Blatt 2 der Übungen zu Mathematik III für Physiker Prof. Dr. D. Dürr

Aufgabe 1:

(a) Gegeben sei die Matrix

$$A = \left(\begin{array}{ccc} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 2 \end{array}\right).$$

Zeigen Sie, dass die Abbildung

$$\langle \cdot, \cdot \rangle_A : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}, \quad (\boldsymbol{x}, \boldsymbol{y}) \mapsto \langle \boldsymbol{x}, \boldsymbol{y} \rangle_A = \boldsymbol{x}^T A \boldsymbol{y}$$

ein Skalarprodukt auf \mathbb{R}^3 ist.

(b) Der zu \mathbb{R}^3 duale Vektorraum (\mathbb{R}^3)* ist der Raum aller linearen Abbildungen von \mathbb{R}^3 nach \mathbb{R} . Ein Element des Dualraumes wird natürlicherweise über das Skalarprodukt mit einem Element aus \mathbb{R}^3 identifiziert, d.h., der zu \boldsymbol{x} duale Vektor \boldsymbol{x}^* ist eindeutig gegeben durch die Abbildung $\boldsymbol{x}^*(\cdot) = \langle \boldsymbol{x}, \cdot \rangle_A$. In der kanonischen Basis von \mathbb{R}^3 sei nun \boldsymbol{x}^* als (1×3) -Matrix gegeben, nämlich $\boldsymbol{x}^* = \begin{pmatrix} 3 & -2 & 5 \end{pmatrix}$. Wie lautet der zugehörige Vektor \boldsymbol{x} ?

Aufgabe 2:

Es sei

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) := \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{für } (x,y) \neq (0,0), \\ 0 & \text{für } (x,y) = (0,0). \end{cases}$$

Berechnen Sie zunächst die partiellen Ableitungen $\partial_x f$ und $\partial_y f$. Zeigen Sie nun durch Nachrechnen, dass die zweiten partiellen Ableitungen von f in (0,0) nicht vertauschen. Berechnen Sie hierzu also $\partial_y \partial_x f(0,0)$ und $\partial_x \partial_y f(0,0)$ und vergleichen die Ergebnisse. Was können Sie hiermit über die zweiten Ableitungen in Punkt (0,0) schließen?

Aufgabe 3:

(a) Gegeben sei

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = xy \sin\left(\frac{1}{x^2 + y^2}\right).$$

Zeigen Sie, dass f in (0,0) total differenzierbar ist. Berechnen Sie nun die partiellen Ableitungen von f und untersuchen Sie diese in (0,0) auf Stetigkeit.

(b) Sei nun

$$g: \mathbb{R}^2 \to \mathbb{R}, \quad g(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0). \end{cases}$$

Zeigen Sie:

- (i) g ist auf ganz \mathbb{R}^2 stetig.
- (ii) g ist in (0,0) nicht total differenzierbar.
- (iii) g ist überall partiell differenzierbar, die partiellen Ableitungen sind jedoch nicht stetig in (0,0).

Aufgabe 4: Die räumlichen elliptischen Koordinaten sind gegeben durch

$$\boldsymbol{v}: \mathbb{R}_+ \times [0, 2\pi) \times [0, \pi] \to \mathbb{R}^3, \quad \boldsymbol{v}(r, \varphi, \theta) = \begin{pmatrix} \sinh r \cos \varphi \sin \theta \\ \sinh r \sin \varphi \sin \theta \\ \cosh r \cos \theta \end{pmatrix}.$$

Berechnen Sie die Jacobi Matrix von \boldsymbol{v} .