), (10)

so that (8) can be rewritten as

P (a,b) = −
∫
dλρ(λ)A(a, λ)A(b, λ). (11)

Introducing another unit vector c, one finds that

P (a,b)− P (a, c) = −
∫
dλρ(λ) [A(a, λ)A(b, λ)−A(a, λ)A(c, λ)] (12)

=
∫
dλρ(λ)A(a, λ)A(b, λ) [A(b, λ)A(c, λ)− 1] . (13)

for which (7) implies that

|P (a,b)− P (a, c)| ≤
∫
dλρ(λ) [1−A(b, λ)A(c, λ)] (14)

which is equivalent to
1 + P (b, c) ≥ |P (a,b)− P (a, c)| (15)

This is Bell’s famous inequality. Because the right hand side is of order |b − c| for
small |b − c|, Bell concludes that P (b, c) cannot be stationary at the minimal (−1)
at b = c. But the quantum mechanical expectation value is stationary at that point,
hence the two values cannot be equal in general. Thus, quantum mechanics violates Bell’s
inequality. More generally, every formulation of quantum mechanics that reproduces (9)
and is hence in accordance with all experiments that have been carried out so far is in
contradiction to (15). Moreover, the quantum mechanical expectation value cannot even
be approximated arbitrarily closely by (8). According to Bell, this shows that

In a theory in which parameters are added to quantum mechanics to deter-
mine the result of individual measurement, without changing the statistical
predictions, there must be a mechanism whereby the setting of one measur-
ing device can influence the reading of another instrument, however remote.
Moreover, the signal involved must propagate instantaneously, so that such
a theory could not be Lorentz invariant.([1], page 20)

So far, one could, in order to restore locality, also deny the existence of any parameter
λ. But the violation of Bell’s inequality only excludes the possibility of local hidden
variable theories and since nonlocal hidden variable theories which reproduce the whole
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operator formalism of quantum mechanics and the |ψ|2-distribution (and hence violate
Bell’s inequality) do exist (e.g. Bohmian Mechanics), it seems rather senseless to deny
their existence. We are left with the fact that, as long as we trust in quantum mechanical
predictions (indeed verified by experiments, e.g. by Alain Aspect), nature is nonlocal.
Any theory, especially relativistic extensions of quantum mechanics, has to cope with
this property of our world. The question whether this nonlocality is somehow compatible
with Lorentz invariance or not will be addressed in the next sections.

But first, I would like to present what Robert Griffiths answered to the question about
how locality can be saved, taking into account the foregoing. At the ASC summer school
2007 in Munich, he presented the following picture:

Charles in Copenhagen prepares two letters, one filled with red, the other with blue
paper, and sends them to Alice in Vienna and Bob in Munich, both knowing about
the letters but not knowing which one they would receive. Then Alice immediately
knows which color bob received after opening her own letter. But, there is no nonlocal
influence between Alice and Bob; facts have already been made in Copenhagen before the
letters were sent off. Physically, this is close to the idea that the information responsible
for the correlations in a 2-photon-measurement is localized in the overlap of the two
backward light cones. There would be no problem with local causality then. One
can also reformulate this argument as follows: The EPR-setup shows that, whenever
the two analyzers are parallel, the correlations force us to accept that if we measure
on one side, we immediately know the outcome at the other side. This still holds if the
experimental setup excludes signals that could travel from the one apparatus to the other
with velocity less or equal than the speed of light. Hence, if we deny the possibility of
immediate influences between different positions, the measurement outcomes must have
been determined beforehand by variables quantum mechanics does not provide us with
(e.g. ”information” that lies in the backwards light cone of the spacetime point where
the source emits the two photons). But this is exactly what Bell has shown to be
impossible and he emphasizes this point in ”Bertlmann’s socks and the nature of reality”
[1] using a very general EPR-Bohm-like setup: He neither assumes determinism nor any
particular ontology, i.e. whether it is particles, or fields or whatever that constitutes
the microcosmos. The setup consists of a ”go”-signal as input, followed by two outputs
in opposite directions, displaying ”yes”, when a signal (e.g. on the ”upper” screen of a
SGM) has reached them and displaying ”no”, when not. In addition, right before the
signals reach the output, there will be two other signals a and b injected at the two ends
such that cδ � L, where c is the speed of light, L the length of the system and δ is the
time between the injection of a resp. b and the signal arriving at the output. These
signals a and b could e.g. rotate the SGMs. After a long run experiment, one will find
out that the conditional probability distribution for results A and B at the two ends for
given signals a and b does not separate:

P (A,B|a, b) 6= P1(A|a)P2(B|b). (16)

If we wanted to explain certain quantum mechanically realizable correlations of A and
B in a local way, i.e. excluding instantaneous effects from one end to the other, we
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would have to introduce additional variables which then allow for a separation of the
probability distributions. This is the only way to explain the correlations if one does not
allow for causal connections: look for ”spurious correlations”. But again, Bell shows in a
very similar way to the derivation above that this leads to contradictions with quantum
mechanics. Bell concludes:

So the quantum correlations are locally inexplicable.([1], page 153)
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4 Relativistic Bohmian Mechanics

As mentioned before, commonly the first argument against Bohmian Mechanics is that
it cannot be brought to a relativistic extension. This is, according to the argument,
probably due to its apparent nonlocal character. But, as we have seen, nonlocality is a
feature of nature itself as long as we want physics to be about a real world where there
really is something happening also on smaller scales.

4.1 The Bohm-Dirac Model for One Particle

For one particle, the situation is very simple because in this case, the configuration
space on which the wave function is defined is the physical space itself. The following is
referring to David Bohm [2].

From the one particle Dirac equation (~ = c = 1)

i
∂ψ

∂t
= (−iα · ∇ − eα ·A(q, t) + eφ(q, t) + βm)ψ (17)

or
(iγµ∂µ − eγµAµ −m)ψ = 0

one can derive that
∂µψγ

µψ = 0, (18)

where ψ ≡ ψ†γ0, which makes it seem natural to introduce the conserved current density

jµ = ψγµψ, (19)

whose time component j0 = ψγψ = ψ†ψ is positive definite. Identifying this current
with a vector field of particle trajectories (it is always timelike and future oriented),

dXµ

dτ
= jµ (20)

we can interpret j0 as the density of crossings ρ of the particle trajectories through a
t = const. hypersurface3.

The equations of motion (17) for the spinor and the spacetime configuration of the
Bohm-Dirac-particle (20) give us, together with the 4-divergence free Dirac current (19)
a well-defined Lorentz invariant deterministic quantum theory for one Dirac particle.
Unfortunately, the generalization to a system of N particles is not at all straightforward
and still not achieved.

3This crossing will for each particle path and each hypersurface only happen once, because jµ is timelike
and future oriented, i.e. the trajectories (integral curves of jµ) can never go backwards in time. Note
as well that the distribution of the points through which the trajectory crosses the hyperplane is the
same as the probability distribution for the particles at that certain time.
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4.2 The Bohm-Dirac Model for N Particles

Given the (not covariantly formulated) N particle Dirac equation (~ = c = 1)

i
∂ψ

∂t
=
∑
i

(−iαi · ∇i − eαi ·A(qi, t) + eφ(qi, t) + βim)ψ (21)

where ψ = ψ(q1, ...,qN , t) takes values in (C4)N and αk and βk operate only on the four
indices belonging to the k-th particle, we can again derive a continuity equation:

∂ψ†ψ

∂t
+
∑
∇iψ†αiψ = 0 (22)

where over all indices of all particles is summed. The guiding equation for the particle
trajectories is now

vi = Q̇i =
ψ†αiψ

ψ†ψ
. (23)

Introducing ρ = ψ†ψ, (22) can be rewritten as

∂ρ

∂t
+
∑
∇i · ρvi = 0 (24)

Hence, if the probability distribution is given by ρ = ψ†ψ at one time in one distinguished
Lorentz frame, this will be true for all times and we have an equivariant measure on the
N-particle configuration space in that frame. Bohm pointed out that for the positions
qi and velocities vi of the Bohm-Dirac particles as well as for the equivariant ensemble
density ρ, a particular reference frame was chosen ([2], page 274), which of course conflicts
with the idea of relativity. E.g., equation (21) considers all particles at the same time
and, from a relativistic point of view, it is not clear what this means, since a Lorentz
transformation would in general break this symmetry. Moreover, it is not clear how
to extend the velocities to 4-vectors. I will later present a different approach, called
multitime formalism, which seems to be more natural and direct for the question of a
relativistic multi-particle quantum theory. But first, I will summarize Bohm’s discussion
of the Lorentz invariance of the velocities (23) and make some general remarks about
quantum equilibrium in different Lorentz frames. For simplicity, Bohm considers a 2-
particle-system ([2], page 280). If the wave function happens to have product structure,
the velocities of the particles will be independent of one another and Lorentz invariance
follows immediately. But if the state is given by a linear combination

ψ = Aφa(x1, t)φb(x2, t) +Bφc(x1, t)φd(x2, t) (25)

the two particles will only move independently if the two summands do not overlap,
because then the mixed terms in ψ†ψ would vanish.

In the general case where they do overlap, there will be a nonlocal dependence be-
tween the two, which will also be displayed in the expressions for ψ†ψ and j1 resp. j2.
Therefore, the velocities vi = ji

ρ will be connected in a explicitly nonlocal way. Thus,
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the guiding equation is not Lorentz invariant. Nevertheless, one can say that the statis-
tical predictions derived from quantum equilibrium are not anymore fixed to a certain
frame although the problem of Lorentz invariance remains for the fundamental level of
the theory. As far as the statistics of measurement results are concerned, i.e. on the
observational level, the theory is indeed relativistically invariant in the sense that all
predictions for measurement outcomes can be seen as predictions for pointer positions
(or equivalent) and can thus be derived from the position-predictions of ρ = ψ†ψ evalu-
ated at a common time in a preferred frame, which cannot anymore be identified in the
statistics4. Bohm argues that

The theory of measurement processes that we have given, along with the
demonstration that the probability distribution P = ρ is covariant, then
ensures that the statistical results of these measurement processes will have
a Lorentz invariant content.([2], page 285)

The fundamental problem remains: How can a covariant theory be obtained that treats
particles which are nonlocally connected? Bringing together covariance and nonlocality
easily leads to causal loops which should really not arise in a reasonable physical theory.
So, instantaneous transmission of signals must be excluded.

4.3 The |Ψ|2-Distribution in Different Lorentz Frames

In this section, I will discuss the work of Berndl, Dürr, Goldstein and Zangh̀ı in [3] on the
question of quantum equilibrium in different reference frames. The quantum equilibrium
hypothesis states that at a given time t, the spatial distribution of particles is close to
the |ψ|2-distribution (?) [7]. This is the observer-independent version of Born’s Law. In
nonrelativistic Bohmian Mechanics, it can be derived from the fundamental equations of
motion via the quantum flux equation, which provides us with an equivariant measure of
typicality5: Typically, the particles in the universe are |Ψ|2-distributed, where Ψ is the
wave function of the universe. This measure of typicality then allows for a proof of the
|ψ|2-distribution in subsystems (ψ is the ”effective wave function”), i.e. Born’s Law [7].
If this is possible, the model shall be called statistically transparent. It is this demand
of statistical transparancy rather than its nonlocal structure on its own that makes it so
difficult to formulate a relativistic Bohmian quantum theory.

”Relativistically speaking”, (?) translates to ([3], page 6): For all t = const.-hypersurfaces
in Minkowski space, the distribution of crossings by the spacetime-trajectories of N par-
ticles (”N-paths”) is given by ρΣ = |ψΣ|2. The distribution of crossings

ρΣ : ΣN → R (26)

is determined by a probability measure P on the set of N-paths. As we will see later, the
t = const.-hypersurfaces may be replaced by any spacelike hypersurfaces. The problem is
this: These simultaneity surfaces are always defined with respect to a particular Lorentz

4See also [3], page 4.
5See for example [7] for a detailed discussion.
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frame Λ and the wave function determining the distribution of particles is also given
with respect to this frame: ψΣ = ψΛ. Berndl, Dürr, Goldstein and Zangh̀ı state that

There does not in general exist a probability measure P on N-paths for
which the distribution of crossings ρΣ agrees with the corresponding quantum
mechanical distribution on all spacelike hyperplanes Σ. ([3], page 6)

This very general claim can be shown to be true using the setup of Hardy’s nonlocality-
theorem ([3], [10]). Consider the experimental setup in Fig. 1 with three different
Lorentz frames.
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Figure 1: Space-time diagram of the evolution of the wave function in Hardy'sexperiment. In the shaded regions there are Stern-Gerlach magnets Ax, Az, Band Bz, which split the respective parts of the wave function into the respectiveigenfunctions (j+i; j�i)a;bx;z. Three di�erent frames of reference are also drawn.eigenfunctions j+iaz and j�iaz resp. j+ibz and j�ibz. Thus the spin componenare (more or less) perfectly correlated with the path variables as indicated
Figure 1: Spacetime diagram of the evolution of the wave function in Hardy’s experiment,

taken from [3]

Assume that the two particles are prepared in a state (in frame I)

ψHardy =
1√
3

(
|+〉az |−〉bz −

√
2|−〉ax|+〉bz

)
(27)

Then, for the different hyperplanes of the different frames, the wave function takes the
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form

ψI1 =
1√
12

(
|+〉ax|+〉bx − |+〉ax|−〉bx − |−〉ax|+〉bx − 3|−〉ax|−〉bx

)
(28)

ψII0 =
1√
6

(
|−〉az |+〉bx + |−〉az |−〉bx − 2|+〉az |−〉bx

)
(29)

ψIII0 =
1√
6

(
|+〉ax|−〉bz + |−〉ax|−〉bz − 2|−〉ax|+〉bz

)
(30)

ψI2 =
1√
3

(
|+〉az |−〉bz − |+〉az |+〉bz + |−〉az |+〉bz

)
(31)

Now assume that quantum equilibrium holds on all spacelike hyperplanes, i.e. ρΣ = |ψΣ|2
for all frames. This together with (28) implies that on Σ = ΣI(tI1)∫

supp|+〉ax×supp|+〉bx

ρI1(qa, qb)dqadqb =
∫

supp|+〉ax×supp|+〉bx

ψI1
I(qa, qb)dqadqb =

1
12

(32)

and on ΣII(0) and ΣIII(0), (29) resp. (30) imply that

ρII0 (qa, qb) = 0 for (qa, qb) ∈ supp|+〉az × supp|+〉bx (33)

and
ρIII0 (qa, qb) = 0 for (qa, qb) ∈ supp|+〉ax × supp|+〉bz (34)

Finally, from (31) follows that on ΣI(tI2)

ρI2(qa, qb) = 0 for (qa, qb) ∈ supp|−〉az × supp|−〉bz (35)

Now, look only at 2-paths which cross supp|+〉ax × supp|+〉bx. According to (32), they
have probability 1/12. (33) implies that particle a will be in supp|−〉az at tI2 and, from
(34), particle b will be in supp|−〉bz at tI2. Hence∫

supp|−〉az×supp|−〉bz

ρI2(qa, qb)dqadqb ≥
1
12

(36)

in contradiction with (35)([3], page 9).
Thus, the distribution of the actual particle positions in different Lorentz frames (on

different spacelike hyperplanes) cannot be represented by the joint distributions given
by quantum mechanics for a position measurement. This proofs the claim.

Nonetheless, this does not lead to observable contradictions : Any measurement pro-
cess (e.g. by insertion of photo plates) will influence the future paths of the particle
in such a way that the actual measurement can still be predicted correctly. Only the
”unmeasured” distributions might conflict with quantum mechanical predictions.
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4.4 The Multitime Formalism

According to Bohm ([2], page 278), with the usual N-particle Dirac equation

i
∂ψ

∂t
=
∑

Hnψ (37)

where

Hn = α ·
[
∇n
i
− eA(qn, t)

]
+mβn + φn(qn, t) (38)

(the scalar potential Φ is actually missing in [2]), we can only derive probabilities for
results of measurements carried out at a common time t. If, for instance, one would like
to measure the positions xn each at a different time τn (which is surely closer to the spirit
of relativity), a multitime formalism has to be used: Consider the N wave equations

i
∂χ

∂τn
= Hnχ (39)

which are all integrable if all the Hamiltonians Hn commute. This is guaranteed if the
spacetime points (x1τ1, ..., xNτN ) are on a spacelike plane, i.e. outside each other’s light
cones.

4.4.1 Multitime Translation Invariance

Using this formalism, Berndl, Dürr, Goldstein and Zangh̀ı derived a multitime trans-
lation invariant Bohmian theory [3]. Multitime translation invariance can be seen as a
certain limit of Lorentz invariance, having in common the basic idea of relativity that
there is no absolute simultaneity. Berndl, Dürr, Goldstein and Zangh̀ı consider a two-
particle system described by two observers O and O′. Two widely separated events
(tα, xα) and (tβ, xβ), xβ � 1, which are simultaneous for O (tα = tβ) have the primed
coordinates

t′α = tα = 0, x′α = xα = 0
t′β = γ (tβ − vxβ) ≈ −ϑ, x′β = γ (xβ − vtβ) ≈ xβ (40)

For v small, γ = 1√
1−v2 ≈ 1. The authors assume that xβ is that large that vxβ is of

order unity. Obviously, t′β 6= t′α, hence there is for this system no such thing as absolute
simultaneity due to the relative time translation. This is a special case of a Lorentz
transformation (xβ →∞, v → 0 such that vxβ 6= 0), as mentioned above.

On configuration spacetime, Berndl, Dürr, Goldstein and Zangh̀ı formulate the mul-
titime translation introducing distinct coordinate systems for the two subsystems a and
b:

Lτ : R× R3Na × R× R3Nb −→ R× R3Na × R× R3Nb , τ = (τa, τb) ∈ R2

z := (ta, qa, tb, qb) 7−→ (ta − τa, qa, tb − τb, qb) = z′ = Lτz (41)
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For independent subsystems (i.e. on a spacelike hyperplane), their corresponding Hamil-
tonians will commute and one can write down the Schrödinger evolution in a multitime
translation invariant way:

The two-time wave function ψ(ta, tb) ∈ L2(R3Na)⊗ L2(R3Nb),

ψ(ta, tb) = e−iHatae−iHbtbψ0 = UataU
b
tb
ψ0 (42)

transforms according to
ψ(z) = ψ ◦ L−1

τ (Lτz) =: ψ′(z′) (43)

and
ψ′ = e−iHaτae−iHbτbψ = UaτaU

b
τb
ψ = Uτψ. (44)

The two-time wave function satisfies the two Schrödinger equations

i
∂ψ

∂tn
= Hnψ for n = a, b (45)

From this setting, the authors derive a multitime translation invariant measurement
formalism using the Heisenberg picture ([3], page 13): Given that the two subsystems are
independent (no interaction potential), all observables and unitary evolutions mutually
commute: For all j, j′, ta,tb:

[Ma
j ,M

b
j′ ] = [Ma

j , U
b
tb

] = [M b
j , U

a
ta ] = [Uata , U

b
tb

] (46)

Using the projection operators πaj,α and πbj,β onto the eigenspaces of Ma
j and M b

j corre-
sponding to the eigenvalues α and β, Berndl, Dürr, Goldstein and Zangh̀ı construct the
Heisenberg operators ([3], page 13)

πaj,α(ta) := Ua−taπ
a
j,αU

a
ta (47)

and
πbj,β(tb) := U b−tbπ

b
j,βU

b
tb
. (48)

Then, the probability for a certain measurement outcome is6

P (Ma
1 = α1, ...,M

a
k = αk,M

b
1 = β1, ...,M

b
l = βl)

= ‖πbl,βl(t
b
l ) · · ·πb1,β1

(tb1), πak,αk(tak) · · ·πa1,α1
(ta1)ψ‖2, (50)

Arguing that the Heisenberg operators transform under a multitime translation as

πaj,α(t′a) = Ua−t′aπ
a
j,αU

a
t′a

= Uaτa−taπ
a
j,αU

a
−(τa−ta)

= Uaτaπ
a
j,α(ta)Ua−τa

= Uτπ
a
j,α(ta)U−τ (51)

6This is (morally) clear from

|〈µ|ψ〉|2 = 〈ψ|µ〉〈µ|ψ〉
= 〈ψ|µ〉〈µ|µ〉〈µ|ψ〉

” = ” 〈πψ|πψ〉 = ‖πψ‖2 (49)
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and the state ψ itself according to (44), the authors conclude that (50) is multitime
translation invariant, in particular independent of a certain frame of reference:

Thus, the quantum mechanical measurement formalism for a system, which
consists of independent widely separated subsystems, is multitime translation
invariant.([3], page 13)

Experimental setups of the type suggested by EPR can be described by this formalism:
The two subsystems (e.g. the two spin-1

2 -particles) do not interact via an interaction
potential, although they are entangled and thus nonlocally connected. The commuta-
tivity assumption (46) guarantees that there can still be no transmission of signals. This
is what is meant by ”not interacting”: It refers to spatially separated systems so that
causal influences in the sense of special relativity can be excluded.

4.4.2 A Multitime Translation Invariant Bohmian Theory

As already mentioned above, the formulation of a multitime translation invariant Bohmian
theory might be seen as a first step towards a Lorentz invariant Bohmian theory, since it
inherits and actually focuses on a basic feature of special relativity, the non-existence of
absolute simultaneity. Berndl, Dürr, Goldstein and Zangh̀ı consider a system of n (n = 2
for simplicity) widely separated subsystems with total particle number N = Na + Nb,
described by an n-time wave function ψ satisfying n Schrödinger equations ([3], page 14)

i
∂ψ

∂ti
= Hiψ (52)

Let Qa(t) and Qb(t) denote the trajectories of the particle configurations in the two sub-
systems. To formulate the theory, a synchronization has to be introduced: an equivalence
class of maps

(Ta, Tb) : R −→ R2 (53)
s 7−→ (Ta(s), Tb(s)) (54)

Together with Qa(t) and Qb(t), this yields an synchronized N-path in configuration
spacetime:

(Ta(s), Qa(s), Tb(s), Qb(s)) =: Z(s) (55)

where Qi(s) = Qi(T (s)). The guiding equation for the particle trajectories in spacetime
will be

dTa
ds

= 1

dTb
ds

= 1 (56)

together with

dQa
ds

= vψa (Z) = =∇qaψ
ψ

dQb
ds

= vψb (Z) = =∇qbψ
ψ

(57)
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Hence,

dZ(s)
ds

=


1

vψa (Z)
1

vψb (Z)

 (58)

If a tuple (ψ,Z) solves (52) and (58), then so does (ψ′, Z ′) = (ψ ◦ L−1
τ , Lτ ◦ Z), which

makes the theory invariant under time translations Lτ . In addition, since the parameter
s that labels what is simultaneous and hence ”chooses” a certain frame of reference7, is
arbitrary, the theory does not have a preferred frame: Equation (58) is equivalent to all
other equations of the form

dZ(s)
ds

= A(Z)


1

vψa (Z)
1

vψb (Z)


In the same way as for the Bohmian Theories described so far, Berndl, Dürr, Goldstein
an Zangh̀ı look for a distinguished measure ([3], page 15), which is provided by the
appropriate extension of the subsystem-continuity equations

divZiJ
ψ
i = 0, (59)

which follows from (52) with

Jψk =
(
|ψ|2

jψk

)
(60)

and
jψk = |ψ|2vψk = =(ψ∗∇qkψ) (61)

For Z, this yields
∂|ψ|2

∂s
+ divZaJ

ψ
a + divZbJ

ψ
b = 0 (62)

since |ψ|2 is stationary with respect to the synchronization parameter s. Thus, the
dynamics itself points on |ψ|2 as a distinguished measure on R2+3N , the space of initial
values for (58).

Unfortunately, |ψ|2 is not normalizable. Indeed, the authors point out that for the dy-
namics defined by (58), there can be no normalizable density on R2+3N that is stationary
with respect to the parameter s: All stationary measures for Z give stationary measures
for Ti, which are, due to (56), proportional to the Lebesgue-measure on R (which is not
normalizable). Therefore, |ψ|2 is in this case very bad as a probability measure.

The way out of this goes as follows: Eliminate the explicit Ti-dependence from the
equations of motion by first fixing a synchronization via setting Ta(0) =: s0 and Tb(0) =:

7The velocity vψa depends via the wave function on the configuration of the a-system as well as on
the configuration of the b-system in an instantaneous way, i.e. the nonlocal interaction goes along a
s = const.-surface.
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s0 + h. This yields Ta(s) = s0 + s and Tb(s) = s0 + h + s. The wave function is then
given by

ψh(s, qa, qb) := ψ(Ta(s), qa, Tb(s), qb) = ψ(s0 + s, qa, s0 + h+ s, qb) (63)

and the guiding equations do not anymore depend on the subsystem times

dQa
ds

= vψ
h

a (s,Qa(s), Qb(s))

dQb
ds

= vψ
h

b (s,Qa(s), Qb(s)), (64)

nor does the continuity equation:

∂ρh

∂s
+ divqa(ρhvψ

h

a ) + divqb(ρ
hvψ

h

b ) = 0 (65)

with an equivariant density ρh = |ψh|2 that is normalizable for ψh(s) ∈ L2(R3N ). It rep-
resents the distribution of crossings for the set of N-paths given by ψh of any hyperplane
corresponding to the synchronization defined by h.

This distribution of crossings ρh allows for a statistical analysis and, in particular, the
derivation of the quantum mechanical measurement formalism in the way described in
the last section. The authors conclude that

We thus have, with regard to our multitime Bohmian model, three lev-
els of description: the microscopic dynamical level (...) which is multitime
translation invariant; the statistical mechanical level, given by the quantum
equilibrium hypothesis, which is, in precisely the same way, also multitime
translation invariant (...); and the observational level given by the quan-
tum measurement formalism, which is also apparently multitime translation
invariant. ([3], page 19)

Nevertheless, on the first two levels, invariance is only achieved via an additional space-
time structure, the synchronization. Berndl, Dürr, Goldstein and Zangh̀ı remark that
any model can be made invariant under any kind of spacetime transformation by intro-
ducing such additional structures ([3], page 20). Hence, if one follows this way to achieve
Lorentz invariance, the question of the physical significance of that structure has to be
answered.

In the next section, I will describe the somehow straightforward ”generalization” of
multitime translation invariance to Lorentz invariance of a Bohmian theory. This will
still inherit the problem of a not (yet) physically explained additional structure. Finally,
in the last chapter, an approach by Goldstein and Tumulka will be presented, that
combines nonlocality and Lorentz invariance without using more structure than already
given by physics.
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4.5 The Hypersurface Bohm-Dirac Model

A synchronized N-path

(X1, ..., XN ) : R −→ R4N

s 7−→ (X1(s), ..., XN (s)) (66)

should in general satisfy the analogue of (58):

dXk

ds
= vk(X1(s), ..., XN (s)). (67)

The naive covariant reformulation of the guiding equation (23) for the N-particle Bohm-
Dirac model yields

vµk = ψγ0
1 · · · γ

µ
k · · · γ

0
Nψ

(
” = ”

(
ψ†ψ
ψ†αkψ

))
(68)

which is not a 4-vector. Alternatively, one might set

vµk = ψγµkψ, (69)

which is a 4-vector, but lacks statistical transparency: Unlike in the case of (68), where
vik/v

0
k is of the form j/ρ, this is not true for the dynamics given by (70), where

vik
v0
k

=
ψγikψ

ψγµkψ
=
ψ†γ0

1 · · · (γ0
k)2αk · · · γ0

Nψ

ψ†γ0
1 · · · (γ0

k)2 · · · γ0
Nψ

6= j
ρ

(70)

Hence, it is not clear why quantum equilibrium should hold in this case, because there is
no equivariant measure at hand to define typicality. But without quantum equilibrium,
there is nor a known way to compare the theory with ordinary quantum mechanics,
neither can any predictions for measurement results be obtained from it.

Albeit (68) is not a 4-vector, due to its physical equivalence to

dXk

ds
=

(
1

ψ†αkψ
ψ†ψ

)
, (71)

(they only differ by a factor ψ†ψ, a real-valued function on R4N ), it is statistically
transparent in the sense of section 4.4.2 and should therefore be worked out in more
detail anyway.

If the vk in (67) were 4-velocities (vkµv
µ
k = 1), then the synchronization (now in

accordance with proper time parametrization) would, in the nonrelativistic limit, reduce
to the one of section 4.4.2.

In [4], Berndl, Dürr, Goldstein and Zangh̀ı investigate the dynamics implied by (68)
and suggest to achieve synchronization (the needed additional structure mentioned
above) in a more geometrical way introducing a foliation on Minkowski spacetime. It will
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still come ad-hoc, since no equation of motion will be presented, nor will the question of
where the foliation comes from be touched.

A foliation F on Minkowski space can be defined via a smooth function f : M → R
which has no critical points (df 6= 0 everywhere). The smooth hypersurfaces f−1(s)
are then called ”leaves of the foliation”. Since f = const. on each leaf, dfx vanishes on
the tangent space of the leaf to which x ∈ M belongs. Using the Lorentz metric, one
can associate with dfx a normal vector field ∂f(x). If this is everywhere timelike, the
hypersurfaces of the foliation are everywhere spacelike and one gets, by normalization of
∂f(x), a unit normal vector field n(x), characteristic (indeed uniquely determined) for
a given foliation. ([4], page 5)

4.5.1 The Equations of Motion

For N Dirac particles, the wave function satisfies N multitime Dirac equations

(iγk · ∂k − eγk ·A(xk)−m)ψ = 0 (72)

where γk = I ⊗ · · · ⊗ I ⊗ γ ⊗ I ⊗ · · · ⊗ I with γ at the k-th entry. The authors point out
that for the multitime equation (72), it is impossible (as far as it is known) to add an
interaction potential. Despite this fact, the N Dirac particles might of course depend on
each other (nonlocally) due to an entangled wave function.

The current
jk = ψγ0

1 · · · γk · · · γ0
Nψ (73)

already discussed can be written covariantly by replacing γ0
1 by γ · n, where n is the

future oriented unit vector normal to the constant time hyperplanes8:

jk = ψ(γ1 · n) · · · γk · · · (γN · n)ψ (74)

This suggests to take for the guiding equation ([4], page 7)

dXk

ds
= jk (75)

or, more generally, by reparameterization:

dXk

dτ
= ajk (76)

with a positive scalar field a.
To see that the theory is invariant under such reparameterization, denote by Xk(Σt)

the crossing point of a N-path Xk with the t = const.-hypersurface Σt and by Ẋk(Σt)
the tangent line to Xk at the points Xk(Σt). The equation of motion for the N-path can
then be written geometrically as

Ẋk(Σt)‖jk(X1(Σt), ..., XN (Σt)) (77)
8See how ”simple” it is to achieve Lorentz invariance by the implemetion of additional structure (here

the synchronization).

23



Here, the dependence on a reference frame is only due to the specification of simultaneity
hypersurfaces Σt of the foliation. The generalization to arbitrary spacelike hypersurfaces
is thus straightforward. In (77), the particle trajectories are via the wave function
explicitly evaluated with respect to the foliation. This is not true for (75) or (76), where
the trajectories need not in general agree with the given foliation; the derivative with
respect to an arbitrary parameter does not ”force” the particles to move in accordance
with any spacelike hypersurface as in the case of (77). The reason for this is that in (75),
(76), the jk’s are not necessarily evaluated on the leaves of the foliation ([4], page 7).

The extension of (75) to a foliation by arbitrary curved spacelike hypersurfaces is
obvious by generalizing the current (74):

jk = ψ(γ1 · n1) · · · γk · · · (γN · nN )ψ (78)

with ni = n(xi) the unit vector fields normal to the leaves of the foliation at the points
xi. The equations of motion for the particle trajectories with respect to an arbitrary
spacelike foliation (with leaves Σ) is then

Ẋk(Σ)‖jk(X1(Σ), ..., XN (Σ)). (79)

It is important to assure that jk and hence the particle trajectories are everywhere time-
or lightlike in order to exclude causal loops (each leaf Σ should only be crossed once by
each particle trajectory). Writing the current as

jk = ψ†(γ0
1γ1 · n1) · · · γ0

kγk · · · (γ0
NγN · nN )ψ (80)

(note that γ0γ ·n is a positive operator on each C4) and scalar multiplication by n yields

jk · n ≥ 0, (81)

and, therefore, jk is future oriented (the 0-component is positive definite) and nowhere
spacelike.

Equation (79) can also be written in a parameterized form using the function f : M →
R, which generates the foliation ([4], page 8). Using the parameter s that corresponds
to the hypersurface f−1(s) for the parameterization, one finds that Xk(s) is on the leaf
f−1(s). Then, from (79):

dXk

ds
‖jk(X1(s), ...XN (s)) (82)

Furthermore, it must hold that f(Xk(s)) = s for all k and s, which is the same as asking
that9

dXk

ds
· ∂f(Xk(s)) = 1. (83)

The equation of motion is thus given by

dXk

ds
=

jk(X1(s), ...XN (s))
∂f(Xk(s)) · jk(X1(s), ..., XN (s))

. (84)

9morally speaking: differentiate the equation f(Xk(s)) = s with respect to s
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For a flat foliation with x0 = const.-hyperplanes as leaves, this reproduces the Bohm-
Dirac law

dQk

ds
=
ψ†αkψ

ψ†ψ
, (85)

since, in that case, ∂f = (1, 0, 0, 0).

4.5.2 Statistical Analysis

The roadmap is the usual one ([4], page 8ff.). Berndl, Dürr, Goldstein and Zangh̀ı
first look for a distinguished measure on the set of N-paths that fulfil (79). A natural
candidate for this crossing probability density is suggested by the fact that the currents
(74) are 4-divergence free,

∂k · jk = 0. (86)

This can easily be derived from the Dirac equation (72) and its adjoint. In the covariant
spirit of the model, instead of taking the 0-component of jk, multiply it by nk and take
the resulting product as the crossing probability density:

ρ = jk · nk = ψ(γ1 · n1) · · · (γN · nN )ψ (87)

This does not anymore depend on k10. From this fact, together with (86), follows the
equivariance of ρ, which is thus the measure that yields quantum equilibrium ([4], page
9).

It should be stressed that this measure ρ only depends on the wave function, which
solves (72). This wave function will be evaluated on a hypersurface Σ belonging to
the foliation F . For each Σ ∈ F , there will be a distinct ψΣ and hence ρΣ, providing
quantum equilibrium on each leaf due to the equivariance of ρ: This is what lies behind
the sentence: ”For each hypersurface Σ ∈ F , the distribution of crossings by N-paths
(i.e. the spatial probability density on that simultaneity surface) is given by ρΣ.”

The foliation F and its hypersurfaces Σ can therefore (at least in this formulation)
hardly be seen as only mathematical artifacts. On the contrary, the foliation has funda-
mental physical importance: First, it defines the dynamics in equation (79) and secondly,
it defines where quantum equilibrium holds: for the intersection points of the N-paths
with its leaves ([4], page 8).

To proof the equivariance of ρ, Berndl, Dürr, Goldstein and Zangh̀ı first formulate the
continuity equation for the dynamics given by (79) and then show that ρ solves it ([4],
page 9f.):

Proof of the equivariance of ρ:

The probability distribution for the positions of the N particles on a foliation leaf Σ is
given by a function RΣ : ΣN −→ R such that

P (the i-th particle crosses Σ in the 3-volume δxi, i = 1, ..., N)
= RΣ(x1, ..., xN )δx1 · · · δxN (88)

10Although the alternative current jk = ψγkψ is also 4-divergence free, for that current jk · nk is not
independent of k. Therefore, the corresponding model is not statistically transparent.
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On an infinitesimally close surface Σ′, the probability density is given by RΣ′ calculated
at (x′1, ..., x

′
N ) ∈ (Σ′)N , with x′i ∈ Σ′ obtained from xi ∈ Σ by transition normal to the

hyperplanes.
The continuity equation to be established will be a law for the difference between RΣ

and RΣ′ : This must be equal to the probability flux through the lateral boundaries of
the box between δx1 × · · · × δxN ⊂ ΣN and δx′1 × · · · × δx′N ⊂ Σ′N in configuration
spacetime:

RΣ′(x′1, ..., x
′
N )δx′1 · · · δx′N −RΣ(x1, ..., xN )δx1 · · · δxN = (89)

−
N∑
k=1

δx1 · · · δ̂xk · · · δxN
∫

∂(δxk)

(RΣvk)(x1, ..., xk−1, y, xk+1, ..., xN ) · (ukδτ)(y)dSk (90)

where ∂(δxk) is the 2D-boundary of δxk ⊂ Σ, dSk its area-element, uk is a unit normal
vector field in the tangent space of Σ normal to ∂(δxk), δτ(y) is the distance in Minkowski
space between y ∈ Σ and y′ ∈ Σ′ such that y′ = δτ(y)n(y) + y and, finally,

vk =
jk

jk · nk
(91)

is the covariant velocity of particle k.
The authors point out that the continuity equation (89) is valid for any motion given

by (79) ([4], page 10). In particular, the currents jk do not have to be 4-divergence free.
ρ and ρ′ are defined on configuration Minkowski space MN and can therefore be

decomposed as ([4], page 10)

ρ(x′1, ..., x
′
N )δx′1 · · · δx′N − ρ(x1, ..., xN )δx1 · · · δxN

= ρ(x′1, ..., x
′
N )δx′1 · · · δx′N

−ρ(x1, x
′
2, ..., x

′
N )δx1δx

′
2 · · · δx′N

+ρ(x1, x
′
2, ..., x

′
N )δx1δx

′
2 · · · δx′N

− · · ·
+ · · ·
−ρ(x1, ...xN−1, x

′
N )δx1 · · · δxN−1δx

′
N

+ρ(x1, ...xN−1, x
′
N )δx1 · · · δxN−1δx

′
N

−ρ(x1, ..., xN )δx1 · · · δxN (92)

Since δx′ = δx + O, the ”leading-order version” of (92) will only have one primed
coordinate in each summand. Using that jk ·nk is independent of k, one ends (to leading
order) up with

N∑
k=1

δx1 · · · δ̂xk · · · δxN
(
jk(x1, ..., x

′
k, ..., xN ) · n(x′k)δx

′
k

−jk(x1, ..., xk, ..., xN ) · n(xk)δxk
)
, (93)
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while the right hand side of (89) becomes

−
N∑
k=1

δx1 · · · δ̂xk · · · δxN
∫

∂(δxk)

(jk · uk)δτdSk (94)

Subtracting (94) from (93), one obtains

N∑
k=1

δx1 · · · δ̂xk · · · δxN
(
jk(x1, ..., x

′
k, ..., xN ) · n(x′k)δx

′
k

−jk(x1, ..., xk, ..., xN ) · n(xk)δxk +
∫

∂(δxk)

(jk · uk)δτdSk
)

(95)

where the first two terms in the bracket are to leading order equal to the integral over the
”time-boundary” and can thus be brought together with the integral over the ”space-
boundary” ∂(δxk) to yield an integral of jk over the whole ”spacetime-boundary” of the
”box” over δxk between Σ and Σ′. But since jk is 4-divergence free, all these integrals
for the different particles vanish and so does the sum. Hence, ρ = jk ·nk solves (89) and
is an equivariant probability density.�

For those who worry about the ”leading-order-character” of the above proof, the
authors also give a local version of it in ([4], page 10ff).

4.5.3 Statistical Value of the HBD-Model

The aim of the model presented above is to reproduce the quantum mechanical prediction
for position measurement on each leaf of a foliation F . This was achieved thanks to the
equivariance of ρ on the hypersurfaces, which yields the probability distribution for the
N-paths. For one particle as well as for N independent particles (the wave function will
then have product structure), the motion will be independent of the foliation ([4], page
12).

But, in the case of an entangled wave function, this is not in general true. On hyper-
surfaces which do not belong to the foliation, the quantum mechanical distribution does
not have to agree with the distribution of crossings of this surface. In fact, according
to what was shown in section 4.3, quantum equilibrium cannot hold on all spacelike
hypersurfaces. However, by the same argument as discussed at the end of section 4.3,
this does not lead to observable conflicts with quantum mechanical predictions ([4], page
12f.).

The foliation used to derive the Hypersurface Bohm-Dirac (HBD) model clearly has
physical significance, in particular; it cannot be seen as some kind of a gauge. If the
model shall be called Lorentz invariant in a serious way, the foliation must be part of
the objective physical world. Therefore, a law for its dynamics must be found in order
to complete the theory ([4], page 13f.).

In the next section, I will present a different approach to combine quantum nonlocality
and relativity, which has the advantage of not assuming any additional structure whose
physical significance might be questionable.
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4.6 Two Arrows of Time

In [9], Goldstein and Tumulka present a model that describes nonlocal quantum phe-
nomena11 while being completely relativistic. It can, like the models described so far,
be called realistic or Bohmian in the sense that it assumes some kind of reality on the
microscopic level, establishing a particle ontology. Therefore, it does, unlike ordinary
quantum mechanics, not depend on the role of an observer on the fundamental level.
Whether the model is favorable or not from the physical point of view, it proves the
existence of objective, nonlocal and relativistic quantum theories without using more
structure than implied by physics itself: Minkowski spacetime and the wave function.

Unfortunately, the theory lacks statistical transparency: according to the authors,
the dynamics do not have a distinguished probability measure on the set of the particle
trajectories. Thus, it cannot be justified why quantum equilibrium should hold and the
model can therefore not be compared with ordinary quantum mechanical predictions.

4.6.1 The idea of two time-arrows pointing in opposite directions

The basic idea of the model is that there are two arrows of time, a microcausal (c) and a
macrocausal (θ) one. The latter θ coincides with the usual thermodynamic time arrow,
whose direction is given by the Second Law, whereas the microcausal arrow c will always
point in the opposite direction of θ, i.e. ”backwards in macrocausal time”([9], page 3).

The equation of motion of the model, an equation for particle velocities, will be such
that the velocity of a certain particle will depend on the wave function of the system
evaluated on the intersection points of the trajectories of all particles with its own future
light cone as well as on their velocities at these points. Therefore, within this model,
the past can be calculated from the future, but there is no obvious way how to compute
the future from the past on the microscopic level: Causality ”goes” from future to past,
suggesting the microcausal arrow of time c. Hence, on the level of individual particles,
past and future are reversed:

futurec = pastθ
pastc = futureθ (96)

Therefore, within this framework, there is no problem with causal paradoxes on the
microscopic level: events priorc determine the futurec, but never vice versa. The arrow
of time we feel in our every-day-life is of course the thermodynamic one pointing in the
opposite direction.

Due to this structure, the equation of motion is local with respect to c and nonlocal
with respect to θ. The nonlocality is explicitly macroscopic, since an experimenter
might modify particle trajectories separated spacelike from a particle at spacetime point
p, which laterθ cross the futureθ light cone of p. Since the velocity of the particle at p
depends on the wave function evaluated at those crossing points, it can be changed by
the intervention of the experimenter. Nevertheless, the theory is Lorentz invariant ([9],
page 4).
11i.e., it includes the possibility of effects traveling faster than light
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To get a better understanding of the maybe weird concept of two opposite arrows
of time, it might be useful to compare it with classical statistical mechanics: Newton’s
equation of motion is time reversal invariant. There is thus no such thing as a microscopic
arrow of time in classical physics. Despite this time symmetry at the individual particle
level, time asymmetry arises in the statistical limit of many particles: the Second Law
provides us with a macroscopic (thermodynamic) arrow of time. For the model under
consideration here, this implies that we are in fact free to choose a direction at the
microscopic level (it will simply not affect the macroscopic arrow θ). The advantage of
choosing c to be opposite to θ is that this makes it possible to include nonlocality ([9],
page 4).

4.6.2 The Equations of Motion

As in all models described above, the dynamics are completely defined by two funda-
mental equations:

First the (by now) well-known multitime Dirac equation (without an interaction po-
tential):

γµi (i~∂i,µ + eAµ(xi))ψ = mψ (97)

where γµi = I ⊗ · · · ⊗ I ⊗ γµ ⊗ I ⊗ · · · ⊗ I with γµ at the i-th entry. And secondly, the
guiding equation for the particle trajectories (which have to be timelike):

dXµi
i

dsi
‖ψ(γµ1 ⊗ · · · ⊗ γµN )ψ

∏
j 6=i

dx
νj
j

dsj
(sret,j(pi))ηµjνj (98)

Here, sret,j(pi) denotes the value of s such that xµj(s)j lies on the pastc light cone of
pi, ψ = ψ†γ0 ⊗ · · · ⊗ γ0 is the adjoint N-particle spinor and ψ, ψ are evaluated at
the intersection points of the N particle trajectories with the pastc light cone of pi:

(x1(sret,1(pi)), . . . , xN (sret,N (pi))). Analogously, uνjj ≡
dx
νj
j

dsj
(sret,j(pi)) denotes the ve-

locities of all particles j at the intersection points with the pastc light cone of the i-th
particle at pi.

In (98) the tensor J ∈ Tp1M ⊗ · · · ⊗ TpNM ,

Jµ1...µN = ψ(γµ1 ⊗ · · · ⊗ γµN )ψ (99)

gets its indices contracted by
u
νj
j ηµjνj

for all j 6= i, which yields jµii ∈ TpiM .
Hence, (98) may also be written as

dXµi
i

dsi
‖jµii = Jµ1...µNuν11 ηµ1ν1 . . .

̂uν11 ηµ1ν1 · · ·u
νN
N ηµNνN (100)

The result of this contraction, jµii , defines a 1D-subspace of TpiM to which, according
to the law, the i-th particle trajectory has to be tangent.
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Note that for N = 1, this model reproduces the one particle Bohm-Dirac law. The
many particle Bohm-Dirac law considered e.g. in the beginning of section 4.5 can now
be reformulated to give

dXµi
i (s)
ds

‖J0...µi...0(p1, . . . , pN ) (101)

where a preferred Lorentz frame is needed. Indeed, this can be obtained by contracting
all but the i-th index of J , using the unit normal vector fields of the simultaneity hyper-
surfaces belonging to a given foliation. In addition, J is then evaluated on the crossing
points of the N-path with that surface.

In (98) resp. (100) however, such a foliation is not needed: Instead of spacelike
hypersurfaces, light cones are used and contraction of the indices of J is performed
using the 4-velocities of all other particles evaluated on those light cones.

The problem with (98) resp. (100) is, as already mentioned, a rather serious one:
The dynamics implied by it do not yield a continuity equation for ψ†ψ. Hence, there
is no equivariant measure available and no direct comparison with quantum mechanical
predictions can be made. Only in the nonrelativistic limit, where the future light cones
fall together with t = const.-planes, the model becomes the ordinary Bohm-Dirac model,
which is consistent with the ψ†ψ-distribution for position measurement ([9], page 7).

For the model described above, it is important that jµii is nowhere spacelike. This
would be true if and only if its scalar product with any nonzero timelike vector uνii was
nonzero:

λ := jµii u
νi
i ηµiνi = ψ(γµ1 ⊗ · · · ⊗ γµN )ψ

∏
j

u
νj
j ηµjνj (102)

By suitable Lorentz tranformations on Tp1 , . . . , Tp1 , all uj ’s can be brought to the form
(1, 0, 0, 0), changing also ψ into ψ′. But then λ = ±ψ′(γ0 · · · γ0)ψ′ = ψ′†ψ′, which is
larger than zero unless ψ′ = 0 and hence ψ = 0 ([9], page 8).

4.6.3 Micro- and Macrocausality

To explain the consequences of two different causalities, micro- and macrocausality, for
their model, Goldstein and Tumulka give an example of two electromagnetic potentials
Aµ and A′µ which are everywhere equal except in a small spacetime region U(p) around
p (see Fig. 2), ([9], page 10).

The wave functions ψ and ψ′ obtained from the multitime Dirac equation will then
differ for those configuration spacetime points (p1, . . . , pN ) for which at least on pi lies
insight or on the futureθ ”light cone” of the area U(p) ([9], page 10). Whereas any
influences on the wave function will be such that the external cause was priorθ to the
effect, this is not true for the particle trajectories: If S is a solution of the equation
of motion (98) for ψ and S′ a solution for ψ′, these two solutions won’t agree in the
past of U(p) nor in the future of U(p). Hence, causation goes for this model in both
directions. Nonetheless, Goldstein and Tumulka point out that, despite causation in both
directions, the equations of motion do not allow for any causal paradoxes: the model
does not contain the possibility to construct causal loops, because the Dirac equation
is solved from initialθ conditions and, afterwards, the guiding equation is solved from
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Figure 4: Changing the external potential in the spae-time region U(p)a�ets the wave funtion only in the absolute future� of U(p). But thismeans that  (q; r) is hanged, so that the veloity at q is likely to be a�eted.To see how this interplay between miro- and maro-ausality plays outin our model, onsider two eletromagneti potentials A� and A0� that di�eronly in a small spae-time region U(p) around the point p (see Fig. 4). Solvingthe multi-time Dira equation for the same initial wave funtion gives two
Figure 2: Spacetime diagram: Changing the electromagnetic potential in the region U(p)

will influence the wave function in its future ”light cone”. But this will change
the wave function at r and hence influence the velocity of the particle at q
(taken from [9]).

initialc conditions. Loosely speaking, the two kinds of causalities do not ”interact” ([9],
page 11).

The nonlocal backwards (from our macroscopic point of view) causation on the single
particle level described above was suggested to account for nonlocal behavior of quantum
systems in association with entanglement12. In connection with this entanglement, Bell
has shown the nonlocal character of nature which, however, as far as we know, does not
allow for the transmission of signals. The backwards microcausality was not designed
for giving rise to the possibility of macroscopic backward causation ([9], page 11).

12Therefore, the two arrows were chosen in opposite directions. The wave function evaluated on the
future light cone of a point p has traveled through spacetime regions spatially separated from p,
carrying ”information” from these regions finally to the point p to calculate the velocity of the
particle there.
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5 Conclusion

The aim of this thesis was to present recent attempts to achieve a Lorentz invariant
deterministic quantum theory. For all models that have been presented, the dynamics
on the microscopic level were given by the respective modifications of Bohmian Mechan-
ics. As it turned out, the major obstacle on the way towards a relativistic Bohmian
theory is the reconciliation of nonlocality and Lorentz invariance under the condition of
statistical transparency. Within the Hypersurface Bohm-Dirac model this is achieved,
albeit only by incorporating a foliation of spacetime, whose law of motion still has to be
found. Nonetheless, the model shows that the three requirements, Lorentz invariance,
nonlocality and statistical transparancy (leading to the reproduction of the predictions of
ordinary quantum formalism), can all be met within one model. Moreover, the Two Ar-
rows of Time model shows that Lorentz invariance and nonlocality are compatible even
without the incorporation of additional structure. The fact that no complete relativistic
objective quantum theory has been found so far should, in my opinion, not lead to the
conclusion that looking for one is a waste of time. If one wants to avoid the vagueness of
orthodox quantum theory and in addition prefers a deterministic description of nature,
Bohmian Mechanics seems to be a vantage point for further research.
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