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Abstract

I will review the constraints that the no hidden variable the-
orems put on the interpretations of quantum mechanics and
on the locality of the universe. I will also briefly explain how
Bohm’s theory gives a clear and objective meaning to the
wave function and, at the same time, explains in the sim-
plest possible way the most paradoxical aspects of quantum
mechanics.

1. Introduction

Although it would be premature to advise a student to go into

“foundations of quantum mechanics” if he or she does not enjoy in-

dependent means and needs to find a job, it should be said that this

field has made remarkable (if slow) progress over the last decades.

Several famous “mainstream” physicists have devoted part of their

activity to those problems. What is more important than this so-

ciological aspect is that foundational statements no longer have a

purely “philosophical” character: precise claims can be made and

evaluated, concrete proposals can be ruled out experimentally, the-

orems can be proven. The goal of this paper is to review some of

these results, starting with those that are “really proven” and mov-

ing from there to those that are merely reasonable. I will sketch



the main conceptual problems of quantum mechanics, but not, as

is usually done, by stressing the problem of macroscopic superpo-

sitions (Schrödinger’s cat paradox), but rather by dealing directly

with the question in the title of this paper. In particular, I will show

that a meaning that is often implicitly attributed to the wave func-

tion is simply untenable (Section 2). This is due to the so-called “no

hidden variable” theorems, which also have radical implications for

locality (Section 3). Moreover, I will argue that the often-neglected

theory of Bohm1 offers a solution to the usual problems of (non-

relativistic) quantum mechanics and reduces to some extent the

puzzlement caused by the no hidden variable theorems (Section 4).

The wave function is the most fundamental concept of our most

fundamental physical theory. Some explanation of what it means

must be given, if only for pedagogical reasons. I shall suggest that

there are at least two quite different meanings that can be given to

the wave function.

Let me start by describing the usual quantum algorithm (leav-

ing aside all subtleties related to continuous spectra): given an

“observable” A, represented by a self-adjoint operator acting on

the Hilbert space to which the wave function ψ belongs, we can

write:

ψ =
∑

ciφi (1.1)

where the vectors φi are the eigenvectors of A, with eigenvalues λi:

Aφi = λiφi (1.2)

Then, ψ determines the coefficients ci and the numbers |ci|2 are

the probabilities that the eigenvalue λi is found when the quantity

corresponding to A is “measured”.

1Bohm [4] (1952). See [2], [8] for a different presentation of that theory.
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But probabilities of what exactly? Giving different answers to

that question leads to assigning different meanings to the wave func-

tion. I will discuss two possible answers, corresponding to what I

will call the literal meaning and the implicit one. The failure to

distinguish between the two is probably the source of much con-

fusion. The literal meaning says that the probabilities refer solely

to probabilities of experiments performed in the laboratory. The

problem with this interpretation is that it does not allow us to say

anything about the state of the world outside the laboratory. In

particular, it is an unwarranted extrapolation to claim, for exam-

ple, that |ψ(x)|2 denotes the probability density of the position of

the particle. It is rather, if one adheres to the literal interpretation,

the probability density of finding the particle at x once a suitable

measurement takes place. Before the measurement, it is neither

here nor there. Note that I am not worried about the fact that

the electron in an atom has a small probability of being behind the

moon. I am worried about the fact that it has no probability of

being anywhere.

Of course, the same argument applies to all other properties,

like energy, momentum, angular momentum, spin etc. . . 2. Parti-

cles have properties like their mass or their (total) spin, but these

are generic properties, not individual ones. One may of course as-

sign a wave function to an object outside the laboratory, but the

point is that the wave function does not represent the state of the

system, but only the probabilities of what would happen if that

object was brought into a laboratory and interacted with an appa-

ratus there. One cannot even say that the properties of the particle

2Except when the wave function happens to be an eigenstate of one of the
observables, in which case one could argue that the probability of finding the
corresponding eigenvalue being one, the system really “had” this value before
it was measured.

3



are “affected” by measurements. One should rather say that they

are “created” by them or that the particle and the measuring device

form an “inseparable whole”. Actually, if one follows the literal in-

terpretation, talking about particles or microscopic systems should

be regarded as an abuse of language. The theory speaks only about

the predictable and reliable behaviour of certain macroscopic ob-

jects called measuring devices3.

To see how serious the problem is, consider any scientific expla-

nation. It always ultimately follows the reductionist line: properties

of “objects” are explained in terms of those of their constituents,

which are ultimately governed by quantum mechanics. But here,

the theory becomes suddenly silent and talks only about the be-

haviour of macroscopic objects, and the reductionist line becomes

a circle4.

At this point, the reader may think that I exaggerate and that

this is not what the standard interpretation of quantum mechanics

really says. Indeed, there is a second view, which I call the implicit

3If one follows this interpretation, quantum mechanics is entirely consistent
with a view that is popular among some philosophers and sociologists of science:
namely that science true and objective, but only when its statements refer
to what happens inside a laboratory. According to that view, scientists are
not supposed to make claims referring to the outside world; in particular they
should not talk about ”laws of nature”. Scientists should not dismiss such views
as “nonsense”, at least when the discussion is focused on quantum mechanics,
unless they have a clear alternative to present. However, one should ask anyone
who agrees with those views the obvious question: why build laboratories in
the first place, if the experiments performed there do not allow us to know
anything about what goes on in the world? One could answer that technology
works, but then the question becomes: “why does it work?” And one is quickly
led back to square one, namely understanding quantum mechanics.

4Applied to evolution, this leads to particularly strange views: evolution
works through mutations involving biochemical processes that are ultimately
governed by quantum mechanics. But any detailed description of these phe-
nomena would have to refer to measurements made in present-day laboratories.
As Wheeler puts it: “No phenomenon is a phenomenon until it is an observed
phenomenon” [19]; See Bell ([2], chap. 14) for a critical discussion.
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one, namely that “measurement” really means measurement i.e.

that experiments reveal rather than create preexisting properties of

the system5. According to that view, particles have properties such

as position, momentum, angular momentum and, when we mea-

sure an observable A, we simply discover the value that the system

assigned to that observable independently of any measurement.

If one follows that interpretation, probabilities in quantum me-

chanics have a conceptual status rather similar to the one in clas-

sical physics: particles have properties such as spin, position or

momentum, but the latter are unknown to us; hence, we use proba-

bilities to describe that situation. The only novel feature6 compared

to classical probabilities is that these properties are unknowable,

even in principle (or, at least, we can know only some of them at a

time), because measuring one property changes the wave function

(following the “collapse postulate”) and hence changes the proper-

ties that are associated to operators that do not commute with the

one being measured.

The implicit view is probably what lies behind familiar state-

ments such as “the wave function does not represent the system

but our knowledge of it” (or “quantum mechanics does not deal

with Nature but with our knowledge of it”). According to that line

of thought, the reduction of the wave function poses no particular

problem. When we measure a system, we learn something about it,

so our knowledge (i.e. the wave function) changes7. If that view was

5I call this view “implicit”, because I believe that this is what many physi-
cists think quantum mechanics means, although it is neither what the usual
formulation implies nor, as we shall see, logically consistent.

6Apart from the fact that the Schrödinger equation governs the evolution
of the amplitude rather than that of the probability; this is true (and often
emphasized) but is not relevant for the present discussion.

7I believe that most physicists who do not worry about foundations of quan-
tum mechanics often adopt this implicit view; however, a detailed historical
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tenable, there would indeed be fewer reasons to worry. However,

there are several difficulties with this view, the main one being that

it is logically inconsistent, as I shall explain in the next section.

2. The No Hidden Variable Theorems.

There are several versions of such theorems. I will present one

version here and a different one in the next section8. Let A be the

set of self-adjoint operators on some Hilbert space (which may be

taken of dimension four below).

Theorem 1 There does not exist a map v:

v : A → R (2.1)

such that

1)

∀A ∈ A, v(A) ∈ {set of eigenvalues of A} (2.2)

2)

∀A,B ∈ A, with [A,B] = 0, v(AB) = v(A)v(B). (2.3)

Proof

We shall use operators given by the standard “x” and “y” Pauli

matrices, for two “spins”, σi
x, σ

i
y, i = 1, 2 where tensor products are

tacitly understood: σ1
x ≡ σ1

x⊗1, σ2
x ≡ 1⊗σ2

x, etc. Those operators

act on C4. The following identities are standard:

analysis is needed in order to evaluate that conjecture.
8See Mermin [17] for a nice discussion of those theorems and the links

between them. However, Mermin’s interpretation of their significance is, at
least concerning locality, different from mine. ). I learned those theorems and
their proofs, in the specific form given below, from Shelley Goldstein (private
communications).
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i)

(σi
x)

2 = (σi
y)

2 = 1 (2.4)

for i = 1, 2.

ii)

σi
xσ

i
y = −σi

yσ
i
x (2.5)

for i = 1, 2.

iii)

[σ1
α, σ

2
β] = 0, (2.6)

where α, β = x or y.

Now, consider the identity:

σ1
xσ

2
yσ

1
yσ

2
xσ

1
xσ

2
xσ

1
yσ

2
y = −1 (2.7)

which follows, using first ii) and iii) above to move σ1
x in the product

from the first place (starting from the left) to the fourth place,

which involves one anticommutation and two commutations:

σ1
xσ

2
yσ

1
yσ

2
xσ

1
xσ

2
xσ

1
yσ

2
y = −σ2

yσ
1
yσ

2
xσ

1
xσ

1
xσ

2
xσ

1
yσ

2
y (2.8)

and then using repeatedly i) to see that the RHS of (8) equals −1.

Define the following set of operators:

A = σ1
xσ

2
y

B = σ1
yσ

2
x

C = σ1
xσ

2
x

D = σ1
yσ

2
y

X = A.B
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Y = C.D

Then, observe that, using ii) and iii):

α) [A,B] = 0

β) [C,D] = 0

γ) [X, Y ] = 0

The identity (7) can be rewritten as

X.Y = −1. (2.9)

But, using assumption 2) of the Theorem α)−γ) and (6) above,

we have:

a) v(X.Y ) = v(X)v(Y ) = v(A.B)v(C.D)

b) v(A.B) = v(A)v(B)

c) v(C.D) = v(C)v(D)

d) v(A) = v(σ1
x)v(σ

2
y)

e) v(B) = v(σ1
y)v(σ

2
x)

f) v(C) = v(σ1
x)v(σ

2
x)

g) v(D) = v(σ1
y)v(σ

2
y)

Since the only eigenvalue of the operator −1 is −1, we have,

combining (9) with assumption (1) in the Theorem and a)-g) above:

v(X.Y ) = −1 = v(σ1
x)v(σ

2
y)v(σ

1
y)v(σ

2
x)v(σ

1
x)v(σ

2
x)v(σ

1
y)v(σ

2
y)

(2.10)
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where the RHS equals v(σ1
x)

2v(σ2
y)

2v(σ1
y)

2v(σ2
x)

2 since all factors in

the product appear twice. But that last expression is manifestly

positive (actually equal to +1), which is a contradiction.

Remarks

The symbol v is used for “value map”; indeed, one should think

of v(A) as the putative value that the system assigns to the “observ-

able” A before measurement (and that the latter merely reveals).

The constraints 1) and 2) are justified on purely empirical grounds,

entirely independent of the validity of the quantum theory as such.

Indeed (for 1), the results of measurements are always eigenval-

ues; and (for 2), since A and B commute, one could (in principle)

measure simultaneously A, B and AB and the results must satisfy

(2.3).

The nonexistence of the map v means that measurements are,

as one calls them, contextual, i.e. do not reveal preexisting prop-

erties of the system, but, in some sense, produce them; the word

contextual refers to the fact that the result may depend not only

on the microscopic system and the operator being “measured”, but

also on the “context”, i.e. on some of the properties of the exper-

imental set-up9. Hence, the implicit interpretation is untenable or

at least has to be profoundly revised.

It should be stressed that we deal here with “experimental meta-

physics” (as A. Shimony once called it), i.e. we are not merely con-

cerned with the issue whether the value v(A) can be predicted (or

controlled, or reproduced) by mere humans, but whether it is log-

ically consistent simply to assume that it exists. It turns out that

it is not, and that that result can be inferred from experimental

9Actually, it would be better not to call them “measurements” at all, be-
cause the word does suggest that some objective property is being “observed”.
See Bell, [1], for a more detailed discussion.
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constraints alone.

Finally, why is this called a “no hidden variable theorem”? As

a result of some “historical silliness”, as Bell calls it ([2], p.163, see

also note 24, p.92), any variable that is not the wave function itself

has been called a “hidden variable”. The name is somewhat silly

because, if we are to go beyond the literal interpretation and, as

explained above, it is necessary to do so, we have to assume that

something exists besides the wave function. Bell has coined the

word “beable” to refer to such objects (see [2], Chap.19). What

the no hidden variable theorems say is simply that there cannot be

beables corresponding to all observables (or even to certain classes

of observables)10. Note also that the wave function itself is not

“visible”; like all theoretical concepts, it is inferred.

3. Non locality and Bell’s theorem.

Here is a puzzle11: two persons, call them X and Y , leave a room

through opposite doors; at that point, each is asked a question. The

precise nature of the questions does not matter, but there are three

possible questions (say, A, B and C). Each person must answer yes

or no. This “experiment” is repeated many times, with sometimes

the same question, sometimes different questions being asked at the

two doors. The two persons are allowed to decide, before leaving

the room, to follow any strategy they want, but not to communicate

with each other, after they have heard the questions.

The statistics of answers have some strange properties. First

of all, it turns out that when the two people are asked the same

question, they always give the same answer. Is that mysterious? Of

10This has rather serious consequences for the “decoherent histories” ap-
proach to foundations of quantum mechanics. See Goldstein [14] for a more
detailed discussion.

11This argument is due to Maudlin [16].
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course not; they simple decide, before leaving the room, to follow a

certain strategy: for example, to both say ‘yes’ if the question is A,

‘no’ if the question is B and ‘no’ if the question is C. Altogether,

there are 8 = 23 different such strategies. Before proceeding fur-

ther, the reader has to answer for himself or herself the following

question: Is there any other way? Is there any way to account for

the perfect correlations between the results at the two doors with-

out assuming that the answers were predetermined (if we assume

that the people cannot have any communication whatsoever with

each other once the questions are asked)? I have never seen any

suggestion of another possibility and I believe that if Bell’s theorem

is arguably the most widely misunderstood result in the history of

physics, it is precisely because this question is not answered before

proceeding further.

So, let us consider, for the time being, the assumption that the

answers are predetermined and let us call vi(α) = ±1, i = X, Y ,

α = A,B,C those answers. These are “random variables”, namely

they may take different values when one repeats the “experiment”.

However, if one looks at the statistics of answers when different

questions are asked at the two doors, one finds that the frequencies

of the events in which the same answers are given is 1/4. And this,

combined with the perfect correlations is strange. Indeed, a version

of the no hidden variable theorems (similar to the one discussed in

the previous section), known as Bell’s theorem12, shows that this

leads to a contradiction:

Theorem 2 There does not exist random variables vi(α), i = X, Y ,

12For a clear exposition of the link between those two types of theorems,
see Mermin [17]. Both theorems are due to Bell, but the one of section 2 was
discovered independently by Kochen and Specker (in a more complicated form).
Penrose ([18], chapter 6, particularly endnote 14) gives also a nice discussion
of this result.
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α = A,B,C, such that

1)

vi(α) = ±1. (3.1)

2)

vX(α) = vY (α), ∀α. (3.2)

3)

Probability(vX(α) = vY (β)) = 1/4 ∀α, β, α 6= β. (3.3)

Proof

One has (with P for Probability):

P (vX(A) = vX(B))+P (vX(A) = vX(C))+P (vX(B) = vX(C)) ≥ 1,

(3.4)

because one of the three events in that equation must occur in each

of the experiments, since vX(α) takes only two values. By 2), we

get

P (vX(A) = vY (B))+P (vX(A) = vY (C))+P (vX(B) = vY (C)) ≥ 1,

(3.5)

and, using 3), we get 3/4 ≥ 1, which is a contradiction.

Remarks

It is well known that there exist observations made with corre-

lated photon pairs, which do reproduce those apparently “impossi-

ble” statistics; the “questions” correspond to three different angles

along which the polarization is “measured” and the yes/no answers
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correspond to the two possible results (depending on the situation,

we may have perfect correlations or perfect anticorrelations but that

does not affect the crux of the argument). Finally, the 1/4 is simply

the value of cos2 60 and comes from standard quantum mechanical

calculations.

What is the conclusion of all this? We started from one crucial

assumption: absence of “communication” between the two persons

once they are asked the questions13. I will from now on revert to a

less anthropomorphic language and call this assumption “locality”

– assume that there is no causal connection whatsoever between the

two wings of the experiment. Then, we are led to a contradiction,

so that this assumption has to be dropped.

It is important to understand the logic of the argument: the

perfect correlations plus the absence of communication (i.e. local-

ity) between the two wings of the experiments, leads us to postu-

late the existence of the variables vi(α) (which are also “hidden”

– see the discussion in section 2). However, merely assuming that

those variables exist leads to a contradiction with the experimental

results obtained when different questions are asked. To put it sim-

ply: locality plus perfect (anti)correlation implies hidden variables;

however, the latter plus statistics when different angles are mea-

sured implies a contradiction. Both the perfect correlations and

the statistics for different angles are empirical results; the theorem

is a theorem, namely a logical deduction; the only assumption was

the lack of “communication”, or locality. Hence, locality has to be

given up, period14.

13If that assumption is dropped, there is no problem to account for the
statistics: the two persons could agree to follow two different strategies: one if
they are asked the same question and the other if the questions are different.
And they simply tell each other which question is asked.

14The natural question is whether this conflicts with relativity, since the ex-
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It is not, as is often assumed, a concern for realism, or for deter-

minism or for hidden variables that is the source of the problem15.

The reason for this misunderstanding is probably historical: the

first part of the argument (locality implies hidden variables) goes

back essentially to Einstein, Podolsky and Rosen in 1935 [10]. But

they did not put it this way and were certainly not interested in

showing that the world is not local. On the contrary, they assumed

(as if it was obvious) that the world is local and concluded that

quantum mechanics is incomplete, namely that hidden variables

must exist. As a logical reasoning, it was perfect.

But Bell’s theorem was proven only in 1964, almost thirty years

later. It showed that the hidden variables, whose existence was im-

plied by the “obvious” assumption of locality made by EPR, led to

a logical contradiction. However, between 1935 and 1964, the ma-

jority of the physics community became convinced that Bohr had

satisfactorily answered Einstein [5]. I shall not discuss here what

Bohr really had in mind, and how the majority of physicists actually

read him. That is a fascinating problem for historians of science16.

The upshot is that Bell, who of course knew and understood the

EPR argument, took it as his starting point and proceeded to dis-

prove the existence of those hidden variables, hence of locality. But

most of his readers did not understand the full logic of his argument

and thought that Bell had merely refuted the existence of local hid-

periments indicate that the “communication” does not go at subluminal speeds.
The short answer is that because of the “randomness” of the results on both
sides, no superluminal transfer of information is made possible. But the issue
is much more subtle than that. For a detailed discussion, see Maudlin [16].

15See the discussion of the socks of Mr Bertlmann by Bell ([2], chap. 16),
in particular note 10, p.157. For a remarkable misunderstanding of that
very same example, see [11], p.172. See [13] for more examples of similar
misunderstandings.

16See Bell [2], p.155, for a brief discussion of the Bohr-Einstein controversy.
See also [15] for a good historical and conceptual discussion.
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den variables; since the EPR argument had simply been forgotten

and since all concern for hidden variables were by then regarded

as proof of a “lamentable addiction to metaphysics”17, Bell’s result

looked neither particularly spectacular nor particularly disturbing.

That is, in a nutshell, why the majority of the physics community

of the second half of this century underestimated the significance

of one of the most startling results in the history of science.

4. Bohm’s theory.

In Bohm’s theory, the wave function is not the complete description

of the state of the system. The latter is given by both the usual

wave function and the positions of all the particles:

(ψ,Q1, . . . , QN),

for a system of N particles. It is thus postulated that positions

really exist, i.e. that these are the beables of the theory. The

dynamics is also made of two pieces: one is the usual Schrödinger

equation, which prescribes how the wave function evolves and the

other is the guiding equation, which prescribes how the particles

are guided by the wave:

d

dt
Qk =

h̄

mk

Im
ψ∗∇qk

ψ

ψ∗ψ
(Q1, . . . , QN) (4.1)

An important (though elementary) property of this system is

equivariance: Assume that at some initial time t = 0, we have a

distribution of particles with density ρ0 = |ψ0|2. Then, at a later

time, the distribution of particles obtained by solving (4.1) will be

ρt = |ψt|2, where ψt is the solution of the Schrödinger equation with

initial wave function ψ0.

Using this fact, one shows that18, when one repeats a given

17Bell [2], p. 202.
18See [8] (and also [2], chap. 19) for a justification of this claim.
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experiment, the statistical results will agree with the quantum me-

chanical predictions if one assumes that the initial distribution for

the microscopic system satisfies ρ0 = |ψ0|2. This is how the purely

deterministic Bohm’s theory explains the apparently “random” be-

haviour of quantum systems. One might of course worry about

the nature and the justification of the statistical assumption at the

initial time. This requires a long discussion, leading ultimately to

assumptions on the initial state of the universe (see [8]), but the

brief answer is that statistical mechanics also needs some initial

statistical assumptions and that the latter also raise conceptual

problems (that are, actually, much harder than the corresponding

ones in Bohm’s theory).

Let me now sketch how Bohm’s theory clarifies the “paradoxes”

arising from the no hidden variable theorems. First of all, there are

no “hidden variables” in that theory other than positions. There is

no value assigned by the system to various operators such as mo-

mentum, spin, angular momentum, etc. and that would be deter-

mined prior to those specific interactions with macroscopic devices

misleadingly called “measurements”. One can, in Bohm’s theory,

analyze how those interactions take place19 and see that the result

does not depend solely on the complete state (ψ,Q) of the micro-

scopic system but also on the way the apparatus is set up. Hence,

every “measurement” of anything but position is a genuine inter-

action between the system and the apparatus. It does not merely

reveal preexisting properties of the system. In other words, Bohm’s

theory makes concrete and mathematically precise Bohr’s intuition

about the impossibility to separate the system and the apparatus.

Non locality is also easy to understand in Bohm’s theory. The

basic observation is that the wave function is a function defined

19See [7], [12], [2], Chap.17.
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on configuration space and not, as for example the electromagnetic

field, on physical space. Consider then two particles and suppose

that there is an external potential acting in the neighbourhood of,

say, the origin and corresponding to the introduction of a measur-

ing device acting on the first particle. The evolution of the wave

function will be affected by this potential through Schrödinger’s

equation; however, the wave function determines the trajectories of

both particles through the guiding equation (4.1). Hence, the tra-

jectory of the second particle will also be (indirectly) affected by

the potential (that is by the measuring device) even if it happens

to be very far from the origin. This gives some understanding of

what goes on when polarization or spin “measurements” are per-

formed on (anti)correlated pairs. The results, as Bell shows, are

not determined before the interaction with the measuring device.

And the perfect correlations are therefore due to a subtle form of

“communication” between both sides of the experiment. The latter

is made possible because the wave function connects distant parts

of the universe through equation (4.1).

One final remark: the most common objections voiced against

Bohm’s theory are that it is “metaphysical” and “non local, hence

incompatible with relativity”. I will leave aside the first objection,

which reflects some “positivistic” misunderstandings about the na-

ture of physical theories. But the second objection is strange: after

all, what Bell’s theorem shows is that any theory that makes the

correct experimental predictions must be non local. Being non local

should be regarded, for a theory, as a virtue rather than a defect.

And as far as compatibility with relativity is concerned, the prob-

lems faced by Bohm’s theory are basically those that any theory

will face as a consequence of Bell’s theorem20.

20See [2] (chap. 19 ), [3], [9] [16] for a more detailed discussion of relativity

17



5. Conclusions

I shall leave the last word to John Bell, one of the most lucid pro-

ponents of Bohm’s theory. He explains that, when he was a stu-

dent, he had read Born’s book, Natural Philosophy of Cause and

Chance [6], where, on the basis of a misunderstanding of the signifi-

cance of von Neumann’s no hidden variable theorem, it was claimed

that a deterministic theory underlying the quantum algorithm was

impossible21. But, as he says, “in 1952, I saw the impossible done”;

and that was Bohm’s theory. He continues:

But then why had Born not told me of this ‘pilot wave’?
If only to point out what was wrong with it? Why did
von Neumann not consider it? More extraordinarily, why
did people go on producing mpossibility’ proofs, after 1952,
and as recently as 1978? When even Pauli, Rosenfeld, and
Heisenberg, could produce no more devastating criticism
of Bohm’s version than to brand it as ‘metaphysical’ and
‘ideological’? Why is the pilot wave picture ignored in text
books? Should it not be taught, not as the only way, but as
an antidote to the prevailing complacency? To show that
vagueness, subjectivity, and indeterminism, are not forced
on us by experimental facts, but by deliberate theoretical
choice?22

Acknowledgements: I would like to thank Shelley Goldstein,

Antti Kupiainen, Christian Maes, Tim Maudlin and Alan Sokal for

many interesting (and sometimes heated) discussions on the topics

reviewed in this paper.

and of Bohmian quantum field theories.
21See [13] for more examples of similar misunderstandings, going back to von

Neumann himself.
22Bell, [2] p. 160.
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8. D. Dürr, S. Goldstein, N. Zanghi, Quantum equilibrium and

the origin of absolute uncertainty, J. Stat. Phys. 67 (1992)

843-907.
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